Transfer of slurry in a bayer process

Information

  • Patent Grant
  • 8628737
  • Patent Number
    8,628,737
  • Date Filed
    Thursday, November 9, 2006
    18 years ago
  • Date Issued
    Tuesday, January 14, 2014
    10 years ago
Abstract
The present disclosure is directed to a method of improving the transfer of slurry in a Bayer process through the addition of one or more chemical species to a Bayer process, wherein said chemical species is selected from the group consisting of: non-ionic surfactants, polyglycols, polyglycol ethers, anionic surfactants, anionic polymers, and a combination thereof. The present invention is also directed to a method of deaerating a slurry in a Bayer process through the addition of an effective amount of one or more chemical species to a Bayer process, wherein said chemical species is selected from the group consisting of: non-ionic surfactants, polyglycols, polyglycol ethers, anionic surfactants, anionic polymers, and a combination thereof.
Description
FIELD OF THE INVENTION

The present disclosure relates to a method of improving the transfer of slurry from one point in the Bayer process to another. The present invention further discloses a method of deaerating a slurry in a Bayer process.


BACKGROUND

The Bayer process is the most common process used to produce alumina (Al2O3) from bauxite ore. Alumina producers are constantly striving to make the Bayer process more economical; producers want to be able to make as much alumina as possible at the lowest operating costs. One aspect of the Bayer process that directly impacts process economics is the production of and the transfer of slurry. Specifically, the transfer of bauxite and red mud containing slurries are problematic.


Bauxite containing slurries are formed when bauxite is mixed with liquid, such as the spent liquor. Depending upon bauxite hardness and particle size, a grinding stage may be necessary to form transferable slurry, for example pumpable slurry. Ball mills, rod mills, or combined rod and ball mills may be used to wet grind the bauxite so that slurry can be made. Once this slurry is formed it then needs to be transferred to other stages of the Bayer process, one of which is a critical stage, the digestion stage, which involves the extraction of alumina from bauxite containing slurry.


Red mud slurries contain red mud and Bayer process liquor. This type of slurry, for example, needs to be transferred from the red mud settler to the red mud washers.


Various apparatuses, for example one or more pumps, are used to transfer slurry from one point in the Bayer process to another. Problems with slurry throughput can occur through these apparatuses. Specifically, the rate of transfer through pumps and other apparatuses may be slower than design. For example, in one Bayer process plant, some pumps were found to be capable of only transferring 60% of their design flow.


Gravimetric forces also play a role in the transfer of slurry of one point in the Bayer process to another.


Improvements in the efficiency of slurry transfer in a Bayer process are addressed in this disclosure.


SUMMARY OF THE INVENTION

This disclosure provides for a method of improving the transfer of slurry in a Bayer process comprising: (a) adding an effective amount of one or more chemical species to a slurry of said Bayer process, or to a liquid component added to said slurry and/or solid component added to said slurry, or a combination thereof, wherein said chemical species is selected from the group consisting of: non-ionic surfactants, polyglycols, polyglycol ethers, anionic surfactants, anionic polymers, and a combination thereof; and (b) optionally providing one or more apparatuses capable of transferring said slurry from one location to another in said Bayer process.


This disclosure also provides for a method of deaerating a slurry in a Bayer process comprising: adding an effective amount of one or more chemical species to a slurry of said Bayer process, or to a liquid component added to said slurry and/or solid component added to said slurry, or a combination thereof, wherein said chemical species is selected from the group consisting of: non-ionic surfactants, polyglycols, polyglycol ethers, anionic surfactants, anionic polymers, and a combination thereof.







DETAILED DESCRIPTION OF THE INVENTION
Definitions

“Slurry” refers to a suspension containing a solid component and a liquid component, wherein said solid component contains bauxite or red mud.


“Non-ionic surfactants” mean surfactants that do not have any residual charge.


“Anionic surfactants” mean surfactants that have a net negative charge prior to or upon the addition of surfactants to the slurry.


“Anionic polymers” mean polymers having a net negative charge that are water soluble polymers and have an intrinsic viscosity in 2 N NaNO3 of from about 0.01 to about 0.25 dl/g. One of ordinary skill in the art would know how to measure intrinsic viscosity; one protocol is delineated in U.S. Pat. No. 6,048,463 to Selvarajan et al., which is herein incorporated by reference.


“Grinding stage” refers to the stage of a Bayer process where a Bayer process slurry is formed by grinding a solid containing bauxite by some mechanical means, such as by using a ball mill, a rod mill or a combined rod and ball mill, with a liquid, such as spent liquor. The grinding stage is known to one of ordinary skill in the art; it may otherwise be referred to as the grinding circuit. There are many permutations to the grinding stage and those permutations shall be encompassed by this disclosure as well.


“Digestion stage” is the primary stage where alumina is extracted from the bauxite slurry. The digestion stage is known to one of ordinary skill in the art. There are many permutations to the grinding stage and those permutations shall be encompassed by this disclosure as well.


“Deaeration” or “deaerating” refers to the release of entrained air from a slurry.


Preferred Embodiments

There are many different types of Bayer process plants that serve to extract alumina from bauxite. This disclosure serves to capture all types of Bayer process plant operations.


In one embodiment, the slurry is formed by combining said solid component with said liquid component, and optionally wherein said liquid component is a spent liquor, and optionally grinding said solid component prior to forming said slurry and/or grinding said slurry.


In another embodiment, the solid component contains bauxite.


In another embodiment, the grinding occurs in a ball mill and/or a rod mill.


Bayer process slurries move from one point to another with the assistance of gravity and/or by mechanical means, for example, one or more pumps are positioned at various points where these slurries flow. Other apparatuses capable of transfer slurry, which are known to those of ordinary skill in the art, may be used as well.


Entrained air in a slurry will adversely affect slurry flow, pump capacities and energy used to transfer the slurries through the Bayer process, such as through the grinding stage, and flow from the digestion stage to the red mud settlers, for example, from the last flash tank in the digestion stage to the red mud settlers.


In one embodiment, the transfer of slurry is from a receptacle/tank, which holds said slurry to a digestion tank.


In another embodiment, the transfer of slurry is from a grinding stage of said Bayer Process to a digestion stage of said Bayer Process. In a further embodiment, a pump transfers said slurry through a conduit from a grinding stage of a Bayer process to a digestion stage of a Bayer process.


In another embodiment, the transfer of slurry is from a flash tank to a red mud settler.


Many different types of chemical species may be utilized to improve the transfer of slurry in a Bayer process and/or deaerate the slurry. In general, the chemical species include non-ionic surfactants, polyglycols, polyglycol ethers, anionic surfactants, anionic polymers, and a combination thereof. These chemical species may be added alone or in combination with one another. More than one chemical species may be added, as well.


Non-ionic surfactants may be utilized to improve the transfer of slurry in the Bayer process. There are many different types of non-ionic surfactants known to those of ordinary skill in the art.


In one embodiment, the non-ionic surfactants are selected from the group consisting of: oxyalkylated alcohols; ethoxylated alcohols; propoxylated alcohols; polyether polyol; propoxylated glycerine/sucrose; ethylene oxide/propylene oxide block copolymer; ethoxylated alkylphenols; ethoxylated octylphenols; ethoxylated nonylphenols; ethoxylated nonylphenols/tall oil fatty acid; fatty alcohol ethoxylate; alkylphenol ethoxylate; fatty acid ethoxylate; fatty amide ethoxylate; fatty amine ethoxylate; alkyl glucoside; sorbitan alkanoate; ethoxylated sorbitan alkanoate; and a combination thereof.


Ethoxylated alcohols include Tergitol® 15-S-15, Tergitol® 15-S-12, and Tergitol® 15-S-9, which are all available from The Dow Chemical Company, Midland, Mich.


Polyether polyols include Voranol-446, which is available from The Dow Chemical Company. Voranol 446 contains propoxylated glycerine and sucrose.


Ethylene oxide/propylene oxide block co-polymers include PLURONIC® and PLURONIC®R, which are available from BASF Corporation.


Ethoxylated nonylphenols are available from Nalco Company, Naperville, Ill.


Polyglycols may be utilized to improve the transfer of slurry in the Bayer process. There are many different types of polyglycols known to those of ordinary skill in the art. Polyglycols include DOWFROTH® 250, which is available from The Dow Chemical Company. DOWFROTH 250 contains a mixture of polyglycols and polyglycol ethers.


In one embodiment, the polyglycols are polypropylene glycols. Polypropylene glycols are available from Nalco Company, Naperville, Ill.


In another embodiment, the polyglycols have an average molecular weight of from about 200 to about 1200.


In another embodiment, the polyglycols have an average molecular weight of from about 400 to about 800.


Anionic surfactants may be utilized to improve the transfer of slurry in the Bayer process. There are many different types of anionic surfactants known to those of ordinary skill in the art. Anionic surfactants are available from Nalco Company, Naperville, Ill.


In one embodiment, the anionic surfactants are selected from the group consisting of: alkyl sulfate; alkyl ethercarboxylate; alkylbenzene sulfonate; dialkyl sulfosuccinate; alkyl phosphate; alkyl etherphosphate; tall oil fatty acid/ethoxylated nonylphenol; dioctyl sulfosuccinate; and a combination thereof.


Anionic polymers may be utilized to improve the transfer of slurry in the Bayer process. There are many different types of anionic polymers known to those of ordinary skill in the art. Anionic polymers are available from Nalco Company, Naperville, Ill.


In one embodiment, the anionic polymers are acrylic acid containing polymers.


In another embodiment, the anionic polymers are sulfonated.


In another embodiment, the anionic polymers are acrylic acid/methacrylate copolymers.


In another embodiment, the anionic polymers are terpolymers.


The chemical species may be added to slurry via different routes. The chemical species may be added to: the solid component of the slurry, which may contain bauxite; the liquid component of the slurry, which may contain spent liquor, evaporated liquor, or a combination thereof; and it may be added to the slurry itself. The chemical species may be added at one or more these stages. Preferably, the chemical species may be added as a solution to the slurry. Moreover, it is advantageous that the solution is at ambient temperature and ambient pressure.


The slurry may have various physical and chemical properties.


In one embodiment, the slurry is an alkaline slurry.


In another embodiment, the slurry is at an elevated temperature of less than about 110° C.


In another embodiment, the slurry is at an elevated temperature from about 65° C. to about 100° C.


In another embodiment, the solution is added to slurry at ambient temperature and ambient pressure.


In another embodiment, the chemical species is in liquid form at ambient temperature and ambient pressure.


Various amounts of chemical species may be added to improve the transfer of slurry in the Bayer process. One of ordinary skill in the art could determine the amount without undue experimentation. Such factors, as the chemical species, the slurry components, and viscosity of the slurry, are important in determining the amount of chemical species that should be added so that an improvement in the transfer of slurry can occur. Concentrations expressed in this application are based upon the neat solution of chemical species or product combination if more than one species is applied.


Preferably, an effective amount of chemical species is about 15 ppm.


In one embodiment, the effective amount of chemical species is greater than about 5 ppm.


In another embodiment, the effective amount of chemical species is from about 5 ppm to about 50 ppm.


In another embodiment, the effective amount of chemical species is from about 5 ppm to about 15 ppm.


The following examples are not meant to be limiting.


EXAMPLES
Example 1

A series of five plant tests were conducted in the grinding stage of a Bayer processing plant. All tests were typically 2 to 4 hrs in length. Compound “A”, (60% polyether polyol, 10% propylene glycol chains, part methyl-terminated, 30% water), available from Nalco Company, was dosed neat to either the bauxite slurry feeding the ball mills or to the spent liquor feeding the rod mills in amounts of 15-30 ppm, as set out in Table I below.










TABLE I





Test
Applications of Compound A







1
#1 & 2 Ball Mills - into underflow of cyclones


2
Ball Mills - #1 into cyclone underflow and



#2 into slurry feed prior to cyclone


3
Into Spent Liquor Feed to all Rod Mills


4
#1 Ball Mill - into feed prior to cyclone


5
#1 Ball Mill - into feed prior to cyclone









In all plant tests, data for the following parameters: slurry flow rate, pump speed (expressed as a % of maximum output), and pump amps for each discharge pump used to transfer the slurry, were obtained from the plant automated control system. Meter outputs were continuously recorded by a central computer system each minute on a given test day. Additionally, milling (or grind) rates were computed based on bauxite and slurry flow measurements. Average results were computed for each parameter before, during and after test periods and for each dosage level of Compound A used during the test period. The results for all tests are given in the series of Tables II to V below. Occasionally the energy usage (Kwatts) for certain transfer pumps was recorded from remote digital display units near the pumps.


The amount of entrained gas in the mill discharge slurry was also evaluated at least three times prior to the start of any test and then typically every 10-15 minutes during a test. This involved collecting samples of the slurry in a graduated cylinder at the mill discharge. Immediately, the initial volume of the slurry was recorded, after which the slurry was agitated 20 times with a plunger and then allowed to stand for 15 min. Following this settling period, the final slurry volume was recorded. The change in volume versus the initial volume was used to calculate the amount of entrained gas (expressed as a % volume/volume). After each dosage change, the amount of entrained gas was determined after 20 min. One hour after the completion of each test the amount of entrained gas was re-checked to determine if it returned to the same level prior to the test.


Table II summarizes the bauxite slurry flow rate, average pump speeds, and the amount of entrained gas in the discharge from the ball mills during the two initial plant screening trials of Compound A.


The dose of Compound A was computed from the metered flow rate of the material and the bauxite slurry flow rate at various times in the test period. Clearly the addition of the Compound A had a significant impact on reducing the amount of entrained gas in the slurry at the discharge of the Ball Mills and as a result pump speeds decreased considerably at a given flow rate. For example, 10-30 ppm of Compound A, reduced the entrained gas from 19 v/v % to approximately 11.5-13% and pump speeds decreased from the 38-51% range down to 14-17%. Test 2 clearly demonstrated that the best slurry degassing occurred when Compound A was added to the bauxite slurry prior to the cyclone (rather than to the cyclone underflow stream). For example, application of Compound A to the slurry before the cyclone on Ball Mill #2 gave a >70% reduction in the entrained gas while only a 40% reduction in entrained gas was observed by dosing compound A to the underflow of the cyclone ahead of Ball Mill #1. Most importantly, treatment of the bauxite slurry with Compound A, decreased mill discharge pumps speeds greatly and allowed for an increase in flow rate from the 970 gpm range to 1274 gpm while maintaining the pump speed below 50% output.









TABLE II







TEST 1 and 2










Mill # 1
Mill # 2





















“A”
Slurry

Entrained

“A”
Slurry

Entrained


Test
Test
Application
Dose,
Flow
Pump
Air
Application
Dose,
Flow
Pump
Air


No.
Period
Point
ppm
gpm
Speed %
v/v %
Point
ppm
gpm
Speed %
v/v %




















1
Before test
0
816
36.1
15.7
Before test
0
824
38.0
19.0



















2.25 hr 
Underflow
15
788
30.3
12.7
Underflow
15
820
14.6
17.2




of cyclones
19
809
29.9
8.7
of cyclones
19
807
15.5
15.0





40
755
29.3
7.1

37
784
14.6
11.5


















After test
0
735
32.4
13.5
After test
0
768
23.1
19.8


2
Before test
0
1047
59.8
20.2
Before test
0
969
44.8
15.0



















2.5 hr
Underflow
15
1068
49.5
14.5
Prior to
15
967
12.5
11.2




of Cyclones
27
1175
65.4
13.0
Cyclone
27
1048
17.6
4.2


















After/Before test
0
1189
74.4
19.3
After/BeforeTest
0
1089
56.3
15.3



















2.0 hr
Underflow
28
1181
71.8
12.4
Prior to
28
1076
21.2
5.5




of Cyclones
45
932
51.8
11.7
Cyclone
33
1274
31.5
4.1


















After test
0
1095
70.9
18.9
After test
0
1050
60.3
14.3









Table III displays the results from Test 3, which involved the application of Compound A to the spent liquor feeding the Rod Mills. During this test the amount of entrained gas was monitored at the discharge of the rod mills as well as down stream at the discharge of the Ball Mills. The results show significant reductions in entrained gas as well as improvements in pump performance for both the rod mills and the ball mills and this indicates a degree of persistency across the circuit. However, for optimum performance and slurry transfer, an additional application of Compound A prior to the Ball Mills may be needed.









TABLE III







TEST 3















% ENTRAINED






Slury
Gas
PUMP SPEEDS
PUMP AMPS



Mill #
Flow
B/D/A/REG
B/D/A/REG
B/D/A/REG















Rod
1

14.4/9.0/15.5/39%
56/53/NA/5%
69/69/NA/0%


Mills
2

 8.9/6.4/10.8/35%
NA/NA/NA/NA
NA/NA/NA/NA



3

14.9/7.3/16.4/54%
60/56/NA/7%
55/52/NA/5%



4

 9.6/4.8/9.8/51%
54/48/NA/11%
73/69/NA/5%



5

20.0
62/48/NA/23%
45/39/NA/13%


Ball
1
1180
13.4/14.6/15.5/−1%
53/40/48/25%
51/44/49/14%


Mills
2
1125
14.7/10.7/16.4/31%
64/28/59/56%
80/60/77/25%



3
780
Not Measured
56/51/57/9%
49, 58/46, 60/49, 54/0-6%





“B” means before test;


“D” means during test;


“A” means after test;


“REG” means reduction in entrained gas; and


“NA” means not applicable.






Tables IV and V, show the results from Tests 4 and 5, respectively. In both these tests Compound A was applied to the bauxite slurry prior to the cyclones on Ball Mill #1. The results in Table IV show once again, that Compound A dosed at 15 ppm to the slurry, allowed for a 50-60% decease in the amount of entrained gas in the slurry. As a result, the entire desired slurry flow could be transferred through a single pump instead of the need for using two transfer pumps.









TABLE IV







TEST 4


















Compound
No. of







Reduction



“A”
Transfer
Slurry

# 1
# 1
# 2
# 2
Entrained
in



Dose
Pumps
Flow
Pump
Pump
Pump
Pump
Pump
Air,
Entrained


Period
ppm
Used
gpm
Speed %
Amps
Kwatts
Amps
Kwatts
v/v %
Air




















Before (1 hr)
0
2
644
31
37
25
35
26
13
58%


During
15
2
663
38
38
18-33
39
17-32
5.4




15
1
644
34
43
37
0
 0
5.5
48%


After
0
1
505
33
40
n.d.
0
n.d.
10.6




0
2
510
33
39
n.d.
29
n.d.
nd.










The results in Table V show once again, Compound A dosed between 15-30 ppm to the slurry gave a 50-60% decrease in the amount of entrained gas in the slurry. The slurry flow and the Milling (grind) rate (tons of bauxite/hr) were greatly increased from the normal operating range of 1450 gpm and 475 t/hr to 2100 gpm and 625 t/hr, respectively. This was achieved while maintaining normal pump speeds and with significant reduction in the energy consumption for the two Ball Mill discharge pumps.









TABLE V







TEST 5



























Reduction



Compound
Slurry
Grind

# 1
# 1
# 2
# 2
Entrained
in



“A” dose
Flow
Rate
Pump
Pump
Pump
Pump
Pump
Gas,
Entrained


Period
ppm
gpm
t/hr
Speed %
Amps
Kwatts
Amps
Kwatts
v/v %
Gas




















Before
0
1451
474
93
84
142
86
144
18.6



During
15
1750
506
50
57
58
56
62
7.5
60%



30
2050
610
69
79
110
79
114
8.5
55%



15
2150
635
71
80
115
80
119
9.3
50%


After
0
1050
555
53
51
n.d.
44
n.d.
n.d.






“n.d.” means not determined.






Example 2

The relative degassing rate was measured as a function of chemical species added to the slurry, dose and contact time with a particular slurry sample. The test slurry was collected after the Ball Mill. The test comprised the following steps. First, a slurry sample was collected from the discharge of the ball mill into a 1 liter graduated plastic graduated cylinder. A solution of chemical species was then added to the top of the slurry at a specific dose and mixed with the slurry using a perforated plunger. The change in the slurry volume was then measured as a function of constant mixing and over time. This data was then used to compute a relative degassing rate for each dose of the chemical species. The degassing rates were compared to the degassing rate of untreated samples (Control).












TABLE VI








Degassing





Rate




Dose
Relative


Chemical Species
Chemistry
(ppm)
to Control







Tergitol 15-S-15,
15 mole EO on C12-14
5-10
  2-3.5x



secondary alcohol




Tergitol 15-S-12,
12 mole EO on C12-14
5-10
  2-3.5x



secondary alcohol




Voranol 446
Polyether Polyol
5-10
2.2-2.5x



(Propoxylated





glycerine/sucrose)




Compound B
Tall oil fatty acid &
5-10
2.0-2.5x



ethoxylated





nonylphenol




PLURONIC ® F77,
Block co-polymer of
5-10
1.5-2.5x


BASF
ethylene oxide and





propylene oxide




Dowfroth 250, Dow
Mix. of propylene
5-10
1.2-2.0x



glycol chains, part





methyl-terminated




Pluronic F38, BASF
Block co-polymer of
5-10
1.3-1.9x



ethylene oxide and





propylene oxide




DOSS, 40% (Dioctyl
Dioctyl
5-10
1.3-1.9x


sulfosuccinate)
sulfosuccinate, Na





salt in water/alcohols




Compound C
Polyproylene glycol,
5-10
1.7-1.8x



475 mw




Compound D
Polyproylene glycol,
5-10
1.7-1.8x



800 mw




Pluronic L44, BASF
Block co-polymer of
>>10
1.0-1.5x



ethylene oxide and





propylene oxide




Compound E
15% aq solution of
>>10
1.0-1.5x



9.5 mole EO on





nonylphenol




Compound F
Acrylamide-Acrylic
>>10
1.0-1.5x



acid co-polymer,





sulfomethylated




Compound G
Acrylic Acid-
>>10
1.0-1.5x



Methacrylate co-





polymer








Claims
  • 1. A method of improving efficiency in pumping bauxite containing slurry in a Bayer process having a digestion stage, the method comprising: providing a bauxite containing slurry;combining with the bauxite containing slurry at a mill an amount of a single solution comprising six parts by weight propoxylated glycerine toone part by weight partially methyl-terminated polypropylene glycol having a molecular weight of from about 400 to about 800 Daltons thereby creating a treated slurry containing from 5 to 50 ppm of the single solution; andpumping the treated slurry using at least one pump;
  • 2. The method of claim 1, wherein the treated slurry contains from 30 to 75% less entrained gas than the bauxite containing slurry prior to treatment.
  • 3. The method of claim 1, wherein the propoxylated glycerine and the partially methyl-terminated polypropylene glycol are each combined simultaneously with the bauxite containing slurry.
  • 4. The method of claim 1, wherein the mill is a ball mill.
  • 5. The method of claim 1, wherein the mill is a rod mill.
US Referenced Citations (9)
Number Name Date Kind
5275628 Dimas et al. Jan 1994 A
5346511 Dimas Sep 1994 A
5380464 McGee et al. Jan 1995 A
6036869 Selvarajan et al. Mar 2000 A
6365116 Barham et al. Apr 2002 B1
6676910 Rosenberg et al. Jan 2004 B1
6814917 Watanabe et al. Nov 2004 B1
7442722 Sui et al. Oct 2008 B2
7767190 Rosenberg et al. Aug 2010 B2
Foreign Referenced Citations (1)
Number Date Country
634504 Feb 1993 AU
Related Publications (1)
Number Date Country
20080110837 A1 May 2008 US