1. Technical Field of the Invention
The present invention relates to a transferred medium having a plate shape that can be nipped between a feed driving roller which rotates and a feed driven roller which rotates in close contact with the feed driving roller and being transferred in a secondary scan direction in response to the rotation of the feed driving roller.
2. Description of the Related Art
Inkjet printers as an example of a recording apparatus or a liquid jetting apparatus may perform printing by ejecting ink droplets onto a label surface of an optical disk as a thin plate member such as a compact disk (CD) or a digital versatile disk (DVD). In such inset printers, the thin plate member such as an optical disk is generally set in a tray having a plate shape, is fed over a feeding path in the inkjet printers (transferred in a secondary scan direction) with the thin plate member set in the tray, and then is subjected to printing.
Here, the tray is fed in the secondary scan direction by the rotation of a feed driving roller in the state that the tray is nipped between the feed driving roller and a feed driven roller. However, when the tray is transferred in the secondary scan direction (fed) with the feed driving roller and the feed driven roller, the tray must be inserted between the feed driving roller and the feed driven roller. Since the feed driven roller is strongly pressed on the feed driving roller, there is known an inkjet printer having a means for releasing the feed driven roller from the feed driving roller by the use of a lever as a means for inserting the tray between both rollers as disclosed in Japanese Unexamined Patent Publication No. 2002-355956 (hereinafter, referred to as JP '956).
A tray in which a film having the shape of a thin sheet is attached to the front end of the tray is disclosed in Japanese Unexplained Patent Application Publication No. 200442384 (hereinafter, referred to as JP '384). Accordingly, when feeding the tray, the thin film is first inserted between the feed driving roller and the feed driven roller and the tray body is then inserted between the feed driving roller and the feed driven roller as a result. Therefore, a means for releasing the feed driven roller disclosed in JP '956 is not necessary.
In the tray disclosed kit JP '384, the means for releasing the feed driven roller is not necessary by providing a thin film at the front end of the tray. However, in the structure employing the thin film, since a process of attaching the thin film thereto is required, there are problems in that increase in cost can be caused and the thin film can be easily damaged. Specifically, when the tray is inserted into the printer, the thin film provided at the front end of the tray can be easily destroyed due to the forcible insertion of the tray into the printer.
The present invention is contrived to solve the above-mentioned problems. It is an object of the present invention to provide a transferred medium, which can be nipped between a feed driving roller and a feed driven roller without releasing the feed driven roller, with low cost and without being easily destroyed and more particularly to provide a transferred medium having a structure for allowing the transferred medium to be easily nipped between a feed driving roller and a feed driven roller. The invention is as follows.
In order to accomplish the above-mentioned object, according to an aspect of the present invention, there is provided a transferred medium having a plate shape that can be nipped between a feed driving roller which rotates and a feed driven roller which rotates in close contact with the feed driving roller and being transferred in a secondary scan direction in response to the rotation of the feed driving roller, wherein a stress concentrated part, on which stress acting on the transferred medium when the transferred medium is nipped between the feed driving roller and the feed driven roller is concentrated, is integrally formed at the front end of the transferred medium with the transferred medium.
According to the aspect described above, the stress concentrated part on which the stress acting on the transferred medium is concentrated when the transferred medium is nipped between the feed driving roller and the feed driven roller is integrally formed at the front end of the transferred medium with the transferred medium. Accordingly, when the transferred medium is nipped between the feed driving roller and the feed driven roller, the stress concentrated part is first inserted between the feed driving roller and the feed driven roller, the main body of the transferred medium is then inserted between the feed driving roller and the feed driven roller, and the transferred medium is finally nipped between both rollers. That is, since the area of the front end of the transferred medium (as seen in the plan view) is extremely reduced by the stress concentrated part, the front end of the transferred medium can be easily inserted between the feed driving roller and the feed driven roller with a small force (in other words, it can easily pry off both rollers). Therefore, the transferred medium can be surely inserted between the feed driving roller and the feed driven roller without using a means for releasing the feed driven roller from the feed driving roller. Accordingly, it is possible to prevent increase in cost of the recording apparatus.
When the front end of the transferred medium is inserted between the feed driving roller and the feed driven roller, the insertion may be automatically performed by the use of a feeding means (for example, a discharge roller) provided downstream from the feed driving roller and the feed driven roller or may be manually performed by a user. That is, by the use of any method, it is possible to easily insert the transferred medium between the feed driving roller and the feed driven roller with a small force. In the former case, it is possible to precisely insert the front end of the transferred medium between the feed driving roller and the feed driven roller without any slip between the feeding means and the transferred medium.
Since the stress concentrated part is integrally formed with the transferred medium, the increase in cost of the transferred medium can be prevented and the strength is enhanced, thereby making it difficult to damage the transferred medium when the transferred medium is inserted between the feed driving roller and the feed driven roller. In addition, since the bottom surface of the transferred medium is smooth without any step difference, it is possible to precisely transfer the transferred medium in the secondary scan direction. The “front end” of the transferred medium represents an end in the transferring direction of the transferred medium (the end of the transferred medium which is a front side when the transferred medium is inserted between the feed driving roller and the feed driven roller).
In a second aspect of the present invention, the stress concentrated part may be a projection part projected in a transferring direction of the transferred medium.
According to the aspect described above, since the stress concentrated part is the projection part projected in the transferring direction of the transferred medium, it is possible to form the stress concentrated part with a simple structure and low cost.
According to a third aspect of the present invention, there is provided a transferred medium having a plate shape that can be nipped between a feed driving roller which rotates and a feed driven roller which rotates in close contact with the feed driving roller and being transferred in a secondary scan direction in response to the rotation of the feed driving roller, wherein a projection part projected in a transferring direction of the transferred medium is integrally formed at the front end of the transferred medium with the transferred medium.
According to the aspect described above, the projection part projected in the transferring direction of the transferred medium is integrally formed at the front end of the transferred medium with the transferred medium. Accordingly, when the transferred medium is nipped between the feed driving roller and the feed driven roller, the projection part is first inserted between the feed driving roller and the feed driven roller, the main body of the transferred medium is accordingly inserted between the feed driving roller and the feed driven roller, and the transferred medium is finally nipped between both rollers. That is, since the area of the front end of the transferred medium (as seen in the plan view) is extremely reduced by the projection part, the transfer medium can be easily inserted between the feed driving roller and the feed driven roller with a small force (In other words, it can easily pry off both rollers). Therefore, the transferred medium can be surely inserted between the feed driving roller and the feed driven roller without using a means for releasing the feed driven roller from the feed driving roller. Accordingly, it is possible to prevent increase in cost of the recording apparatus.
When then front end of the transferred medium is inserted between the feed 6 driving roller and the feed driven roller, the insertion may be automatically performed by the use of a feeding means (for example, a discharge roller) provided downstream from the feed driving roller and the feed driven roller or may be manually performed by a user. That is, by the use of any method, it is possible to easily insert the transferred medium between the feed driving roller and the feed driven roller with a small force. In the former case, it is possible to precisely insert the front end of the transferred medium between the feed driving roller and the feed driven roller without any slip between the feeding means and the transferred medium.
Since the projection part forms a body along with the transferred medium, the increase in cost of the transferred medium can be prevented and the strength thereof is enhanced, thereby making it difficult to damage the transferred medium when the transferred medium is inserted between the feed driving roller and the feed driven roller. In addition, since the bottom surface of the transferred medium is smooth without any step difference, it is possible to precisely transfer the transferred medium in the secondary scan direction. The “front end” of the transferred medium means an end in the transferring-direction of the transferred medium (the end of the transferred medium which is a front side when the transferred medium is inserted between the feed driving roller and the feed driven roller).
In a fourth aspect of the present invention, the projection part may have a shape of a tongue. According to this aspect, since the projection part has the shape of a tongue, it is possible to secure the strength of the projection part.
In a fifth aspect of the present invention, the projection part may be tapered toward the tip as seen in a longitudinal section of the transferred medium.
According to this aspect, since the projection part is tapered toward the tip as seen in a longitudinal section of the transferred medium, it is possible to more easily insert the transferred medium between the feed driving roller and the feed driven roller.
In a sixth aspect of the present invention, the front end of the transferred medium may be tapered toward the tip as seen in the longitudinal section of the transferred medium and the top surface thereof may be not projected from the top surface of the projection part.
According to this aspect, since the front end of the transferred medium is tapered toward the tip as seen in the longitudinal section of the transferred medium and the top surface thereof is not projected from the top surface of the projection part, the front end of the transferred medium can be smoothly inserted between the feed driving roller and the feed driven roller without jam when it is inserted therebetween. That is, in the structure that a plurality of feed driven rollers are arranged in the width direction of the transferred medium, when the transferred medium is fed to the feed driving roller and the feed driven rollers and the projection part passes between the feed driving roller and the feed driven rollers, the feed driven rollers closely contacting the projection part and the feed driven rollers having a free state where it does not closely contact the projection part may be mixed. At this time, the feed driven rollers in the free state has a smaller gap from the feed driving roller than that of the feed driven rollers closely contacting the projection part. Therefore, in this state, when the front end of the transferred medium following the projection part passes between the feed driving roller and the feed driven rollers, the front end of the transferred medium may be jammed by the feed driven rollers.
However, since the front end of the transferred medium is tapered, the front end of the transferred medium can be allowed to pass between the feed driving roller and the feed driven rollers smoothly without jam. In addition, since the top surface of the front end of the transferred medium is not projected from the top surface of the projection part, a prying effect between the feed driving roller and the feed driven roller by the projection part cannot be hindered.
In a seventh aspect of the present invention, the bottom surface of the projection part may form a flat plane along with the bottom surface of the transferred medium.
According to this aspect, since the bottom surface of the projection part form a flat plane along with the bottom surface of the transferred medium, the bottom surface of the transferred medium is smooth without any step difference and it is thus possible to precisely transfer the transferred medium in the secondary scan direction.
In an eight aspect of the present invention, the projection part may be tapered toward the tip as seen in a plane view of the transferred medium.
According to this aspect, since the projection part is tapered toward the tip as seen in a plane view of the transferred medium, it is possible to more easily insert the transferred medium between the feed driving roller and the feed driven roller.
In a ninth aspect of the present invention, a plurality of the projection parts may be provided at the front end of the transferred medium in a direction perpendicular to the transferring direction of the transferred medium with a predetermined pitch.
According to this aspect, since a plurality of projection parts are provided at the front end of the transferred medium in a direction perpendicular to the transferring direction of the transferred medium with a predetermined pitch, it is possible to prevent or reduce the skew of the transferred medium when the front end of the transferred medium is inserted between the feed driving roller and the feed driven roller.
In a tenth aspect of the present invention, the feed driven roller may be axially supported by a holder member which is biased such that the feed driven roller comes in close contact with the feed driving roller, and the projection part may come in close contact with the feed driven roller at a position spaced far from a position where a biasing means for biasing the holder member applies a biasing force to the holder member.
Since the projection part comes in close contact with the feed driven roller at a position spaced far from a position where the biasing means for biasing the holder member that axially supports the feed driven roller applies a biasing force to the holder member, it is possible to insert the transferred medium between the feed driving roller and the feed driven roller.
In an eleventh aspect of the present invention, the transferred medium may be a tray having a setting part in which a thin plate member can be set.
According to this aspect, since the transferred medium is a tray having a setting part in which a thin plate member such as an optical disk can be set, it is possible to obtain the same operations and advantages as this aspect from the tray in which the thin plate member can be set.
Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. Here, an inkjet printer 1 (hereinafter, referred to as “printer”) as an example of a recording apparatus or a liquid jetting apparatus will be first schematically described with reference to
In
As shown in
The outside of the printer 1 is covered with a housing 11 of a case shape and the central top portion of the housing 11 is provided with a cover 12 which can be opened and shut for performing replacement of an ink cartridge or the like. The feeding unit 2, the stacker 13, the housing 11, and the cover 12 constitute for the appearance of the printer.
Now, a paper feeding path in the printer 1 will be described in detail with reference to
More specifically, the hopper 21 has a plate shape and can shake about a shaking point (not shown) at the upper portion thereof. The hopper 21 brings the paper P supported on the hopper 21 into close contact with the feeding roller 23 or separates the paper from the feeding roller 23, by means of shaking. The feeding roller 22 has a “D” shape as seen in the side view and feeds the paper P pressed by its circular arc portion to the downstream on the other hand, in the course of carrying the paper P with the feed driving roller 33 and the feed driver roller 34 after feeding the paper P, the feeding roller is controlled such that its flat portion is opposed to the paper P so as not to generate any carrying load.
The retard roller 27 is provided to come in close contact with the circular arc portion of the feeding roller 23. When only a sheet of paper P is fed without feeding two or more sheets of paper P, the retard roller 27 rotates in contact with and along with the paper P (clockwise rotation to
The guide rollers 25 and 25 are rotatable provided and perform a function of not bringing the sheet of paper P into contact with the feeding roller 23 to generate a carrying load in the course of carrying the sheet of paper P by the use of the feed driving roller 33 and the feed driven roller 34.
The paper P fed by the feeding unit 2 is guided to the guide 29 and reaches the feed driving roller 33 which rotates with a motor and the feed driven roller 34 which rotates in close contact with the feed driving roller 33. The feed driven roller 34 is axially supported by a holder 31 and the holder 31 is attached to a main frame (not shown) constituting a main body of the printer 1 through a twist coil spring (not shown). The paper P reaching the feed driving roller 33 is nipped between the feed driving roller 33 and the feed driven roller 34 and is fed to an area opposed to the inkjet recording head 39 downstream with the rotation of the feed driving roller 33. In the present embodiment, the diameter of the feed driving roller 33 is about 10 mm and the diameter of the feed driven roller 34 is about 5 mm.
At the downstream from the feed driving roller 33, the inkjet recording head (hereinafter, referred to as “recording head”) 39 and a platen 41 opposed thereto are disposed. The recording head 39 is provided at the bottom of the carriage 35 and the carriage 35 reciprocates in a primary scan direction with a driving motor not shown under guidance of a carriage guide axis 37 extending in the primary scan direction. The carriage 35 is mounted with an individual ink cartridge (not shown) for each color and supplies ink to the recording head 39.
In the platen 41 regulating the distance between the paper P and the recording head 39, a rib is formed on the surface opposed to the recording head and concave portions 42 and 42 are formed thereon. The concave portions 42 serves to leave the ink jetted to areas departing from the ends of the paper P as it is. Accordingly, a so-called rimless printing that performs the printing without margin at the ends of the paper P can be performed. The concave portion 42 is provided with an ink absorbing member for absorbing the left ink and the ink is guided to a used ink tray (not shown) provided at the lower portion of the platen 41 from the ink absorbing member.
Subsequently, an assistant roller 46 and a discharge driving roller 44 and a discharging driven roller 45 constituting a “discharge means” are provided downstream from the recording head 39. A plurality of discharge driving rollers 44 are arranged in the axial direction of a shaft which rotates and the discharge driven roller 45 is provided in a frame 47 made of a metal plate which is longitudinal in the primary scan direction and rotates in close contact with the discharge driving roller 44. The sheet of paper P having been subjected to the recording by the recording head 39 is nipped between both rollers and then discharged to the stacker 13. The assistant roller 46 positioned upstream from the rollers rotates in close contact with the paper P from its top side and has a function of preventing the floating of the paper P and keep constant the distance between the paper P and the recording head 39.
Hitherto, the paper feeding path has been schematically described. The printer 1 can directly perform the printing to a label surface of an optical disk such as a compact disk in an inkjet manner, in addition to the paper P as the transferred medium. As shown in
More specifically, in
The tray guide 18 and the stacker 13 switches the open state and the closed state by the use of the same rotation as indicated by the change from
Hitherto, the schematic construction of the printer 1 has been described. Hereinafter, the tray 50 will be described in detail with reference to
As shown in
The tray 50 includes a tray body 51 and a setting part 52 and is integrally formed from a resin material. The setting part 52 is embodied as a concave portion having a circular shape as seen in the plane view shown in the figure. A convex portion 53 is formed at the center of the setting part 52 and when an optical disk D is set in the setting part 52, a central hole (not shown) of the optical disk D is fitted to the convex portion 53. Accordingly, the position of the optical disk D in the setting part 52 is determined. Holes 54 and 54 formed around the setting part 52 are holes for taking out (ejecting) the optical disk D.
The vertical directions in
A plurality of tongue pieces 57 are arranged in a direction (the lateral direction, that is, the width direction, in
Next, the tongue piece 57 has the shape shown in
The front end 56 of the tray 50 is tapered toward the tip, similar to the tongue piece 57, and the top surface 56a thereof is not projected upwardly from the top surface 57a of the tongue piece 57.
In the present embodiment, the thickness “c” of the tip of the tongue piece 57 is set about 0.5 mm, the tilted angle of the top surface 57a of the tongue piece 57 (tilted angle about the bottom surface 51b of the tray body 51) is set about 8.degree., the tilted angle of the top surface 56a of the front end 56 (tilted angle about the bottom surface 51b of the tray body 51) is set about 12.degrees.
Now, operations and effects of the tongue piece 57 will be described mainly with reference to
Here, in order to transfer the tray 50 in the secondary direction by means of the rotation of the feed driving roller 33, it is necessary to insert the front end 56 of the tray 50 between the feed driving roller 33 and the feed driven roller 34 closely contacting the feed driving roller 33. However, the tongue pieces 57 projected in the transferring direction of the tray 50 are integrally formed at the front end 56 of the tray 50 with the tray 50. Accordingly, when the tray 50 is transferred to the feed driving roller 33 and the feed driven roller 34, the tongue pieces 57 are first inserted between the feed driving roller 33 and the feed driven roller 34 (
That is, since the area of the front end of the tray 50 (as seen in the plan view) is extremely reduced by the tongue piece 57, the front end 56 of the tray 50 can be easily inserted between the feed driving roller 33 and the feed driven roller 34 with a small force (in other words, it can easily pry off both rollers with a small force). Therefore, the tray 50 can be surely inserted between the feed driving roller 33 and the feed driven roller 34 without using a means for releasing the feed driven roller 34 from the feed driving roller 33, thereby preventing increase in cost of the printer 1.
Since the tongue piece 57 is integrally formed with the tray 50 (the tray body 51), it is possible to prevent increase in cost of the tray 50 and to enhance the strength of the tray, thereby making it difficult to damage the tray 50 when it is fed. In addition, since the bottom surface 51b of the tray 50 (the tray body 51) can be formed smooth without any step difference, it is possible to precisely transfer the tray 50 in the second scan direction.
The tongue piece 57 may serve as a stress concentrated part (a part on which the largest stress acts in the present embodiment) on which the stress acting on the tray 50 is concentrated, when the tray 50 is inserted and kept between the feed driving roller 33 and the feed driven roller 34. That is, since the area of the front end of the tray 50 (as seen in the plan view) is extremely reduced by the stress concentrated part, the front end of the tray 50 can be easily inserted between the feed driving roller 33 and the feed driven roller 34 with a small force.
Since the tongue piece 57 is tapered toward the tip as seen in the longitudinal section of the tray 50, it is possible to more easily insert the tray 50 between the feed driving roller 33 and the feed driven roller 34. In addition, since the front end 56 of the tray 50 is tapered toward the tip as seen in the longitudinal section of the tray 50 and the top surface 56a thereof. Is not projected upwardly from the top surface 57a of the tongue piece 57, the front end 56 of the tray 50 can be inserted between the feed driving roller 33 and the feed driven roller 34 smoothly without jam when it is inserted therebetween.
That is, in the structure that a plurality of feed driven rollers 34 are provided in the width direction of the tray 50 as shown in
Here, the feed driven rollers 34A and 34C in a free state has a smaller gap from the feed driving roller 33 than that of the feed driven rollers 34B and 34D closely contacting the feed driving roller 33 (see
Since the tongue piece 57 is also tapered toward the tip as seen in the plan view as described above, it is possible to more easily insert the tray 50 between the feed driving roller 33 and the feed driven rollers 34. In addition, since a plurality of tongue pieces 57 are arranged in the width direction of the tray 50 with a predetermined pitch, it is possible to prevent or reduce the skew of the tray 50 when the front end 56 of the tray 50 is inserted between the feed driving roller 33 and the feed driven rollers 34.
In addition, in the relation with the holder 31 which axially supports the feed driven rollers 34 as shown in
In the present embodiment, in the relation with the holder 31 and the feed driven rollers 34 as shown in
That is, the biasing force of the twist coil spring 36 acts on the appropriate center in the width direction of the holder 31 and thus the feed driven roller 34 is biased to come in close contact with the feed driving roller 33. Therefore, if the two tongue pieces come in close contact with the feed driving roller at different positions, the forces with which the feed driven rollers 34 press the tongue pieces 57, respectively, are different. Accordingly, the skew of the tray 50 may occur due to the non-uniform force when the tray is inserted between the feed driving roller 33 and the feed driven rollers 34.
However, as described above, since the two tongue pieces 57 are disposed at the substantially equal positions (positions where the pressing force from the feed driven roller 34 is smallest) in the positional relation with the holders 31 and the feed driven rollers 34 arranged in the width direction of the tray 50, the pressing force with which the feed driven rollers 34 press the tongue pieces 57 does not have deviation, thereby preventing the skew of the tray 50.
In the embodiments of the present invention, the tray 50 in which an optical disk D can be set as an example of the transferred medium has been exemplified. However, not limited to the tray 50, the same projection part may be integrally formed in a thick paper such as a board paper. As a result, it is possible to easily insert the thick paper between the feed driving roller 33 and the feed driven roller 34, without using a means for releasing the feed driven roller 34 and without causing damage at the time of feeding.
Number | Date | Country | Kind |
---|---|---|---|
2004-323430 | Nov 2004 | JP | national |
The present application is a continuation of and claims priority under 35 U.S.C. §120 to U.S. patent application Ser. No. 13/365,663 filed on Feb. 3, 2012, and entitled “TRANSFERRED MEDIUM,” which itself is a continuation of U.S. patent application Ser. No. 12/857,281 filed on Aug. 16, 2010, and entitled “TRANSFERRED MEDIUM,” which itself is a continuation application of U.S. Pat. No. 8,018,477 filed on Sep. 30, 2009, issued on Sep. 13, 2011, and entitled “TRANSFERRED MEDIUM,” which itself is a divisional application of and claims priority under 35 U.S.C. §120 to U.S. patent application Ser. No. 11/270,853 filed on Nov. 8, 2005, and entitled “Transferred Medium,” each of which is hereby incorporated by reference in its entirety. The present application also claims priority under 35 U.S.C. §119 to Japanese Patent Application No. 2004-323430, filed on Nov. 8, 2004, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5192071 | Kodama | Mar 1993 | A |
6612762 | Sakurai et al. | Sep 2003 | B1 |
8018477 | Takeshita | Sep 2011 | B2 |
8276908 | Komuro et al. | Oct 2012 | B2 |
8647000 | Shinozaki et al. | Feb 2014 | B2 |
20010012259 | Ogawa | Aug 2001 | A1 |
20020067940 | Sasai et al. | Jun 2002 | A1 |
20030085513 | Takahara et al. | May 2003 | A1 |
20030185132 | Ariyoshi | Oct 2003 | A1 |
20030234852 | Oshima et al. | Dec 2003 | A1 |
20040017462 | Takahashi et al. | Jan 2004 | A1 |
20040041853 | Takahashi et al. | Mar 2004 | A1 |
20040041880 | Ikeda et al. | Mar 2004 | A1 |
20040141791 | Obara | Jul 2004 | A1 |
20060119694 | Takeshita | Jun 2006 | A1 |
20080229340 | Miyazaki | Sep 2008 | A1 |
20100085407 | Takeshita | Apr 2010 | A1 |
20100302333 | Takeshita | Dec 2010 | A1 |
20100309271 | Takeshita | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
1 057 651 | Dec 2000 | EP |
02-067329 | Mar 1990 | JP |
02-123934 | Oct 1990 | JP |
2002-302295 | Oct 2002 | JP |
2002302295 | Oct 2002 | JP |
2002355956 | Dec 2002 | JP |
2004-042384 | Feb 2004 | JP |
2004043095 | Feb 2004 | JP |
2004-284822 | Oct 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20130250023 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11270853 | Nov 2005 | US |
Child | 12570432 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13365663 | Feb 2012 | US |
Child | 13861913 | US | |
Parent | 12857281 | Aug 2010 | US |
Child | 13365663 | US | |
Parent | 12570432 | Sep 2009 | US |
Child | 12857281 | US |