Transferring control of TCP connections between hierarchy of processing mechanisms

Information

  • Patent Grant
  • 8248939
  • Patent Number
    8,248,939
  • Date Filed
    Tuesday, October 11, 2005
    19 years ago
  • Date Issued
    Tuesday, August 21, 2012
    12 years ago
Abstract
In one embodiment, a system for communicating over a network is disclosed, the system comprising: a processor running a protocol processing stack to control a TCP connection; a first offload engine that receives control of the TCP connection from the stack to perform a first task corresponding to the TCP connection; and a second offload engine that receives control of the TCP connection from the first offload engine to perform a second task corresponding to the TCP connection. For example, the first offload engine can be protocol software such as an intermediate driver that can handle tasks such as teaming and/or reassembly of out-of-order data segments. As another example, the second offload engine can be a network interface card that provides hardware that accelerates data transfer.
Description
BACKGROUND

Traditional network protocol processing was software and CPU intensive, as multiple protocol layers needed to be processed in multiple CPU cycles for each packet that was sent or received over a network. Because of the variety of networks, networking protocols, routers, interface devices, computer operating systems and applications, it appeared necessary that such CPU intensive protocol processing was required. In addition to processing multiple protocol layers for each network packet, popular protocols such as TCP required further processing, including establishing and maintaining a TCP connection in order to ensure reliable communication, with the state of the TCP connection represented by a complicated block of information.


Such CPU intensive protocol processing became a bottleneck, because even as CPU speeds advanced dramatically, the faster CPUs could not keep up with increases in network speeds and traffic that caused increases in CPU protocol processing. Alacritech, Inc. solved this dilemma by splitting protocol processing tasks into repetitive data packet processing, which could be quickly and efficiently processed by specialized protocol processing hardware, and more complicated tasks that benefited from a CPU running a protocol stack. In addition, for protocols such as TCP, Alacritech, Inc. developed means for transferring control of connections such as TCP connections between a CPU running a protocol processing stack and protocol processing hardware for repetitive data packet processing.


Disclosure of these inventions can be found in various Alacritech patents and applications, including U.S. Patent Application No. 60/061,809, filed Oct. 14, 1997; U.S. Pat. No. 6,226,680, filed Apr. 27, 1998, issued May 1, 2001; U.S. Patent Application No. 60/098,296, filed Aug. 27, 1998; U.S. Pat. No. 6,389,479, filed Aug. 28, 1998, issued May 14, 2002; U.S. Pat. No. 6,434,620, filed Aug. 27, 1999, issued Aug. 13, 2002; U.S. Pat. No. 6,470,415, filed Oct. 13, 1999, issued Jan. 29, 2002; U.S. Pat. No. 6,247,060, filed Nov. 12, 1999, issued Jun. 12, 2001; U.S. Pat. No. 6,427,173, filed Dec. 15, 1999, issued Jul. 30, 2002; U.S. Pat. No. 6,427,171, filed Feb. 28, 2000, issued Jul. 30, 2002; U.S. patent application Ser. No. 09/675,484, filed Sep. 29, 2000; U.S. patent application Ser. No. 09/675,700, filed Sep. 29, 2000; U.S. patent application Ser. No. 09/692,561, filed Oct. 18, 2000; U.S. Pat. No. 6,334,153, filed Dec. 26, 2000, issued Dec. 25, 2001; U.S. Pat. No. 6,757,746, filed Feb. 20, 2001, issued Jun. 29, 2004; U.S. Pat. No. 6,687,758, filed Mar. 7, 2001, issued Feb. 3, 2004; U.S. patent application Ser. No. 09/802,551, filed Mar. 9, 2001; U.S. Pat. No. 6,658,480, filed Mar. 9, 2001, issued Dec. 2, 2003; U.S. Pat. No. 6,393,487, filed Mar. 12, 2001, issued May 21, 2002; U.S. patent application Ser. No. 09/855,979, filed May 14, 2001; U.S. patent application Ser. No. 09/970,124, filed Oct. 2, 2001; U.S. patent application Ser. No. 10/005,536, filed Nov. 7, 2001; U.S. patent application Ser. No. 10/023,240, filed Dec. 15, 2001; U.S. patent application Ser. No. 10/085,802, filed Feb. 26, 2002; U.S. patent application Ser. No. 10/093,042, filed Mar. 6, 2002; U.S. Pat. No. 6,591,302, filed Mar. 6, 2002, issued Jul. 8, 2003; U.S. patent application Ser. No. 10/098,694, filed Mar. 12, 2002; U.S. Patent Application No. 60/374,788, filed Apr. 22, 2002; U.S. Pat. No. 6,697,868, filed Jul. 29, 2002, issued Feb. 24, 2004; U.S. patent application Ser. No. 10/229,564, filed Aug. 27, 2002; U.S. patent application Ser. No. 10/246,820, filed Sep. 17, 2002; U.S. patent application Ser. No. 10/260,878, filed Sep. 27, 2002; U.S. patent application Ser. No. 10/260,959, filed Sep. 27, 2002; U.S. patent application Ser. No. 10/260,112, filed Sep. 27, 2002; U.S. patent application Ser. No. 10/261,051, filed Sep. 30, 2002; U.S. patent application Ser. No. 10/277,604, filed Oct. 18, 2002; U.S. patent application Ser. No. 10/289,977, filed Nov. 6, 2002; U.S. patent application Ser. No. 10/367,147, filed Feb. 12, 2003; U.S. patent application Ser. No. 10/369,902, filed Feb. 19, 2003; U.S. patent application Ser. No. 10/413,256, filed Apr. 14, 2003; U.S. patent application Ser. No. 10/420,364, filed Apr. 22, 2003; U.S. patent application Ser. No. 10/427,862, filed Apr. 30, 2003; U.S. patent application Ser. No. 10/438,719, filed May 14, 2003; U.S. patent application Ser. No. 10/601,237, filed Jun. 19, 2003; U.S. patent application Ser. No. 10/634,062, filed Aug. 4, 2003; U.S. patent application Ser. No. 10/639,810, filed Aug. 11, 2003; U.S. patent application Ser. No. 10/678,336, filed Oct. 3, 2003; U.S. patent application Ser. No. 10/706,398, filed Nov. 12, 2003; U.S. patent application Ser. No. 10/724,588, filed Nov. 28, 2003; U.S. patent application Ser. No. 10/729,111, filed Dec. 5, 2003; and U.S. patent application Ser. No. 10/881,271, filed Jun. 29, 2004. All of the above-referenced patents and applications are hereby incorporated by reference herein.


SUMMARY

The present inventors realized that network protocol processing could benefit from systems and methods that subdivide protocol processing such as TCP processing into several units, between which control of a TCP connection can be transferred, with the processing being performed by the unit that controls TCP connection.


In one embodiment, a system for communicating over a network is disclosed, the system comprising: a processor running a protocol processing stack to control a TCP connection; a first offload engine that receives control of the TCP connection from the stack to perform a first task corresponding to the TCP connection; and a second offload engine that receives control of the TCP connection from the first offload engine to perform a second task corresponding to the TCP connection. For example, the first offload engine can be protocol software such as an intermediate driver that can handle tasks such as teaming and/or reassembly of out-of-order data segments. As another example, the second offload engine can be a network interface card that provides hardware that accelerates data transfer.


In one embodiment, a system for communicating over a network is disclosed, the system comprising: a first processing mechanism that establishes a TCP connection; a second processing mechanism that receives control of the TCP connection from the first processing mechanism and performs a first task corresponding to the TCP connection; and a third processing mechanism that receives control of the TCP connection from the second processing mechanism and performs a third task corresponding to the TCP connection. For example, the first processing mechanism can be a CPU running a protocol processing stack, the second processing mechanism can be software such as an intermediate driver running on a processor, and the third processing mechanism can be a network interface card.


In one embodiment, a method for communicating over a network is disclosed, the method comprising: performing, by a first processing mechanism, a first task that corresponds to a TCP connection; transferring control of the TCP connection from the first processing mechanism to a second processing mechanism; performing, by the second processing mechanism, a second task that corresponds to the TCP connection; transferring control of the TCP connection from the second processing mechanism to a third processing mechanism; and performing, by the third processing mechanism, a third task that corresponds to the TCP connection. For example, the first task can include establishing or terminating the TCP connection, the second task can include reassembling out-of-order data segments for the TCP connection or switching a network port for the TCP connection from a first port to a second port, and the third task can include receive processing of packets corresponding to the TCP connection, prepending headers to data segments for the TCP connection, or parsing received packet headers corresponding to the TCP connection.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a schematic view of local host having a system for communicating over a network with a remote host.



FIG. 2 is a schematic view of local host that can transfer control of a TCP connection between a protocol stack, a software driver and a network interface card or storage adapter.



FIG. 3 is a schematic view of local host that can transfer control of a TCP connection between a protocol stack, a communication processor and protocol processing hardware.



FIG. 4 is a schematic view of local host that can transfer control of a TCP connection between a protocol stack, a port aggregation driver and plural network interface ports.



FIG. 5 is a schematic view of local host that can transfer control of a TCP connection between a protocol stack, a port aggregation driver, a reassembly engine and plural network interface ports.



FIG. 6 is a schematic view of local host that can transfer control of a TCP connection between a protocol stack, a port aggregation driver, and reassembly engines and protocol engines contained in plural network interface devices.





DETAILED DESCRIPTION


FIG. 1 shows a schematic view of a local host 20 that can communicate with a remote host 22 via a network 25. The network 25 in this embodiment can operate in accordance with Ethernet or related protocols, such as Fast-Ethernet, Gigabit-Ethernet or 10-Gigabit-Ethernet, and is designed to carry information packets (sometimes called frames) that can be directed over the network by nodes such as routers in accordance with networking protocols such as Internet Protocol (IP). The local host 20 and the remote host 22 can also be considered to be nodes on the network 25, but hosts 20 and 22 are distinguished from routers by their ability to process higher level protocols such as Transport Layer Protocol (TCP) and User Datagram Protocol (UDP) on behalf of applications running on the hosts. For example, the remote host 22 in this embodiment includes transport layer processing capabilities such as a TCP processing mechanism 28. The TCP protocol provides error-free delivery of data between the network hosts, in part by establishing a TCP connection on each of the hosts that governs that data delivery, the TCP connection implementing multiple rules and maintaining status information regarding the data delivery and other variables to transfer the data between specified applications on the hosts. Local host 20 and remote host 22 each also include many other conventional elements which are not shown, such as a CPU and memory.


The local host 20 includes first processing mechanism 30, second processing mechanism 33, and third processing mechanism 35, each of which can control a TCP connection. Controlling a TCP connection includes owning a block of memory that describes the current state of the TCP connection. Control of a TCP connection can be passed between the first processing mechanism 30 and the second processing mechanism 33, as shown by arrow 40. Control of the TCP connection can also be passed between the second processing mechanism 33 and the third processing mechanism 35, as shown by arrow 44. Moreover, control of the TCP connection may optionally be passed between the first processing mechanism 30 and the third processing mechanism 35, without the second processing mechanism 33 ever acquiring control of the connection. The second processing mechanism 33 may sometimes be called a first offload engine, and the third processing mechanism 35 may sometimes be called a second offload engine.


In one embodiment, the third processing mechanism 35 can perform a task or set of tasks that is a subset of the tasks that can be performed by the second processing mechanism 33 or the first processing mechanism, and the second processing mechanism 33 can perform a set of tasks that is a subset of the tasks that can be performed by the first processing mechanism 30. As an example, the third processing mechanism 35 can perform a task or set of tasks that is a subset of the tasks that can be performed by the second processing mechanism 33, and the second processing mechanism 33 can perform a set of tasks that is a subset of the tasks that can be performed by the first processing mechanism 30. Alternatively, one or all of the task or set of tasks performed by the third processing mechanism 35 may not be a task or set of tasks performed by the second processing mechanism 33 or the first processing mechanism. Similarly, one or all of the task or tasks performed by the second processing mechanism 35 may not be a task or set of tasks performed by the third processing mechanism 33 or the first processing mechanism.


For example, as shown in FIG. 2, the first processing mechanism 30 can be a CPU running a protocol processing stack 52 that can establish and terminate network connections such as TCP connections, handle error conditions and data reassembly for packets received out-of-order from a network, process received packets to place data from the packets in a destination such as a file cache and encapsulate data in network packets to transmit the data from local host 50 to a remote host. The second processing mechanism 33 in this example may be a software driver 55 that handles data reassembly for out-of-order received packets, and manages switching network ports for the connection, which may be known as teaming, trunking, failover or port aggregation. The third processing mechanism 35 in this example may be an intelligent network interface card (INIC) 58 or storage adapter that is coupled to the CPU by a host bus such as an input/output bus, the INIC including protocol processing hardware, software and/or firmware that is configured for straightforward processing of network packets, but which does not by itself establish and terminate TCP connections or handle error conditions. For example, the INIC may be able to process TCP and IP checksums and analyze received packet headers in hardware, place the data from received packets in an appropriate memory location of the host 20 and segment and encapsulate transmit data for transmission over the network.


For instance, control of a TCP connection may be transferred between protocol stack 52 and software driver 55 as a block of memory across a first host bus 60 such as a memory bus, or a block of memory representing the current state of the TCP connection can be remapped between a protocol stack domain and a software driver domain, or an ownership bit can be flipped to transfer ownership of the memory representing the TCP connection. Similarly, control of a TCP connection may be transferred between protocol stack 52 or software driver 55 and INIC 58 as a block of memory across a second host bus 60 such as a input/output bus, for example a PCI bus. Details of methods for handing out or offloading a TCP connection can be found in various Alacritech patents and applications referenced above. As one example, a first signal can be sent from the software driver 55 to the INIC 58, the first signal indicating an intention to transfer control of the TCP connection from the software driver to the INIC; with the INIC responding to the first signal by sending a second signal to the software driver, the second signal indicating that the INIC is able to receive control of the TCP connection; followed by sending a third signal from the software driver to the INIC, the third signal responsive to the second signal and transferring control of the TCP connection from the software driver to the INIC.


Alternatively, as shown in FIG. 3, the first processing mechanism 30 can be a central processing unit (CPU) running a protocol processing stack 82 that can establish and terminate network connections such as TCP connections, handle error conditions and data reassembly for out-of-order packets, and process network packets to place data from the packets in a destination such as a file cache and encapsulate data in network packets to transmit the data from local host 80 to a remote host. The second processing mechanism 33 in this example may be a communication processor 85 on an adapter such as an INIC or storage adapter that is coupled to the CPU by a host bus such as an input/output bus 90, the processor 85 running a TCP/IP stack that has most of the capabilities of the protocol processing stack 82, but which does not establish or terminate TCP connections for local host 80. The third processing mechanism 35 in this example may be protocol processing hardware 88, software and/or firmware on the INIC or storage adapter that is coupled to the communication processor 85 by host bus 92, and is configured for straightforward processing of network packets, but which cannot by itself establish and terminate TCP connections or handle error conditions. For example, the protocol hardware 88 may be able to place the data from received packets in an appropriate memory location of the host 90 and to segment and encapsulate transmit data for transmission over the network.


In this example, the protocol stack 82 may establish a TCP connection for host 80, after which the connection can be handed out (sometimes called offloaded) to the communication processor 85. The communication processor 88 can then handle the TCP connection, including transferring data corresponding to the connection to and from host memory, handling errors and reassembling out-of-order TCP packets. Once the TCP connection is stable, the communication processor 85 can transfer control of the connection to the protocol hardware 88, which in this example is specialized to provide accelerated data path processing of network packets corresponding to the TCP connection. Should an exception condition occur while the protocol processing hardware 85 is processing data corresponding to the TCP connection, control of the connection can be flushed (sometimes called uploading the connection) back to the communication processor 85. For example, data from out-of-order received packets may be reassembled by the communication processor 85. Should another exception condition occur while the communication processor 88 is controlling the connection, such as receipt of a packet indicating the session is to be terminated, the communication processor 88 can upload or flush the connection to the protocol stack 82.



FIG. 4 shows another example of a local host 100 for which a first processing mechanism may be a CPU running a protocol processing stack 102 that can establish and terminate network connections such as TCP connections, handle error conditions and data reassembly for out-of-order packets, and process network packets to receive and transmit data in the packets, although the first processing mechanism may do more or less than this. A second processing mechanism in this example may be a port aggregation (PAG) driver 103 that manages logical connections such as TCP connections for a plurality of network ports and which can, for example, switch the network ports that are utilized by such connections. An example of a port aggregation driver can be found in Alacritech's U.S. patent application Ser. No. 10/229,564, filed Aug. 22, 2002, entitled TCP Offload Device That Load Balances And Fails-Over Between Aggregated Ports Having Different MAC Addresses. A third processing mechanism in this example may be INIC 105 and/or INIC 108, each of which may have one or more of the network ports that provide interconnection with one or more networks. As an example, INIC 105 and INIC 108 may have essentially identical functionality and both contain hardware, software and/or firmware configured for straightforward processing of network packets, but do not in this example establish and terminate TCP connections or handle error conditions. For instance, INIC 105 may be able to place the data from received packets in an appropriate memory location of the host 100 and to segment and encapsulate transmit data for transmission over a network, including checksum calculation for both transmit and receive. A device driver may be included in the host 100 to communicate between protocol stack 102 and/or PAG driver 103 and the INICs 105 and 108. In this example, INIC 105 is connected to network 25 via port 121 and is connected to network 125 via port 131. Similarly, INIC 108 is connected to network 25 via port 122 and is connected to network 125 via port 132.


Should an error or other exception condition occur for a logical connection such as a TCP connection that is controlled by INIC 105, INIC 105 may flush (or upload) the connection to PAG driver 103, as shown by arrow 112. PAG driver 153 will then look at the exception condition to determine whether to upload (or flush) the TCP connection to protocol stack 102 as shown by arrow 110, or to hand the connection out to INIC 105 or INIC 108 as shown by arrow 112 or arrow 116, respectively. For example, should the exception condition be the receipt of a FIN packet for the connection from network 25, PAG driver 103 will upload (or flush) the TCP connection to protocol stack 102 as shown by arrow 110, and protocol stack 102 will use the FIN packet to terminate the connection. In one example, this upload (or flush) may be requested by the PAG driver 103, and the upload (or flush) can be handled by the protocol stack 102. On the other hand, should the exception condition be the receipt of a packet from a network switch indicating that the connection should be migrated from port 121 to another port that is connected to network 25, PAG driver 103 may handout the connection, as shown by arrow 116, to INIC 108, with instructions to use port 122 for that logical connection. Should the exception condition be the receipt of a packet from a network switch indicating that the connection should be migrated from port 121 to a port that is connected to network 125, PAG driver 103 may choose whether to handout the logical connection to INIC 105, with instructions to use port 131 for that connection, or to INIC 108, with instructions to use port 132 for that connection.



FIG. 5 shows another example of a local host 200 for which a first processing mechanism may be a CPU running a protocol processing stack 202 that can establish and terminate network connections such as TCP connections, handle error conditions and data reassembly for out-of-order packets, and process network packets to receive and transmit data in the packets, although the first processing mechanism may do more or less than this. A second processing mechanism in this example may be a port aggregation (PAG) driver 203 that manages logical connections such as TCP connections for a plurality of network ports and which can, for example, switch the network ports that are utilized by such connections. A third processing mechanism in this example may be a reassembly engine 244 that handles data reassembly for packets that were received out-of-order from a network. A fourth processing mechanism in this example may be INIC 205 and/or INIC 208, each of which may have one or more of the network ports that provide interconnection with one or more networks. As an example, INIC 205 and INIC 208 may have essentially identical functionality and both contain hardware, software and/or firmware configured for straightforward processing of network packets, but do not in this example establish and terminate TCP connections or handle error conditions. For instance, INIC 205 may be able to place the data from received packets in an appropriate memory location of the host 200 and to segment and encapsulate transmit data for transmission over a network, including checksum calculation for both transmit and receive. In this example, INIC 205 is connected to network 25 via port 221 and is connected to network 125 via port 231. Similarly, INIC 208 is connected to network 25 via port 222 and is connected to network 125 via port 232.


Should an error or other exception condition occur for a logical connection such as a TCP connection that is controlled by INIC 205, INIC 205 may flush (or upload) the connection to reassembly engine 244, as shown by arrow 212, which will determine whether the exception condition is simply the receipt of an out-of-order packet for the TCP connection, in which case the reassembly engine 244 will reassemble data from that connection. If the connection becomes stable and all packets corresponding to the connection are received in order the connection may be passed back or offloaded to INIC 205 for fast-path data processing. Should the exception condition involve something beside the receipt of an out-of-order packet, reassembly engine 244 may pass control of the connection to PAG driver 203, as shown by arrow 240. PAG driver 203 will then look at the exception condition to determine whether to upload (or flush) the TCP connection to protocol stack 202 as shown by arrow 210, or to hand the connection out (or offload) to INIC 205 or INIC 208, as shown by arrow 212 or arrow 216, respectively. Note that receipt of an out-of-order packet may also be a signal that a connection should be migrated to a different network port. For this reason there may be efficiencies in having a processing mechanism such as a driver that handles both port aggregation and reassembly of out-of-order packets.


As another example, should the exception condition be the receipt of a FIN packet for the connection from network 25, PAG driver 203 will upload (or flush) the TCP connection to protocol stack 202 as shown by arrow 210, and protocol stack 202 will use the FIN packet to terminate the connection. On the other hand, should the exception condition be the receipt of a packet from a network switch indicating that the connection should be migrated from port 221 to another port that is connected to network 25, PAG driver 203 may handout (or offload) the connection, as shown by arrow 216, to INIC 208, with instructions to use port 222 for that logical connection. Should the exception condition be the receipt of a packet from a network switch indicating that the connection should be migrated from port 221 to a port that is connected to network 125, PAG driver 203 may choose whether to handout (or offload) the logical connection to INIC 205, with instructions to use port 231 for that connection, or to INIC 208, with instructions to use port 232 for that connection.



FIG. 6 shows another example of a local host 300 for which a first processing mechanism may be a CPU running a protocol processing stack 302 that can establish and terminate network connections such as TCP connections, handle error conditions and data reassembly for out-of-order packets, and process network packets to receive and transmit data in the packets, although the first processing mechanism may do more or less than this. A second processing mechanism in this example may be a port aggregation (PAG) driver 303 that manages logical connections such as TCP connections for a plurality of network ports and which can, for example, switch the network ports that are utilized by such connections. A third processing mechanism in this example may be reassembly engines 344 and 346 contained in INICs 305 and 308, respectively. Reassembly engines 344 and 346 may be hardware, software or firmware that handles data reassembly for packets that were received out-of-order from a network. A fourth processing mechanism in this example may be protocol engine 355 and/or protocol engine 358, each of which may have essentially identical functionality and both of which contain hardware, software and/or firmware configured for straightforward processing of network packets, but do not in this example establish and terminate TCP connections or handle error conditions. For instance, INIC 305 may be able to place the data from received packets in an appropriate memory location of the host 300 and to segment and encapsulate transmit data for transmission over a network, including checksum calculation for both transmit and receive. In this example, INIC 305 is connected to network 25 via port 321 and is connected to network 125 via port 331. Similarly, INIC 308 is connected to network 25 via port 322 and is connected to network 125 via port 332.


Should an error or other exception condition occur for a logical connection such as a TCP connection that is controlled by INIC 305, INIC 305 may flush (or upload) the connection to reassembly engine 344, as shown by arrow 312, which will determine whether the exception condition is simply the receipt of an out-of-order packet for the TCP connection, in which case the reassembly engine 344 will reassemble data from that connection. If the connection becomes stable and all packets corresponding to the connection are received in order the connection may be passed back to INIC 305 for fast-path data processing. Should the exception condition involve something beside the receipt of an out-of-order packet, reassembly engine 344 may pass control of the connection to PAG driver 303, as shown by arrow 340. PAG driver 303 will then look at the exception condition to determine whether to upload (or flush) the TCP connection to protocol stack 302 as shown by arrow 310, or to hand the connection out (or offload) to INIC 305 or INIC 308, as shown by arrow 312 or arrow 316, respectively. For example, should the exception condition be the receipt of a FIN packet for the connection from network 25, PAG driver 303 will upload (or flush) the TCP connection to protocol stack 302 as shown by arrow 310, and protocol stack 302 will use the FIN packet to terminate the connection. On the other hand, should the exception condition be the receipt of a packet from a network switch indicating that the connection should be migrated from port 321 to another port that is connected to network 25, PAG driver 303 may handout (or offload) the connection, as shown by arrow 316, to INIC 308, with instructions to use port 322 for that logical connection. Should the exception condition be the receipt of a packet from a network switch indicating that the connection should be migrated from port 321 to a port that is connected to network 125, PAG driver 303 may choose whether to handout (or offload) the logical connection to INIC 308, with instructions to use port 331 for that connection, or to INIC 305, with instructions to use port 332 for that connection.


Appendix A provides a more detailed description of one example of a system and method including three processing mechanisms between which control of a TCP connection can be transferred, with the processing being performed by the unit that controls TCP connection. The example of Appendix A focuses on a software driver that can control a TCP connection to perform port aggregation for host having a protocol stack and at least one INIC, and which can transfer control of the TCP connection between the stack and the INIC. Although this application has focused on a few embodiments having various processing mechanisms between which control of a logical connection can be transferred, systems having additional connection-controlling processing mechanisms can be provided for enhanced functionality.

Claims
  • 1. A system for communicating over a network, the system comprising: a processor running a protocol processing stack to establish and control a Transmission Control Protocol TCP connection, the TCP connection having a state and being identified at least in part by an Internet Protocol (IP) address and TCP port of the host, and an IP address and TCP port of a remote host;a first offload engine that receives control of the TCP connection from the stack to perform a first task corresponding to the TCP connection; anda second offload engine that receives the TCP connection from the first offload engine to perform a second task corresponding to the TCP connection,wherein the first and second offload engines are part of the same host.
  • 2. The system of claim 1, wherein the first offload engine cannot perform the second task.
  • 3. The system of claim 1, wherein the second offload engine cannot perform the first task.
  • 4. The system of claim 1, wherein the first task includes changing a network port for the TCP connection from a first network port to a second network port.
  • 5. The system of claim 1, wherein the first task includes reassembly of out-of-order data for the TCP connection.
  • 6. The system of claim 1, wherein the second task includes receive processing of packets corresponding to the TCP connection.
  • 7. The system of claim 1, wherein the second task includes prepending headers to data segments for the TCP connection.
  • 8. The system of claim 1, wherein the second task includes parsing received packet headers corresponding to the TCP connection.
  • 9. A method for communicating over a network, the method comprising: establishing a Transmission Control Protocol (TCP) connection, the TCP connection having a state and being identified at least in part by an Internet Protocol (IP) address and TCP port of the host, and an IP address and TCP port of a remote host;performing, by a first processing mechanism, a first task that corresponds to a TCP connection;transferring control of the TCP connection from the first processing mechanism to a second processing mechanism;performing, by the second processing mechanism, a second task that corresponds to the TCP connection;transferring the TCP connection from the second processing mechanism to a third processing mechanism; andperforming, by the third processing mechanism, a third task that corresponds to the TCP connection;wherein control of the TCP connection is held by the first, second or third processing mechanism that controls a block of memory representing the current state of the TCP connection, and the processing mechanisms are part of the same host.
  • 10. The method of claim 9, wherein the first task includes establishing the TCP connection.
  • 11. The method of claim 9, wherein the second task includes reassembling out-of-order data segments for the TCP connection.
  • 12. The method of claim 9, wherein the third task includes reassembling out-of-order data segments for the TCP connection.
  • 13. The method of claim 9, wherein the second task includes switching a network port for the TCP connection from a first port to a second port.
  • 14. The method of claim 9, wherein the second task includes switching a network port for the TCP connection from a first network interface device to a second network interface device.
  • 15. The method of claim 9, wherein the third task includes receive processing of packets corresponding to the TCP connection.
  • 16. The method of claim 9, wherein the third task includes prepending headers to data segments for the TCP connection.
  • 17. The method of claim 9, wherein the third task includes parsing received packet headers corresponding to the TCP connection.
  • 18. The method of claim 9, further comprising transferring control of the TCP connection from the third processing mechanism to the second processing mechanism.
  • 19. The method of claim 9, further comprising transferring control of the TCP connection from the second processing mechanism to the first processing mechanism.
  • 20. A system for communicating over a network, the system comprising: a first processing mechanism that establishes a transmission control protocol (TCP) connection, the TCP connection having a state and being identified at least in part by an Internet Protocol (IP) address and TCP port of the host, and an IP address and TCP port of a remote host;a second processing mechanism that receives control of the TCP connection from the first processing mechanism and performs a first task corresponding to the TCP connection; anda third processing mechanism that receives the TCP connection from the second processing mechanism and performs a third task corresponding to the TCP connection;wherein control of the TCP connection is held by the first, second or third processing mechanism that controls a block of memory representing the current state of the TCP connection, and the processing mechanisms are part of the same host.
  • 21. The system of claim 20, wherein the second processing mechanism includes software running on a processor.
  • 22. The system of claim 20, wherein the third processing mechanism includes a network interface card.
  • 23. The system of claim 20, wherein the second processing mechanism is separated from the third processing mechanism by an input/output bus.
  • 24. The system of claim 20, wherein the first processing mechanism is separated from the second processing mechanism by an input/output bus.
  • 25. The system of claim 20, wherein at least one of the second and third processing mechanisms is an offload engine.
  • 26. The system of claim 20, wherein the second task includes port aggregation, and the third task does not include port aggregation.
  • 27. The system of claim 20, wherein the second set of tasks includes reassembly of out-of-order segments, and the third set of tasks does not include reassembly of out-of-order segments.
  • 28. The system of claim 20, wherein the first set of tasks includes establishment of the network connection.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit under 35 U.S.C. §119 of U.S. Provisional Patent Application Ser. No. 60/617,384, filed by the present inventors on Oct. 8, 2004, which is incorporated by reference herein.

US Referenced Citations (298)
Number Name Date Kind
4366538 Johnson et al. Dec 1982 A
4485455 Boone et al. Nov 1984 A
4485460 Stambaugh Nov 1984 A
4589063 Shah et al. May 1986 A
4700185 Balph et al. Oct 1987 A
4991133 Davis et al. Feb 1991 A
5056058 Hirata et al. Oct 1991 A
5058110 Beach et al. Oct 1991 A
5097442 Ward et al. Mar 1992 A
5129093 Muramatsu et al. Jul 1992 A
5163131 Row et al. Nov 1992 A
5212778 Dally et al. May 1993 A
5274768 Traw et al. Dec 1993 A
5280477 Trapp Jan 1994 A
5281963 Ishikawa et al. Jan 1994 A
5289580 Latif et al. Feb 1994 A
5303344 Yokoyama et al. Apr 1994 A
5412782 Hausman et al. May 1995 A
5418912 Christenson May 1995 A
5448566 Richter et al. Sep 1995 A
5485455 Dobbins et al. Jan 1996 A
5485460 Schrier et al. Jan 1996 A
5485579 Hitz et al. Jan 1996 A
5506966 Ban Apr 1996 A
5511169 Suda Apr 1996 A
5517668 Szwerinski et al. May 1996 A
5524250 Chesson et al. Jun 1996 A
5535375 Eshel et al. Jul 1996 A
5548730 Young et al. Aug 1996 A
5553241 Shirakihara Sep 1996 A
5566170 Bakke et al. Oct 1996 A
5574919 Netravali et al. Nov 1996 A
5588121 Reddin et al. Dec 1996 A
5590328 Seno et al. Dec 1996 A
5592622 Isfeld et al. Jan 1997 A
5596574 Perlman et al. Jan 1997 A
5598410 Stone Jan 1997 A
5619650 Bach et al. Apr 1997 A
5629933 Delp et al. May 1997 A
5633780 Cronin May 1997 A
5634099 Andrews et al. May 1997 A
5634127 Cloud et al. May 1997 A
5642482 Pardillos Jun 1997 A
5664114 Krech, Jr. et al. Sep 1997 A
5671355 Collins Sep 1997 A
5678060 Yokoyama et al. Oct 1997 A
5682534 Kapoor et al. Oct 1997 A
5684954 Kaiserswerth et al. Nov 1997 A
5692130 Shobu et al. Nov 1997 A
5699317 Sartore et al. Dec 1997 A
5699350 Kraslavsky Dec 1997 A
5701434 Nakagawa Dec 1997 A
5701516 Cheng et al. Dec 1997 A
5706514 Bonola Jan 1998 A
5727142 Chen Mar 1998 A
5742765 Wong et al. Apr 1998 A
5749095 Hagersten May 1998 A
5751715 Chan et al. May 1998 A
5751723 Vanden Heuvel et al. May 1998 A
5752078 Delp et al. May 1998 A
5758084 Silverstein et al. May 1998 A
5758089 Gentry et al. May 1998 A
5758186 Hamilton et al. May 1998 A
5758194 Kuzma May 1998 A
5768618 Erickson et al. Jun 1998 A
5771349 Picazo, Jr. et al. Jun 1998 A
5774660 Brendel et al. Jun 1998 A
5778013 Jedwab Jul 1998 A
5778419 Hansen et al. Jul 1998 A
5790804 Osborne Aug 1998 A
5794061 Hansen et al. Aug 1998 A
5799150 Hamilton et al. Aug 1998 A
5802258 Chen Sep 1998 A
5802580 McAlpine Sep 1998 A
5809328 Nogales et al. Sep 1998 A
5809527 Cooper et al. Sep 1998 A
5812775 Van Seters et al. Sep 1998 A
5815646 Purcell et al. Sep 1998 A
5819111 Davies et al. Oct 1998 A
5828835 Isfeld et al. Oct 1998 A
5848293 Gentry Dec 1998 A
5870394 Oprea Feb 1999 A
5872919 Wakeland Feb 1999 A
5878225 Bilansky et al. Mar 1999 A
5878227 Wade et al. Mar 1999 A
5892903 Klaus Apr 1999 A
5898713 Melzer et al. Apr 1999 A
5913028 Wang et al. Jun 1999 A
5915094 Kouloheris et al. Jun 1999 A
5917828 Thompson Jun 1999 A
5920566 Hendel et al. Jul 1999 A
5926642 Favor Jul 1999 A
5930830 Mendelson et al. Jul 1999 A
5931918 Row et al. Aug 1999 A
5935205 Murayama et al. Aug 1999 A
5935249 Stern et al. Aug 1999 A
5937169 Connery et al. Aug 1999 A
5941969 Ram et al. Aug 1999 A
5941972 Hoese et al. Aug 1999 A
5950203 Stakuis et al. Sep 1999 A
5963876 Manssen et al. Oct 1999 A
5970804 Osborne Oct 1999 A
5978844 Tsuchiya et al. Nov 1999 A
5987022 Geiger et al. Nov 1999 A
5991299 Radogna et al. Nov 1999 A
5996013 Delp et al. Nov 1999 A
5996024 Blumenau Nov 1999 A
6005849 Roach et al. Dec 1999 A
6009478 Panner et al. Dec 1999 A
6014380 Hendel et al. Jan 2000 A
6014557 Morton et al. Jan 2000 A
6016513 Lowe Jan 2000 A
6021446 Gentry et al. Feb 2000 A
6021507 Chen Feb 2000 A
6026452 Pitts Feb 2000 A
6034963 Minami et al. Mar 2000 A
6038562 Anjur et al. Mar 2000 A
6041058 Flanders et al. Mar 2000 A
6041381 Hoese Mar 2000 A
6044438 Olnowich Mar 2000 A
6047323 Krause Apr 2000 A
6047356 Anderson et al. Apr 2000 A
6049528 Hendel et al. Apr 2000 A
6057863 Olarig May 2000 A
6061368 Hitzelberger May 2000 A
6065096 Day et al. May 2000 A
6067569 Khaki et al. May 2000 A
6070200 Gates et al. May 2000 A
6078564 Lakshman et al. Jun 2000 A
6078733 Osborne Jun 2000 A
6097734 Gotesman et al. Aug 2000 A
6101555 Goshey et al. Aug 2000 A
6111673 Chang et al. Aug 2000 A
6115615 Ota et al. Sep 2000 A
6122670 Bennett et al. Sep 2000 A
6141701 Whitney Oct 2000 A
6141705 Anand et al. Oct 2000 A
6145017 Ghaffari Nov 2000 A
6157944 Pedersen Dec 2000 A
6157955 Narad et al. Dec 2000 A
6172980 Flanders et al. Jan 2001 B1
6173333 Jolitz et al. Jan 2001 B1
6181705 Branstad et al. Jan 2001 B1
6202105 Gates et al. Mar 2001 B1
6219693 Napolitano et al. Apr 2001 B1
6223242 Sheafor et al. Apr 2001 B1
6226680 Boucher et al. May 2001 B1
6233242 Mayer et al. May 2001 B1
6243667 Kerr et al. Jun 2001 B1
6246683 Connery et al. Jun 2001 B1
6247060 Boucher et al. Jun 2001 B1
6279051 Gates et al. Aug 2001 B1
6289023 Dowling et al. Sep 2001 B1
6298403 Suri et al. Oct 2001 B1
6324649 Eyres et al. Nov 2001 B1
6334153 Boucher et al. Dec 2001 B2
6343345 Hilla et al. Jan 2002 B1
6343360 Feinleib Jan 2002 B1
6345301 Burns et al. Feb 2002 B1
6345302 Bennett et al. Feb 2002 B1
6356951 Gentry et al. Mar 2002 B1
6370599 Anand et al. Apr 2002 B1
6385647 Willis et al. May 2002 B1
6389468 Muller et al. May 2002 B1
6389479 Boucher May 2002 B1
6393487 Boucher et al. May 2002 B2
6418169 Datari Jul 2002 B1
6421742 Tillier Jul 2002 B1
6421753 Hoese et al. Jul 2002 B1
6427169 Elzur Jul 2002 B1
6427171 Craft et al. Jul 2002 B1
6427173 Boucher et al. Jul 2002 B1
6434620 Boucher et al. Aug 2002 B1
6434651 Gentry, Jr. Aug 2002 B1
6449656 Elzur et al. Sep 2002 B1
6452915 Jorgensen Sep 2002 B1
6453360 Muller et al. Sep 2002 B1
6453406 Sarnikowski et al. Sep 2002 B1
6470415 Starr et al. Oct 2002 B1
6473425 Bellaton et al. Oct 2002 B1
6480489 Muller et al. Nov 2002 B1
6483804 Muller et al. Nov 2002 B1
6487202 Klausmeier et al. Nov 2002 B1
6487654 Dowling Nov 2002 B2
6490631 Teich et al. Dec 2002 B1
6502144 Accarie Dec 2002 B1
6523119 Pavlin et al. Feb 2003 B2
6526446 Yang et al. Feb 2003 B1
6542504 Mahler et al. Apr 2003 B1
6570884 Connery et al. May 2003 B1
6591302 Boucher et al. Jul 2003 B2
6591310 Johnson Jul 2003 B1
6594261 Boura et al. Jul 2003 B1
6631484 Born Oct 2003 B1
6648611 Morse et al. Nov 2003 B2
6650640 Muller et al. Nov 2003 B1
6657757 Chang et al. Dec 2003 B1
6658480 Boucher et al. Dec 2003 B2
6678283 Teplitsky Jan 2004 B1
6681364 Calvignac et al. Jan 2004 B1
6683851 Wilkie et al. Jan 2004 B1
6687758 Craft et al. Feb 2004 B2
6697366 Kim Feb 2004 B1
6697868 Craft et al. Feb 2004 B2
6751665 Philbrick et al. Jun 2004 B2
6757746 Boucher et al. Jun 2004 B2
6765901 Johnson et al. Jul 2004 B1
6807581 Starr et al. Oct 2004 B1
6842896 Redding et al. Jan 2005 B1
6862264 Moura et al. Mar 2005 B1
6912522 Edgar Jun 2005 B2
6938092 Burns Aug 2005 B2
6941386 Craft et al. Sep 2005 B2
6965941 Boucher et al. Nov 2005 B2
6976148 Arimilli et al. Dec 2005 B2
6996070 Starr et al. Feb 2006 B2
7016361 Swonk et al. Mar 2006 B2
7042898 Blightman et al. May 2006 B2
7047320 Arimilli et al. May 2006 B2
7073196 Dowd et al. Jul 2006 B1
7076568 Philbrick et al. Jul 2006 B2
7089326 Boucher et al. Aug 2006 B2
7093099 Bodas et al. Aug 2006 B2
7124205 Craft et al. Oct 2006 B2
7133940 Blightman et al. Nov 2006 B2
7167926 Boucher et al. Jan 2007 B1
7167927 Philbrick et al. Jan 2007 B2
7174393 Boucher et al. Feb 2007 B2
7181531 Pinkerton et al. Feb 2007 B2
7185266 Blightman et al. Feb 2007 B2
7187679 Dally et al. Mar 2007 B2
7191241 Boucher et al. Mar 2007 B2
7191318 Tripathy et al. Mar 2007 B2
7237036 Boucher et al. Jun 2007 B2
7254696 Mittal et al. Aug 2007 B2
7260518 Kerr et al. Aug 2007 B2
7283522 Siddabathuni Oct 2007 B2
7284070 Boucher et al. Oct 2007 B2
7287092 Sharp Oct 2007 B2
7337241 Boucher et al. Feb 2008 B2
7461160 Boucher et al. Dec 2008 B2
7472156 Philbrick et al. Dec 2008 B2
7496689 Sharp et al. Feb 2009 B2
7502869 Boucher et al. Mar 2009 B2
7519699 Jain et al. Apr 2009 B2
7543087 Philbrick et al. Jun 2009 B2
7584260 Craft et al. Sep 2009 B2
7620726 Craft et al. Nov 2009 B2
7627001 Craft et al. Dec 2009 B2
7627684 Boucher et al. Dec 2009 B2
7640364 Craft et al. Dec 2009 B2
7664868 Boucher et al. Feb 2010 B2
7664883 Craft et al. Feb 2010 B2
7673072 Boucher et al. Mar 2010 B2
7694024 Philbrick et al. Apr 2010 B2
7738500 Jones et al. Jun 2010 B1
20010004354 Jolitz Jun 2001 A1
20010013059 Dawson et al. Aug 2001 A1
20010014892 Gaither et al. Aug 2001 A1
20010014954 Purcell et al. Aug 2001 A1
20010025315 Jolitz Sep 2001 A1
20010037406 Philbrick et al. Nov 2001 A1
20010048681 Bilic et al. Dec 2001 A1
20010053148 Bilic et al. Dec 2001 A1
20020073223 Darnell et al. Jun 2002 A1
20020112085 Berg Aug 2002 A1
20020112175 Makofka et al. Aug 2002 A1
20020156927 Boucher et al. Oct 2002 A1
20030014544 Pettey Jan 2003 A1
20030046330 Hayes Mar 2003 A1
20030066011 Oren Apr 2003 A1
20030067903 Jorgensen Apr 2003 A1
20030110344 Szezepanek et al. Jun 2003 A1
20030165160 Minami et al. Sep 2003 A1
20040010712 Hui et al. Jan 2004 A1
20040042458 Elzu Mar 2004 A1
20040042464 Elzur et al. Mar 2004 A1
20040049580 Boyd et al. Mar 2004 A1
20040049601 Boyd et al. Mar 2004 A1
20040054814 McDaniel Mar 2004 A1
20040059926 Angelo et al. Mar 2004 A1
20040088262 Boucher et al. May 2004 A1
20040153578 Elzur Aug 2004 A1
20040210795 Anderson Oct 2004 A1
20040213290 Johnson et al. Oct 2004 A1
20040246974 Gyugyi et al. Dec 2004 A1
20040249957 Ekis et al. Dec 2004 A1
20050060538 Beverly Mar 2005 A1
20050144300 Craft et al. Jun 2005 A1
20060133386 McCormack et al. Jun 2006 A1
20060248208 Walbeck et al. Nov 2006 A1
20070083682 Bartley et al. Apr 2007 A1
20070140240 Dally et al. Jun 2007 A1
20080043732 Desai et al. Feb 2008 A1
20080170501 Patel et al. Jul 2008 A1
20080209084 Wang et al. Aug 2008 A1
20080240111 Gadelrab Oct 2008 A1
20090063696 Wang et al. Mar 2009 A1
Foreign Referenced Citations (13)
Number Date Country
WO 9819412 May 1998 WO
WO 9850852 Nov 1998 WO
WO 9904343 Jan 1999 WO
WO 9965219 Dec 1999 WO
WO 0013091 Mar 2000 WO
WO 0104770 Jan 2001 WO
WO 0105107 Jan 2001 WO
WO 0105116 Jan 2001 WO
WO 0105123 Jan 2001 WO
WO 0140960 Jun 2001 WO
WO 0159966 Aug 2001 WO
WO 0186430 Nov 2001 WO
WO 2007130476 Nov 2007 WO
Provisional Applications (1)
Number Date Country
60617384 Oct 2004 US