This application is based on and claims the benefit of priority from Japanese Patent application No. 2014-133691 filed on Jun. 30, 2014, the entire contents of which are incorporated herein by reference.
The present disclosure relates to an image forming apparatus forming an image in an electrographic manner and a transferring device provided in the image forming apparatus.
Generally, in an image forming apparatus, such as a printer, capable to form an image in an electrographic manner, it is known as a configuration that a toner image formed on an image carrier, such as a photosensitive drum, is transferred onto a sheet, such as a printing paper, conveyed in a state electrostatically attracted onto a conveying belt. In this kind of the image forming apparatus, by electrostatically attracting the sheet onto the conveying belt, improvement of separation property from the image carrier, conveyance stability and transferring performance of the sheet is actualized.
However, in a case where the sheet is conveyed in the state electrostatically attracted onto the conveying belt, if a roller arranged at a separation position where the sheet is separated from the conveying belt is grounded, separation electric discharge may occur when the sheet is separated from the conveying belt and electrostatic adhesion of a toner to the sheet may be weakened. In such a case, until the sheet is conveyed to a fixing device, it is feared that the toner adhered onto the sheet is scattered. In addition, it is feared that the toner on the sheet is not fixed in the fixing device and is electrostatically adhered onto a fixing member, such as a fixing roller, and then, a phenomenon so-called as electrostatic offset causing image failure in the following sheet occurs.
In accordance with one aspect of the present disclosure, a transferring device includes a conveying belt, a transferring roller, a stretching roller and a guide member. The conveying belt comes into contact with an image carrier carrying a toner image and conveys a sheet via a contact position to the image carrier. The transferring roller takes applying of voltage with a reversed polarity to a charged polarity of the toner forming the toner image and transfers the toner image carried on the image carrier onto the sheet at the contact position. The stretching roller stretches the conveying belt at a downstream side from the contact position in a conveying direction of the conveying belt and at a separation position, where the sheet is separated from the conveying belt. The guide member is arranged at a position facing to the sheet conveyed from the stretching roller to the fixing device fixing the toner image onto the sheet to take applying of the voltage with the reversed polarity to the charged polarity of the toner.
In accordance with another aspect of the present disclosure, an image forming apparatus includes the above-mentioned transferring device.
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following description when taken in conjunction with the accompanying drawings in which a preferred embodiment of the present disclosure is shown by way of illustrative example.
In the following, with reference to the accompanying drawings, embodiments of the present disclosure will be described in order to understand the present disclosure. The following embodiments are examples concreated the present disclosure, but do not limit the technical range of the present disclosure.
Firstly, with reference to
As shown in
The ADF 1 includes a document placed part, a plurality of conveying rollers, a document holding-down part and a sheet ejecting part (respectively, not shown) to be as an automatic document feeder conveying a document read by the image reading part 2. The image reading part 2 includes a document platen, a reading unit, a plurality of mirrors, an optical lens and a CCD (Charge Coupled Device) (respectively, not shown) to read the image data from the document. The controlling part 5 includes control equipment (not shown), such as CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory) and an EEPROM (Electrically Erasable Programmable Read Only Memory), to control operation of the image forming apparatus 10. The operating/displaying part 6 includes a displaying part, such as a liquid crystal display, displaying various information in accordance with control instruction from the controlling part 5 and an operating part, such as operation keys or a touch panel, inputting various information into the controlling part 5 in accordance with operation of a user.
The image forming part 3 can execute image forming process (printing process) forming the image on the basis of the image data read by the image reading part 2 in an electrographic manner. The image forming part 3 also can execute the image forming process on the basis of the image data inputted from an information processing device, such as an external personal computer.
Concretely, the image forming part 3 includes, as shown in
Firstly, the photosensitive drum 31 is electrically charged evenly at predetermined electrical potential by the charging device 32. Subsequently, a surface of the photosensitive drum 31 is irradiated with a light based on the image data by the optical scanning device 33. Thereby, an electrostatic latent image corresponding to the image data is formed onto the surface of the photosensitive drum 31. Moreover, the electrostatic latent image on the photosensitive drum 31 is developed (visualized) as a toner image by the developing device 34. Here, the photosensitive drum 31 is one example of an image carrier in the present disclosure. Incidentally, in the developing device 34, a toner (a developer) is replenished from a toner container 34A attachable to/detachable from the image forming part 3. In the image forming apparatus 10, the toner is agitated together with a carrier inside the developing device 34, thereby being triboelectrically charged, for example, at positive polarity.
Subsequently, the toner image formed onto the photosensitive drum 31 is transferred onto the sheet by the transferring device 35. Concretely, the toner image is transferred onto the sheet at a contact position 31A of the photosensitive drum 31 with a conveying belt 351 (refer to
The sheet conveying part 4 conveys the sheet onto which the image is formed by the image forming part 3. Concretely, the sheet conveying part 4 includes, as shown in
The sheet feeding cartridge 41 is attachable to/detachable from a housing of the image forming apparatus 10 to store the sheet onto which the image is formed by the image forming part 3. The sheet stored in the sheet feeding cartridge 41 is lifted up to a contact position with the pickup roller 42 arranged in an upper part of the sheet feeding cartridge 41 by a lift plate (not shown) arranged in a bottom part of the sheet feeding cartridge 41. An uppermost sheet coming into contact with the pickup roller 42 is sent out to a conveying path 40A by the pickup roller 42 and is conveyed in the conveying path 40A by the pairs of the conveying rollers 43.
The pair of paper stop rollers 44 send out the sheet to the contact position 31A at a predetermined timing synchronized with arrival of the toner image transferred on the photosensitive drum 31 at the contact position 31A. Concretely, at an upstream side from the pair of paper stop rollers 44 in a conveying direction of the sheet in the conveying path 40A, a paper stop sensor 40B (refer to
Subsequently, the sheet passed through the contact position 31A and taking transferring of the toner image passes through between the fixing roller 37A and the pressuring roller 37B of the fixing device 37, and then, the toner image is molten and fixed, and moreover, the sheet is conveyed to the ejected sheet tray 38 by the pairs of the conveying rollers 43 and ejected.
Here, in the image forming apparatus 10, occurrence of a jam (a paper jam) in the conveying path 40A is detected. Concretely, in the conveying path 40A, a plurality of sheet sensors 40C (refer to
Incidentally, in the image forming apparatus 10, the sheet is conveyed in a state electrostatically attracted onto the conveying belt 351. Thereby, improvement of separation property from the photosensitive drum 31 of the sheet, conveyance stability of the sheet and transferring performance of the toner image onto the sheet is actualized.
However, in a case where the sheet is conveyed in the state electrostatically attracted onto the conveying belt 351, if a roller arranged at a separation position where the sheet is separated from the conveying belt 351 is grounded, separation electric discharge may occur when the sheet is separated from the conveying belt 351 and electrostatic adhesion of the toner to the sheet may be weakened. In such a case, until the sheet is conveyed to the fixing device 37, the toner adhered onto the sheet may be scattered. In addition, the toner on the sheet may not be fixed in the fixing device 37 and may be electrostatically adhered onto the fixing roller 37A, and then, a phenomenon so-called as electrostatic offset causing image failure in the following sheet occurs. By contrast, in the image forming apparatus 10, as described later, it is possible to improve the electrostatic adhesion of the toner to the sheet.
In the following, with reference to
The transferring device 35 conveys the sheet with electrostatically attracting the sheet sent out from the pair of paper stop rollers 44 onto the conveying belt 351 and transfers the toner image formed on the photosensitive drum 31 at the contact position 31A onto the sheet. Concretely, the transferring device 35 includes, as shown in
The conveying belt 351 comes into contact with the photosensitive drum 31 and conveys the sheet through the contact position 31A. Concretely, the conveying belt 351 is, as shown in
The transferring roller 352 takes applying of voltage with a reversed polarity to a charged polarity of the toner forming the toner image and transfers the toner image carried on the photosensitive drum 31 onto the sheet at the contact position 31A. Concretely, the transferring roller 352 is arranged, as shown in
The first roller 353 stretches the conveying belt 351 at an upstream side from the contact position 31A in the conveying direction 351A of the conveying belt 351 and at the conveyance starting position 351B, where conveyance of the sheet is started. For example, the first roller 353 is made of electric conductive material, such as metal, and is arranged in the transferring device 35 in a state grounded via a bearing. Therefore, a part of the electric charge injected to the conveying belt 351 is eliminated by the first roller 353.
The second roller 354 stretches the conveying belt 351 and at a downstream side from the contact position 31A in the conveying direction 351A of the conveying belt 351 and at the separation position 351C, where the sheet is separated from the conveying belt 351. Here, the second roller 354 is one example of stretching roller in the present disclosure.
The guide member 355 guides the sheet separated from the conveying belt 351 at the separation position 351C to the fixing device 37. Concretely, the guide member 355 is arranged, as shown in
Here, in a case where the second roller 354 is grounded, when the sheet electrostatically attracted onto the external circumference face of the conveying belt 351 is separated from the conveying belt 351 at the separation position 351C, separation electric discharge is produced between the sheet and the conveying belt 351. Concretely, on the basis of position relationship of respective materials of the sheet and the conveying belt 351 in a triboelectric series, replacement of an electric charge is carried out between the sheet and the conveying belt 351. For example, in a case where the material of the sheet is a paper and the external circumference face of the conveying belt 351 is made of fluorine resin, such as PTFE (polytetrafluoroethylene), the sheet discharges the electric charge with the negative polarity and is electrically charged to a positive polarity when separating from the conveying belt 351 and the conveying belt 351 receives the electric charge discharged from the sheet and is electrically charged to the negative polarity. In such a case, electrostatic adhesion of the toner with the positive polarity adhered onto the sheet with respect to the sheet may be weakened and the toner may be scattered from the sheet. Moreover, the electrostatic offset may be in the fixing device 37 and image failure may occur.
By contrast, in the image forming apparatus 10, the voltage with the reversed polarity to the charged polarity of the toner is applied to the guide member 355. Concretely, the guide member 355 is made of electric conductive material and takes applying of the voltage with the negative polarity from the voltage applying part 356A. Thereby, it is possible to produce electric discharge between the sheet conveyed from the second roller 354 to the fixing device 37 along the moving path 351D and the guide member 355 and inject the electric charge with the negative polarity to the sheet. Therefore, it is possible to improve electrostatic adhesion of the toner with respect to the sheet.
More concretely, the guide member 355 is arranged, as shown in
The guide member 355 is arranged at a position facing to a face of the sheet at a side of the second roller 354. Therefore, as compared with configuration that the guide member 355 is arranged at another position facing to another face of the sheet where the toner image is formed, the electric discharge between the guide member 355 and the sheet is restrained from affecting on the toner image formed on the sheet.
Further, in the image forming apparatus 10, the voltage with the reversed polarity to the charged polarity of the toner is applied to the second roller 354. Concretely, the second roller 354 takes applying of the voltage with the negative polarity from the voltage applying part 356A. Thereby, moving of the electric charge with the negative polarity from the sheet to the conveying belt 351, i.e. occurrence of separation electric discharge is restrained. Incidentally, as another embodiment, a configuration without applying the voltage to the second roller 354 may be considered.
The voltage applying part 356A applies the voltage with the reversed polarity to the charged polarity of the toner to the transferring roller 352, the second roller 354 and the guide member 355. Here, the voltage applying part 356A applying the voltage to the transferring roller 352, the second roller 354 and the guide member 355 is one example of a first voltage applying part in the present disclosure.
Concretely, the voltage applying part 356A is, as shown in
Incidentally, if the voltage applying part 356A applies the voltage only during the sheet passes through the contact position 31A, the voltage may not be applied to the guide member 355 while a trailing end part of the sheet in the conveying direction 351A is moved from the contact position 31A to the leading end part 351A of the guide member 355. In such a case, the electric discharge between a part of the sheet and the guide member 355 is not produced. Thereupon, in the image forming apparatus 10, the voltage applying part 356A applies the voltage to the transferring roller 352, the second roller 354 and the guide member 355 until the trailing end part of the sheet in the conveying direction 351A is separated from the leading end part 355A of the guide member 355 after the leading end part of the sheet in the conveying direction 351A arrives at the contact position 31A.
Concretely, the controlling part 5 acquires an arrival timing of the leading end part of the sheet at the contact position 31A and a separation timing of the trailing end part of the sheet from the leading end part 355A on the basis of the electrical signal indicating the detection of the leading end part of the sheet and the electrical signal indicating the detection of the trailing end part of the sheet outputted from the paper stop sensor 40B. Moreover, the controlling part 5 makes the voltage applying part 356A apply the voltage on the basis of the arrival timing and the separation timing in a period from the arrival of the leading end part of the sheet at the contact position 31A to the separation of the trailing end part of the sheet from the leading end part 355A. Thereby, it is possible to produce the electrical discharge between the entire sheet and the guide member 355.
When the voltage applying part 356A applies the voltage to the transferring roller 352, the second roller 354 and the guide member 355, excessive current may be flowed from the second roller 354 or the guide member 355 to the fixing device 37 via the sheet. In such a case, current quantity flowing from the transferring roller 352 to the photosensitive drum 31 may become insufficient and density of the toner image transferred onto the sheet may be deteriorated. Particularly, in a case where water content of the sheet is high, the excessive current is easily flowed from the second roller 354 or the guide member 355 to the fixing device 37 via the sheet. Thereupon, in the image forming apparatus 10, as shown in
Concretely, the resistor 357 has a resistance value higher than an electric conductive path including the transferring roller 352, the conveying belt 351 and the photosensitive drum 31. For example, the resistance value of the resistor 357 is 100 MΩ. Thereby, it is possible to restrain the excessive current from flowing from the second roller 354 or the guide member 355 to the fixing device 37 via the sheet.
Incidentally, in the image forming apparatus 10, in addition to the voltage applying part 356A applying the voltage to the transferring roller 352, another power source applying voltage to the second roller 354 and the guide member 355 may be provided. Concretely, in considerable configuration, the transferring device 35 includes, as shown in
For example, the controlling part 5 controls the voltage applying part 356A so as to flow the current of −100 μA to the transferring roller 352 and controls the voltage applying part 356B so as to flow the current of −15 μA in all to the second roller 354 and the guide member 355. Thus, in a case where the voltage applying part 356B applying the voltage to the second roller 354 and the guide member 355 is provided in addition to the voltage applying part 356A applying the voltage to the transferring roller 352, it is possible to separate controlling of the voltage applied to the second roller 354 and the guide member 355 from controlling of the voltage applied to the transferring roller 352.
In the image forming apparatus 10, experimentation searching scattering condition of the toner at the separation position 351C and occurrence condition of the image failure was carried out while varying structure of the transferring device 35 as Example 1 and Example 2. Experiment results are shown in
In accordance with the experiment results shown in
Moreover, in accordance with the experiment results shown in
Thus, in the image forming apparatus 10, since the voltage with the reversed polarity to the charged polarity of the toner is applied to the guide member 355, the electric discharge occurs between the sheet and the guide member 355 and the electric charge with the reversed polarity to the charged polarity of the toner is injected to the sheet. Thereby, it is possible to improve the electrostatic adhesion of the toner with respect to the sheet.
In the following, with reference to
The image forming apparatus 10 according to the second embodiment is different from the image forming apparatus 10 according to the first embodiment in structure of the second roller 354. Moreover, the image forming apparatus 10 according to the second embodiment includes, as shown in
Concretely, in the image forming apparatus 10 according to the second embodiment, the second roller 354 is made of an insulator, such as synthetic resins, to become an insulation state, but is not grounded. Thereby, it is possible to maintain a charging state to the negative polarity of the conveying belt at the separation position 351C and to restrain the electric charge with the negative polarity from moving from the sheet to the conveying belt 351, i.e. to restrain separation electric discharge from occurring.
Incidentally, a way of making the second roller 354 to the insulation state is not restricted by the above-mentioned way. For example, a contact part to a rotation shaft of the second roller 354 may be formed by a bearing made of the insulator to support the second roller 354, thereby making the second roller 354 to the insulation state. In such a case, it is possible to actualize the present disclosure by using an existing roller member and it is unnecessary to separately provide new roller member made of the insulator. Alternatively, a surface layer of the second roller 354 may be made of the insulator, such as fluorine resin, thereby making the second roller 354 to the insulation state. In such a case, it is possible to actualize the present disclosure by coating the existing roller member.
The static eliminating member 358 is arranged, as shown in
In the image forming apparatus 10 according to the second embodiment, experimentation searching scattering condition of the toner at the separation position 351C and occurrence condition of the image failure was carried out while varying structure of the transferring device 35 as Example 3 and Example 4. Experiment results are shown in
In accordance with the experiment results shown in
Moreover, in accordance with the experiment results shown in
While the present disclosure has been described with reference to the preferable embodiment of the image forming apparatus of the disclosure and the description has technical preferable illustration, the disclosure is not to be restricted by the embodiment and illustration. Components in the embodiment of the present disclosure may be suitably changed or modified, or variously combined with other components. The claims are not restricted by the description of the embodiment.
Number | Date | Country | Kind |
---|---|---|---|
2014-133691 | Jun 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4338017 | Nishikawa | Jul 1982 | A |
4396273 | Matsuyama | Aug 1983 | A |
4401383 | Suzuki | Aug 1983 | A |
4415254 | Nishikawa | Nov 1983 | A |
5198864 | Fletcher | Mar 1993 | A |
5722012 | Saitoh | Feb 1998 | A |
6097924 | Okuyama | Aug 2000 | A |
20070041756 | Akaike | Feb 2007 | A1 |
20120002996 | Izumi | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
2002-031960 | Jan 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20150378285 A1 | Dec 2015 | US |