Data storage systems contain large amounts of data. This data includes personal data, such as financial data, customer/client/patient contact data, audio/visual data, and much more. Computer systems often contain word processing documents, engineering diagrams, spreadsheets, business strategy presentations, email mailboxes, and so on. With the proliferation of computer systems and the ease of creating content, the amount of content in an organization has expanded rapidly. Even small offices often have more information stored than any single employee can know about or locate.
To that end, both companies and individuals rely on data storage systems to store, protect, and/or hold old data, such as data no longer actively needed. Often, these data storage systems perform data migration, moving data from primary storage (containing actively needed data) to secondary storage (such as backup storage or archives). Typical data storage systems transfer data in the forms of files, folders, and so on. For example, the typical data storage system may transfer data from a data store associated with a user to secondary storage while maintaining the structure and application format of the files themselves.
To restore the data, these systems then require knowledge of applications that create the data. Additionally, some files, can be very large, and restoring a large file can be costly, time consuming, and resource intensive.
The need exists for a system that overcomes the above problems, as well as one that provides additional benefits. Overall, the examples herein of some prior or related systems and their associated limitations are intended to be illustrative and not exclusive. Other limitations of existing or prior systems will become apparent to those of skill in the art upon reading the following Detailed Description.
Overview
Described in detail herein is a system and method that transfers or migrates data objects (such as files, folders, data stores, and/or discrete data component(s) by migrating segments, portions, increments, or proper subsets of the data objects. The system may transfer increments of files, folders, and other data objects from primary storage (or other sources) to secondary storage based on certain criteria, such as time-based criteria, age-based criteria, and so on. An increment may be one or more blocks of a data object, or one or more chunks of a data object, or other portions that combine to form, store, and/or contain a data object, such as a file.
In some examples, the system performs block-based migration of data. That is, the system identifies one or more blocks of a data object that satisfy a certain criteria, and migrates the identified blocks. For example, the system may determine that a certain number of blocks of a file have not been modified or called by a file system within a certain time period, and migrate these blocks to secondary storage. The system then maintains the other blocks of the file in primary storage. In some cases, the system automatically migrates data without requiring user input. Additionally, the migration may be transparent to a user.
In some examples, the system performs chunk-based migration of data. A chunk is, for example, a group or set of blocks. One or more chunks may comprise a file, folder, or other data object. The system identifies one or more chunks of a data object that satisfy a certain criteria, and migrates the identified chunks. For example, the system may determine that a certain number of chunks of a file have not been modified or called by a file system in a certain time period, and migrate these chunks to secondary storage. The system then maintains the other chunks of the file in primary storage. Further details regarding chunks and chunk-based storage may be found in U.S. Patent Application No. 61/180,791, entitled BLOCK-LEVEL SINGLE INSTANCING, filed May 22, 2009.
In some examples, the system leverages the block-based or chunk-based data migration in order to restore portions of data objects without restoring entire data objects. For example, the system can restore one or more blocks of a file, present the data contained by the blocks, receive modifications to the data, and update the blocks, and hence the file.
The system will now be described with respect to various examples. The following description provides specific details for a thorough understanding of, and enabling description for, these examples of the system. However, one skilled in the art will understand that the system may be practiced without these details. In other instances, well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the examples of the system.
The terminology used in the description presented below is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific examples of the system. Certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section.
Suitable System
Referring to
The secondary storage device 113 receives the data from the media agent 112 and stores the data as a secondary copy, such as a backup copy. Secondary storage devices may be magnetic tapes, optical disks, USB and other similar media, disk and tape drives, and so on. Of course, the system may employ other configurations of stream components not shown in the Figure.
Referring to
Aspects of the system can be embodied in a special purpose computer or data processor that is specifically programmed, configured, or constructed to perform one or more of the computer-executable instructions explained in detail herein. Aspects of the system can also be practiced in distributed computing environments where tasks or modules are performed by remote processing devices, which are linked through a communications network, such as a Local Area Network (LAN), Wide Area Network (WAN), Storage Area Network (SAN), Fibre Channel, or the Internet. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.
Aspects of the system may be stored or distributed on computer-readable media, including tangible storage media, such as magnetically or optically readable computer discs, hard-wired or preprogrammed chips (e.g., EEPROM semiconductor chips), nanotechnology memory, biological memory, or other data storage media. Indeed, computer implemented instructions, data structures, screen displays, and other data under aspects of the system may be distributed over the Internet or over other networks (including wireless networks), on a propagated signal on a propagation medium (e.g., an electromagnetic wave(s), a sound wave, etc.) over a period of time, or they may be provided on any analog or digital network (packet switched, circuit switched, or other scheme). Those skilled in the relevant art will recognize that portions of the system reside on a server computer, while corresponding portions reside on a client computer, and thus, while certain hardware platforms are described herein, aspects of the system are equally applicable to nodes on a network.
For example, the data storage system 200 contains a storage manager 210, one or more clients 111, one or more media agents 112, and one or more storage devices 113. Storage manager 210 controls media agents 112, which may be responsible for transferring data to storage devices 113. Storage manager 210 includes a jobs agent 211, a management agent 212, a database 213, and/or an interface module 214. Storage manager 210 communicates with client(s) 111. One or more clients 111 may access data to be stored by the system from database 222 via a data agent 221. The system uses media agents 112, which contain databases 231, to transfer and store data into storage devices 113. Client databases 222 may contain data files and other information, while media agent databases may contain indices and other data structures that store the data at secondary storage devices, for example.
The data storage and recovery system may include software and/or hardware components and modules used in data storage operations. The components may be storage resources that function to copy data during storage operations. The components may perform other storage operations (or storage management operations) other that operations used in data stores. For example, some resources may create, store, retrieve, and/or migrate primary or secondary data copies of data. Additionally, some resources may create indices and other tables relied upon by the data storage system and other data recovery systems. The secondary copies may include snapshot copies and associated indices, but may also include other backup copies such as HSM copies, archive copies, auxiliary copies, and so on. The resources may also perform storage management functions that may communicate information to higher level components, such as global management resources.
In some examples, the system performs storage operations based on storage policies, as mentioned above. For example, a storage policy includes a set of preferences or other criteria to be considered during storage operations. The storage policy may determine or define a storage location and/or set of preferences about how the system transfers data to the location and what processes the system performs on the data before, during, or after the data transfer. In some cases, a storage policy may define a logical bucket in which to transfer, store or copy data from a source to a data store, such as storage media. Storage policies may be stored in storage manager 210, or may be stored in other resources, such as a global manager, a media agent, and so on. Further details regarding storage management and resources for storage management will now be discussed.
Referring to
In some examples, the system performs some or all the operations described herein using an intermediate component, virtual storage device, virtual device driver, virtual disk driver, or other intermediary capable of mounting to a file system and communicating with a storage device. That is, an intermediate component may communicatively reside between a file system and a primary data store that contains data created by the file system and a secondary data store. The intermediate component enables flexibility during data restoration, enabling a file system to indirectly access a secondary copy of data in order to identify information associated with data stored by the secondary copy, among other benefits.
Data Migration System
Referring to
Referring to
The intermediate component 420 may also include a storage device module 520 that communicates with storage devices, such as disk driver 435 and disk 437 (or other fixed or removable media). The storage device module 520 may include an index 525 or allocation table that identifies available media for data storage, contains information associated with data stored via the intermediate component 420, and so on.
The intermediate component 420 may also include a cache 530 (or, a cache module or interface that communicates with an external cache), and/or other agents or modules 540, such as modules that index files, classify files, manage files or information, and so on.
Block-Based Data Migration
Block-level migration, or block-based data migration, involves migrating disk blocks from a primary data store (e.g., a disk partition) to secondary media. Using block-level migration, a data storage system transfers blocks on a disk partition that have not been recently accessed to secondary storage, freeing up space on the disk. In order to expand the database, the system moves data from the database to other locations, such as other databases or storage locations. Typically, such expansion requires knowledge of the database, such as the database application, the database schema, and so on. However, using block-level migration, the system can expand or extend a database without any knowledge of the applications or schema of the database, providing for transparent migration and/or restoration of data from one storage location to another. This can be helpful when migrating data from virtual machines that contain large files, (e.g., large files created by applications such as Vmware, Microsoft Virtual Server, and so on). The system may implement block-level migration processes as software device drivers, but may also implement block-level migration in disk hardware.
As described herein, the system can transfer or migrate certain blocks of a data object from one data store to another, such as from primary storage that contains a primary copy of the data object to secondary storage that contains or will contain a secondary copy of the primary copy of the data object. Referring to
The system can perform file system data migration at a block level, unlike previous systems that only migrate data at the file level (that is, they have a file-level granularity). By tracking migrated blocks, the system can also restore data at the block level, which may avoid cost and time problems associated with restoring data at the file level or may assist in defragmenting a storage device. Further details regarding the block-level restoration of data is be discussed herein.
Referring to
In some examples, the system identifies blocks set to be “aged off” from the data store. That is, the system identifies blocks created, changed, or last modified before a certain date and time. For example, the system may review a data store for all data blocks that satisfy a criterion or criteria. The data store may be an electronic mailbox or personal folders (.pst) file for a Microsoft Exchange user, and the criterion may define, for example, all blocks or emails last modified or changed thirty days ago or earlier. The system compares information associated with the blocks, such as metadata associated with the blocks, to the criteria, and identifies all blocks that satisfy the criteria. For example, the system identifies all blocks in the .pst file not modified within the past thirty days. The identified blocks may include all the blocks for some emails and/or a portion of the blocks for other emails. That is, for a given email (or data object), a first portion of the blocks that include the email may satisfy the criteria, while a second portion of the blocks that include the same email may not satisfy the criteria. In other words, a file or a data object can be divided into parts or portions, and only some of the parts or portions change.
To determine which blocks have changed, and when, the system can monitor the activity of the file system via the intermediate component 420, (e.g., the virtual device driver). The system may store a data structure, such as a bitmap, table, log, and so on within the cache 530 or other memory of the intermediate component 420, and update the bitmap whenever the file system calls the database 418 to access and update or change data blocks within the database 418. The intermediate component 420 traps the command to the disk driver, where that command identifies certain blocks on a disk for access or modifications, and writes to the bitmap the changed blocks and the time of the change. The bitmap may include information such as an identification of changed blocks and a date and a time the blocks were changed. The bitmap, which may be a table, data structure, or group of pointers, such as a snapshot, may also include other information, such as information that maps file names to blocks, information that maps chunks to blocks and/or file names, and so on. Table 1 provides entry information for a bitmap tracking the activity of a file system with the “/users” directory:
Thus, if a storage policy identified the time 08.30.2008@12:00 as a threshold time criteria, where data modified after the time is to be retained, the system would identify, in step 710, blocks 110-1000 as having satisfied the criteria. Thus, the system, via the intermediate component 420, can monitor what blocks are requested by a file system, and act accordingly, as described herein.
In step 720, the system transfers data within the identified blocks from the data store to a media agent, to be stored in a different data store. The system may perform some or all of the processes described with respect to
In step 730, via the media agent, the system stores data from the blocks to a different data store. In some cases, the system, via the media agent, stores the data from the blocks to a secondary storage device, such as a magnetic tape or optical disk. For example, the system may store the data from the blocks in secondary copies of the data store, such as a backup copy, an archive copy, and so on. In some cases, the system stores the data from the blocks to a storage device located near and/or associated with the data store, such as to a quick recovery volume that facilitates quick restores of data.
The system may create, generate, update, and/or include an allocation table, (such as a table for the data store) that tracks the transferred data and the data that was not transferred. The table may include information identifying the original data blocks for the data, the name of the data object, the location of any transferred data blocks, and so on. For example, Table 2 provides entry information for an example .pst file:
In the above example, the data for “Email2” is stored in two locations, a local data store (C:/) and an off-site data store (X:/). The system maintains the body of the email, recently modified or accessed, at a location within a data store associated with a file system, “C:/users/blocks101-120.” The system stores the attachment, not recently modified or accessed, in a separate data store, “X:/remov1/blocks1-250.” Of course, the table may include other information, fields, or entries not shown. For example, when the system stored data to tape, the table may include tape identification information, tape offset information, and so on.
Chunk-Based Data Migration
Chunked file migration, or chunk-based data migration, involves splitting a data object into two or more portions of the data object, creating an index that tracks the portions, and storing the data object to secondary storage via the two or more portions. Among other things, the chunk-based migration provides for fast and efficient storage of a data object. Additionally, chunk-based migration facilitates fast and efficient recall of a data object, such as the large files described herein. For example, if a user modifies a migrated file, chunk-based migration enables a data restore component to only retrieve from, and migrate back to, secondary storage the chunk containing the modified portion of the file, and not the entire file. In some cases, chunk-based migration may collaborate with components that provide file format and/or database schema information in order to facilitate data recovery.
As described above, in some examples the system migrates chunks of data (sets of blocks) that comprise a data object from one data store to another. Referring to
As described above, the system migrates data via one or more chunks, such as sets of blocks. A data object, such as a file, may comprise two or more chunks. A chunk may be a logical division of a data object. For example, a .pst file may include two or more chucks: a first chunk that stores data associated with an index of a user's mailbox, and one or more chunks that stores email, attachments, and so on within the user's mailbox. A chunk is a proper subset of all the blocks comprising a file. That is, for a file consisting of n blocks, the largest chunk of the file comprises at most n−1 blocks.
The system 800 may include a chunking component 815 that divides data objects, such as files, into chunks. The chunking component 815 may receive files to be stored in database 418, divide the files into two or more chunks, and store the files as two or more chunks in database 418. The chunking component 815 may update an index that associated information associated with files with the chunks of the file, the data blocks of the chunks, and so on.
The chunking component 815 may perform different processes when determining how to divide a data object. For example, the chunking component 815 may include indexing, header, and other identifying information or metadata in a first chunk, and include the payload in other chunks. The chunking component 815 may follow a rules-based process when dividing a data object. The rules may define a minimum or maximum data size for a chunk, a time of creation for data within a chunk, a type of data within a chunk, and so on.
For example, the chunking component 815 may divide a user mailbox (such as a .pst file) into a number of chunks, based on various rules that assign emails within the mailbox to chunks based on the metadata associated with the emails. The chunking component 815 may place an index of the mailbox in a first chunk and the emails in other chunks. The chunking component 815 may then divide the other chunks based on dates of creation, deletion or reception of the emails, size of the emails, sender of the emails, type of emails, and so on. Thus, as an example, the chunking component may divide a mailbox as follows:
Of course, other divisions are possible. Chunks may not necessarily fall within logical divisions. For example, the chunking component may divide a data object based on information or instructions not associated with the data object, such as information about data storage resources, information about a target secondary storage device, historical information about previous divisions, and so on.
The system may perform chunking at various times or in different locations of a data storage system. For example, although
Referring to
In step 920, the system transfers data within the identified chunks from the data store to a media agent, to be stored in a different data store. The system may perform some or all of the processes described with respect to
In some examples, the system monitors the transfer of data from the file system to the data store via the callback layer 820. The callback layer 820 may be a layer, or additional file system, that resides on top of the file system 810. The intermediate layer 820 may intercept data requests from the file system 810, in order to identify, track and/or monitor the chunks requested by the file system 810 and store information associated with these requests in a data structure, such as a bitmap similar to the one shown in Table 1. Thus, the intermediate layer 820 stores information identifying when chunks are accessed by tracking calls from the file system 810 to the data store 840. For example, Table 3 provides entry information for a bitmap tracking calls to a data store:
In this example, the file system 810 creates a data object named “File1,” using the chunking component to divide the file into four chunks: “File1.1,” “File1.2,” “File1.3,” and “File1.4.” The file system 810 stores the four chunks to data store 840 on 06.04.2008. According to the table, the file system has not accessed File1.4 since its creation, and most recently accessed the other chunks on Sep. 5, 2008. Of course, Table 3 may include other or different information, such as information identifying a location of the chunks, information identifying the type of media storing the chunks, information identifying the blocks within the chunk, and/or other information or metadata.
In step 930, via the media agent, the system stores the data from the chunks to a different data store. In some cases, the system, via the media agent, stores the data to a secondary storage device, such as a magnetic tape or optical disk. For example, the system may store the data in secondary copies of the data store, such as a backup copy, and archive copy, and so on. In some cases, the system stores the data to a storage device located near and/or associated with the data store, such as to a quick recovery volume.
Data Recovery
The system, using the block-based or chunk-based data migration processes described herein, is able to restore portions of files instead of entire files, such as individual blocks or chunks that comprise portions of the files. Referring to
In step 1020, the system identifies one or more blocks or one or more chunks associated with the request. For example, the system looks to a table similar to Table 2, and identifies blocks associated with page 5 of the presentation and blocks associated with an table of contents of the presentation.
In step 1030, the system retrieves the identified blocks or chunks and presents them to the user. For example, the system only retrieves page 5 and table of contents of the presentation and presents the pages to the user.
In step 1040, the system, via the file system, modifies the retrieved blocks or chunks via the file system. For example, the user updates the Powerpoint presentation to include a different picture. In step 1050, the system transfers data associated with the modified blocks or chunks to the data store. For example, the system transfers the modified page 5 to the data store. The system may also update a table that tracks access to the data store, such as Table 1 or Table 3.
Thus, the system, leveraging block-based or chunk-based data migration during data storage, restores only portions of data objects required by a file system. Such restoration can be, among other benefits, advantageous over systems that perform file-based restoration, because those systems restore entire files, which can be expensive, time consuming, and so on. Some files, such as .pst files, may contain large amounts of data. File-based restoration can therefore be inconvenient and cumbersome, among other things, especially when a user only requires a small portion of a large file.
For example, a user submits a request to the system to retrieve an old email stored in a secondary copy on removable media. The system identifies a portion of a .pst file associated with the user that contains a list of old emails, and retrieves the list. That is, the system has knowledge of the chunk that includes the list (e.g., a chunking component may always include the list in a first chunk of a data object), accesses the chunk, and retrieves the list. The other portions (e.g., all the emails with the .pst file), are not retrieved from media. The user selects the desired email from the list. The system, via an index that associates chunks with data (such as an index similar to Table 2), identifies the chunk that contains the email, and retrieves the chunk for presentation to the user. The index may include information about the chunks, information about the data objects (such as file formats, database schemas, application specific information, and so on).
Thus, the system is able to restore the email without restoring the entire mailbox (.pst file) associated with the user. That is, although an entire data object is in storage, the system is able to retrieve a portion of the entire data object by leveraging the processes described herein.
Conclusion
From the foregoing, it will be appreciated that specific examples of the data recovery system have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the system. For example, although files have been described, other types of content such as user settings, application data, emails, and other data objects can be imaged by snapshots. Accordingly, the system is not limited except as by the appended claims.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” The word “coupled”, as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
The above detailed description of embodiments of the system is not intended to be exhaustive or to limit the system to the precise form disclosed above. While specific embodiments of, and examples for, the system are described above for illustrative purposes, various equivalent modifications are possible within the scope of the system, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times.
The teachings of the system provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.
These and other changes can be made to the system in light of the above Detailed Description. While the above description details certain embodiments of the system and describes the best mode contemplated, no matter how detailed the above appears in text, the system can be practiced in many ways. Details of the system may vary considerably in implementation details, while still being encompassed by the system disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the system should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the system with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the system to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the system encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the system under the claims.
While certain aspects of the system are presented below in certain claim forms, the applicant contemplates the various aspects of the system in any number of claim forms. For example, while only one aspect of the system is recited as a means-plus-function claim under 35 U.S.C sec. 112, sixth paragraph, other aspects may likewise be embodied as a means-plus-function claim, or in other forms, such as being embodied in a computer-readable medium. (Any claims intended to be treated under 35 U.S.C. § 112, ¶6 will begin with the words “means for”.) Accordingly, the applicant reserves the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the system.
This application is a continuation of U.S. patent application Ser. No. 14/553,199, filed Sep. 3, 2009, entitled TRANSFERRING OR MIGRATING PORTIONS OF DATA OBJECTS, SUCH AS BLOCK-LEVEL DATA MIGRATION OR CHUNK-BASED DATA MIGRATION, which claims priority to U.S. Patent Application No. 61/096,587, filed on Sep. 12, 2008, entitled TRANSFERRING OR MIGRATING PORTIONS OF DATA OBJECTS, SUCH AS BLOCK-LEVEL DATA MIGRATION OR CHUNK-BASED DATA MIGRATION, each of which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4464122 | Fuller et al. | Aug 1984 | A |
4686620 | Ng | Aug 1987 | A |
4995035 | Cole et al. | Feb 1991 | A |
5005122 | Griffin et al. | Apr 1991 | A |
5093912 | Dong et al. | Mar 1992 | A |
5133065 | Cheffetz et al. | Jul 1992 | A |
5193154 | Kitajima et al. | Mar 1993 | A |
5212772 | Masters | May 1993 | A |
5212784 | Sparks | May 1993 | A |
5226157 | Nakano et al. | Jul 1993 | A |
5239647 | Anglin et al. | Aug 1993 | A |
5241668 | Eastridge et al. | Aug 1993 | A |
5241670 | Eastridge et al. | Aug 1993 | A |
5276860 | Fortier et al. | Jan 1994 | A |
5276867 | Kenley et al. | Jan 1994 | A |
5287500 | Stoppani, Jr. | Feb 1994 | A |
5321816 | Rogan et al. | Jun 1994 | A |
5333315 | Saether et al. | Jul 1994 | A |
5347653 | Flynn et al. | Sep 1994 | A |
5386545 | Gombos, Jr. et al. | Jan 1995 | A |
5410700 | Fecteau et al. | Apr 1995 | A |
5448718 | Cohn et al. | Sep 1995 | A |
5448724 | Hayashi | Sep 1995 | A |
5485606 | Midgdey et al. | Jan 1996 | A |
5491810 | Allen | Feb 1996 | A |
5495607 | Pisello et al. | Feb 1996 | A |
5504873 | Martin et al. | Apr 1996 | A |
5517405 | McAndrew et al. | May 1996 | A |
5537568 | Yanai et al. | Jul 1996 | A |
5544345 | Carpenter et al. | Aug 1996 | A |
5544347 | Yanai et al. | Aug 1996 | A |
5555371 | Duyanovich et al. | Sep 1996 | A |
5559957 | Balk | Sep 1996 | A |
5564037 | Lam | Oct 1996 | A |
5608865 | Midgely et al. | Mar 1997 | A |
5613134 | Lucus et al. | Mar 1997 | A |
5619644 | Crockett et al. | Apr 1997 | A |
5634052 | Morris | May 1997 | A |
5638509 | Dunphy et al. | Jun 1997 | A |
5659614 | Bailey, III | Aug 1997 | A |
5666501 | Jones et al. | Sep 1997 | A |
5673381 | Huai et al. | Sep 1997 | A |
5673382 | Cannon et al. | Sep 1997 | A |
5699361 | Ding et al. | Dec 1997 | A |
5729743 | Squibb | Mar 1998 | A |
5740405 | DeGraaf | Apr 1998 | A |
5751997 | Kullick et al. | May 1998 | A |
5758359 | Saxon | May 1998 | A |
5758649 | Iwashita et al. | Jun 1998 | A |
5761677 | Senator et al. | Jun 1998 | A |
5764972 | Crouse et al. | Jun 1998 | A |
5778165 | Saxon | Jul 1998 | A |
5778395 | Whiting et al. | Jul 1998 | A |
5812398 | Nielsen | Sep 1998 | A |
5813009 | Johnson et al. | Sep 1998 | A |
5813017 | Morris | Sep 1998 | A |
5860073 | Ferrel et al. | Jan 1999 | A |
5864846 | Voorhees et al. | Jan 1999 | A |
5875478 | Blumenau | Feb 1999 | A |
5887134 | Ebrahim | Mar 1999 | A |
5896531 | Curtis et al. | Apr 1999 | A |
5901327 | Ofek | May 1999 | A |
5924102 | Perks | Jul 1999 | A |
5950205 | Aviani, Jr. | Sep 1999 | A |
5974563 | Beeler, Jr. | Oct 1999 | A |
5983239 | Cannon | Nov 1999 | A |
5991753 | Wilde | Nov 1999 | A |
6012053 | Pant et al. | Jan 2000 | A |
6021415 | Cannon et al. | Feb 2000 | A |
6026414 | Anglin | Feb 2000 | A |
6052735 | Ulrich et al. | Apr 2000 | A |
6064821 | Shough et al. | May 2000 | A |
6073128 | Pongracz et al. | Jun 2000 | A |
6076148 | Kedem | Jun 2000 | A |
6091518 | Anabuki et al. | Jul 2000 | A |
6094416 | Ying | Jul 2000 | A |
6131095 | Low et al. | Oct 2000 | A |
6131190 | Sidwell | Oct 2000 | A |
6148412 | Cannon et al. | Nov 2000 | A |
6154787 | Urevig et al. | Nov 2000 | A |
6161111 | Mutalik et al. | Dec 2000 | A |
6167402 | Yeager | Dec 2000 | A |
6182198 | Hubis et al. | Jan 2001 | B1 |
6212512 | Barney et al. | Apr 2001 | B1 |
6226759 | Miller et al. | May 2001 | B1 |
6239800 | Mayhew et al. | May 2001 | B1 |
6253217 | Dourish et al. | Jun 2001 | B1 |
6260069 | Anglin | Jul 2001 | B1 |
6266679 | Szalwinski et al. | Jul 2001 | B1 |
6266784 | Hsiao et al. | Jul 2001 | B1 |
6269431 | Dunham | Jul 2001 | B1 |
6275953 | Vahalia et al. | Aug 2001 | B1 |
6298439 | Beglin | Oct 2001 | B1 |
6301592 | Aoyama et al. | Oct 2001 | B1 |
6308175 | Lang et al. | Oct 2001 | B1 |
6324581 | Xu et al. | Nov 2001 | B1 |
6327590 | Chidlovskii et al. | Dec 2001 | B1 |
6327612 | Watanabe et al. | Dec 2001 | B1 |
6328766 | Long | Dec 2001 | B1 |
6330570 | Crighton | Dec 2001 | B1 |
6330642 | Carteau | Dec 2001 | B1 |
6341287 | Sziklai | Jan 2002 | B1 |
6343287 | Kumar et al. | Jan 2002 | B1 |
6343324 | Hubis et al. | Jan 2002 | B1 |
6345288 | Reed et al. | Feb 2002 | B1 |
RE37601 | Eastridge et al. | Mar 2002 | E |
6356801 | Goodman et al. | Mar 2002 | B1 |
6363462 | Bergsten | Mar 2002 | B1 |
6367073 | Elledge | Apr 2002 | B2 |
6374363 | Wu et al. | Apr 2002 | B1 |
6389432 | Pothapragada et al. | May 2002 | B1 |
6418478 | Ignatius et al. | Jul 2002 | B1 |
6421678 | Smiga et al. | Jul 2002 | B2 |
6421711 | Blumenau et al. | Jul 2002 | B1 |
6442706 | Wahl et al. | Aug 2002 | B1 |
6470332 | Weschler | Oct 2002 | B1 |
6484162 | Edlund et al. | Nov 2002 | B1 |
6487561 | Ofek et al. | Nov 2002 | B1 |
6487644 | Huebsch et al. | Nov 2002 | B1 |
6502205 | Yanai et al. | Dec 2002 | B1 |
6519679 | Devireddy et al. | Feb 2003 | B2 |
6538669 | Lagueux, Jr. et al. | Mar 2003 | B1 |
6540623 | Jackson | Apr 2003 | B2 |
6549918 | Probert, Jr. et al. | Apr 2003 | B1 |
6557039 | Leong et al. | Apr 2003 | B1 |
6564228 | O'Connor | May 2003 | B1 |
6593656 | Ahn et al. | Jul 2003 | B2 |
6618771 | Leja et al. | Sep 2003 | B1 |
6629110 | Cane et al. | Sep 2003 | B2 |
6647399 | Zaremba | Nov 2003 | B2 |
6658526 | Nguyen et al. | Dec 2003 | B2 |
6662218 | Mighdoll et al. | Dec 2003 | B2 |
6675177 | Webb | Jan 2004 | B1 |
6691232 | Wood et al. | Feb 2004 | B1 |
6721767 | De Meno et al. | Apr 2004 | B2 |
6732088 | Glance | May 2004 | B1 |
6732231 | Don et al. | May 2004 | B1 |
6732244 | Ashton et al. | May 2004 | B2 |
6745178 | Goldring | Jun 2004 | B1 |
6795828 | Ricketts | Sep 2004 | B2 |
6816941 | Carlson et al. | Nov 2004 | B1 |
6820070 | Goldman et al. | Nov 2004 | B2 |
6839741 | Tsai | Jan 2005 | B1 |
6839803 | Loh et al. | Jan 2005 | B1 |
6850994 | Gabryjelski | Feb 2005 | B2 |
6860422 | Hull et al. | Mar 2005 | B2 |
6865568 | Chau | Mar 2005 | B2 |
6871182 | Winnard et al. | Mar 2005 | B1 |
6892221 | Ricart et al. | May 2005 | B2 |
6948038 | Berkowitz et al. | Sep 2005 | B2 |
6948039 | Biessener et al. | Sep 2005 | B2 |
6957186 | Guheen et al. | Oct 2005 | B1 |
6970997 | Shibayama et al. | Nov 2005 | B2 |
6976039 | Chefalas et al. | Dec 2005 | B2 |
6995675 | Curkendall et al. | Feb 2006 | B2 |
6996616 | Leighton et al. | Feb 2006 | B1 |
7003641 | Prahlad et al. | Feb 2006 | B2 |
7028079 | Mastrianni et al. | Apr 2006 | B2 |
7035880 | Crescenti et al. | Apr 2006 | B1 |
7039860 | Gautestad et al. | May 2006 | B1 |
7054960 | Bezbaruah | May 2006 | B1 |
7058661 | Ciaramitaro et al. | Jun 2006 | B2 |
7099901 | Sutoh et al. | Aug 2006 | B2 |
7107298 | Prahlad et al. | Sep 2006 | B2 |
7107416 | Stuart et al. | Sep 2006 | B2 |
7133870 | Tripp et al. | Nov 2006 | B1 |
7139826 | Watanabe et al. | Nov 2006 | B2 |
7139846 | Rossi | Nov 2006 | B1 |
7146387 | Russo et al. | Dec 2006 | B1 |
7155421 | Haldar | Dec 2006 | B1 |
7155481 | Prahlad et al. | Dec 2006 | B2 |
7159081 | Suzuki | Jan 2007 | B2 |
7171468 | Yeung et al. | Jan 2007 | B2 |
7171585 | Gail et al. | Jan 2007 | B2 |
7185152 | Takahashi et al. | Feb 2007 | B2 |
7188141 | Novaes | Mar 2007 | B2 |
7240100 | Wein et al. | Jul 2007 | B1 |
7246207 | Kottomtharayil et al. | Jul 2007 | B2 |
7269664 | Hutsch et al. | Sep 2007 | B2 |
7284033 | Jhanji | Oct 2007 | B2 |
7287047 | Kavuri | Oct 2007 | B2 |
7290017 | Wang et al. | Oct 2007 | B1 |
7313659 | Suzuki | Dec 2007 | B2 |
7315923 | Retnamma et al. | Jan 2008 | B2 |
7328325 | Solis et al. | Feb 2008 | B1 |
7343453 | Prahlad et al. | Mar 2008 | B2 |
7346623 | Prahlad et al. | Mar 2008 | B2 |
7346676 | Swildens et al. | Mar 2008 | B1 |
7346751 | Prahlad et al. | Mar 2008 | B2 |
7376947 | Evers | May 2008 | B2 |
7379978 | Anderson et al. | May 2008 | B2 |
7383379 | Patterson et al. | Jun 2008 | B2 |
7386535 | Kalucha et al. | Jun 2008 | B1 |
7395282 | Crescenti et al. | Jul 2008 | B1 |
7421460 | Chigusa et al. | Sep 2008 | B2 |
7424543 | Rice, III | Sep 2008 | B2 |
7434219 | De Meno et al. | Oct 2008 | B2 |
7457790 | Kochunni et al. | Nov 2008 | B2 |
7472142 | Prahlad et al. | Dec 2008 | B2 |
7496841 | Hadfield et al. | Feb 2009 | B2 |
7529782 | Prahlad et al. | May 2009 | B2 |
7565484 | Ghosal et al. | Jul 2009 | B2 |
7577689 | Masinter et al. | Aug 2009 | B1 |
7577694 | Nakano et al. | Aug 2009 | B2 |
7584469 | Mitekura et al. | Sep 2009 | B2 |
7587715 | Barrett et al. | Sep 2009 | B1 |
7593935 | Sullivan | Sep 2009 | B2 |
7596713 | Mani-Meitav et al. | Sep 2009 | B2 |
7603626 | Williams et al. | Oct 2009 | B2 |
7606844 | Kottomtharayil | Oct 2009 | B2 |
7610285 | Zoellner et al. | Oct 2009 | B1 |
7617262 | Prahlad et al. | Nov 2009 | B2 |
7668884 | Prahlad et al. | Feb 2010 | B2 |
7673175 | Mora et al. | Mar 2010 | B2 |
7676542 | Moser et al. | Mar 2010 | B2 |
7689899 | Leymaster et al. | Mar 2010 | B2 |
7730031 | Forster | Jun 2010 | B2 |
7734593 | Prahlad et al. | Jun 2010 | B2 |
7734669 | Kottomtharayil et al. | Jun 2010 | B2 |
7747579 | Prahlad et al. | Jun 2010 | B2 |
7751628 | Reisman | Jul 2010 | B1 |
7761409 | Stefik et al. | Jul 2010 | B2 |
7792789 | Prahlad et al. | Sep 2010 | B2 |
7801871 | Gosnell | Sep 2010 | B2 |
7814118 | Kottomtharayil et al. | Oct 2010 | B2 |
7827266 | Gupta | Nov 2010 | B2 |
7831793 | Chakravarty et al. | Nov 2010 | B2 |
7840537 | Gokhale et al. | Nov 2010 | B2 |
7844676 | Prahlad et al. | Nov 2010 | B2 |
7865517 | Prahlad et al. | Jan 2011 | B2 |
7882077 | Gokhale et al. | Feb 2011 | B2 |
7882093 | Kottomtharayil et al. | Feb 2011 | B2 |
7882097 | Ogilvie | Feb 2011 | B1 |
7937393 | Prahlad et al. | May 2011 | B2 |
7937420 | Tabellion et al. | May 2011 | B2 |
7937702 | De Meno et al. | May 2011 | B2 |
7984063 | Kottomtharayil et al. | Jul 2011 | B2 |
8037028 | Prahlad et al. | Oct 2011 | B2 |
8055627 | Prahlad et al. | Nov 2011 | B2 |
8060514 | Arrouye et al. | Nov 2011 | B2 |
8078607 | Oztekin et al. | Dec 2011 | B2 |
8099428 | Kottomtharayil et al. | Jan 2012 | B2 |
8108427 | Prahlad et al. | Jan 2012 | B2 |
8117173 | Gurevich | Feb 2012 | B2 |
8140786 | Bunte et al. | Mar 2012 | B2 |
8156086 | Lu et al. | Apr 2012 | B2 |
8161003 | Kavuri | Apr 2012 | B2 |
8170995 | Prahlad et al. | May 2012 | B2 |
8219524 | Gokhale | Jul 2012 | B2 |
8229954 | Kottomtharayil et al. | Jul 2012 | B2 |
8230195 | Amarendran et al. | Jul 2012 | B2 |
RE43678 | Major et al. | Sep 2012 | E |
8285681 | Prahlad et al. | Oct 2012 | B2 |
8352954 | Gokhale et al. | Jan 2013 | B2 |
8364652 | Vijayan et al. | Jan 2013 | B2 |
8578120 | Attarde et al. | Nov 2013 | B2 |
20020032878 | Karpf | Mar 2002 | A1 |
20020049883 | Schneider et al. | Apr 2002 | A1 |
20020120858 | Porter et al. | Aug 2002 | A1 |
20030046313 | Leung et al. | Mar 2003 | A1 |
20030050979 | Takahashi | Mar 2003 | A1 |
20030101086 | San Miguel | May 2003 | A1 |
20040039689 | Penney et al. | Feb 2004 | A1 |
20040220980 | Forster | Nov 2004 | A1 |
20040267815 | De Mes | Dec 2004 | A1 |
20050039069 | Prahlad et al. | Feb 2005 | A1 |
20050091346 | Krishnaswami | Apr 2005 | A1 |
20050097070 | Enis et al. | May 2005 | A1 |
20050251786 | Citron et al. | Nov 2005 | A1 |
20050278207 | Ronnewinkel | Dec 2005 | A1 |
20060036619 | Fuerst et al. | Feb 2006 | A1 |
20060070061 | Cox et al. | Mar 2006 | A1 |
20060115802 | Reynolds | Jun 2006 | A1 |
20060116999 | Dettinger et al. | Jun 2006 | A1 |
20060149604 | Miller | Jul 2006 | A1 |
20060149724 | Ritter et al. | Jul 2006 | A1 |
20060224846 | Amarendran et al. | Oct 2006 | A1 |
20060265396 | Raman et al. | Nov 2006 | A1 |
20060282900 | Johnson et al. | Dec 2006 | A1 |
20070022145 | Kavuri | Jan 2007 | A1 |
20070028229 | Knatcher | Feb 2007 | A1 |
20070043715 | Kaushik et al. | Feb 2007 | A1 |
20070061266 | Moore et al. | Mar 2007 | A1 |
20070061298 | Wilson et al. | Mar 2007 | A1 |
20070136541 | Herz et al. | Jun 2007 | A1 |
20070156783 | Zbogar-Smith et al. | Jul 2007 | A1 |
20070166674 | Kochunni et al. | Jul 2007 | A1 |
20070185915 | Prahlad et al. | Aug 2007 | A1 |
20070208788 | Chakravarty | Sep 2007 | A1 |
20070214330 | Minami | Sep 2007 | A1 |
20070226320 | Hager et al. | Sep 2007 | A1 |
20070250810 | Tittizer et al. | Oct 2007 | A1 |
20070296258 | Calvert et al. | Dec 2007 | A1 |
20080126302 | Mora et al. | May 2008 | A1 |
20080282048 | Miura | Nov 2008 | A1 |
20080288947 | Gokhale et al. | Nov 2008 | A1 |
20080288948 | Attarde et al. | Nov 2008 | A1 |
20080320319 | Muller et al. | Dec 2008 | A1 |
20090171883 | Kochunni et al. | Jul 2009 | A1 |
20090319534 | Gokhale | Dec 2009 | A1 |
20090320029 | Kottomtharayil | Dec 2009 | A1 |
20090320033 | Gokhale et al. | Dec 2009 | A1 |
20100005259 | Prahlad | Jan 2010 | A1 |
20100031017 | Gokhale et al. | Feb 2010 | A1 |
20100070466 | Prahlad et al. | Mar 2010 | A1 |
20100070474 | Lad | Mar 2010 | A1 |
20100070725 | Prahlad et al. | Mar 2010 | A1 |
20100070726 | Ngo et al. | Mar 2010 | A1 |
20100076932 | Lad | Mar 2010 | A1 |
20100114837 | Prahlad et al. | May 2010 | A1 |
20100332456 | Prahlad et al. | Dec 2010 | A1 |
20110093471 | Brockway et al. | Apr 2011 | A1 |
20110138225 | Gunabalasubramaniam et al. | Jun 2011 | A1 |
20110173171 | De Meno et al. | Jul 2011 | A1 |
20120036108 | Prahlad et al. | Feb 2012 | A1 |
20120150818 | Vijayan Retnamma et al. | Jun 2012 | A1 |
20120150826 | Vijayan Retnamma et al. | Jun 2012 | A1 |
20120254119 | Kumarasamy et al. | Oct 2012 | A1 |
20120265754 | Kottomtharayil et al. | Oct 2012 | A1 |
20120317085 | Green et al. | Dec 2012 | A1 |
20130145376 | Gokhale et al. | Jun 2013 | A1 |
20130262410 | Liu et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
0259912 | Mar 1988 | EP |
0405926 | Jan 1991 | EP |
0467546 | Jan 1992 | EP |
0774715 | May 1997 | EP |
0809184 | Nov 1997 | EP |
0899662 | Mar 1999 | EP |
0910019 | Apr 1999 | EP |
0981090 | Feb 2000 | EP |
0986011 | Mar 2000 | EP |
1035690 | Sep 2000 | EP |
2216368 | Oct 1989 | GB |
07-046271 | Feb 1995 | JP |
7073080 | Mar 1995 | JP |
8044598 | Feb 1996 | JP |
2000035969 | Feb 2000 | JP |
2003531435 | Oct 2003 | JP |
WO-9513580 | May 1995 | WO |
WO-9912098 | Mar 1999 | WO |
WO-0058865 | Oct 2000 | WO |
WO-0106368 | Jan 2001 | WO |
WO-0116693 | Mar 2001 | WO |
WO-0180005 | Oct 2001 | WO |
Entry |
---|
Hirofuchi, Takahiro, et al. “A live storage migration mechanism over wan for relocatable virtual machine services on clouds.” Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid. IEEE Computer Society, 2009. |
Cao, Lin, et al. “Hybrid caching for cloud storage to support traditional application.” 2012 IEEE Asia Pacific Cloud Computing Congress (APCloudCC). IEEE, 2012. |
U.S. Appl. No. 09/609,977, Prahlad. |
Microsoft Press Computer Dictionary Third Edition, “Data Compression,” Microsoft Press, 1997, p. 130. |
Hennessy et al., “Computer Architecture—A Quantitative Approach”, 2nd Edition, 1996, pp. 246-250. |
Veeravalli, B., “Network Caching Strategies for a Shared Data Distribution for a Predefined Service Demand Sequence,” IEEE Transactions on Knowledge and Data Engineering, vol. 15, No. 6, Nov./Dec. 2003, pp. 1487-1497. |
Armstead et al., “Implementation of a Campwide Distributed Mass Storage Service: The Dream vs. Reality,” IEEE, Sep. 11-14, 1995, pp. 190-199. |
Arneson, “Mass Storage Archiving in Network Environments,” Digest of Papers, Ninth IEEE Symposium on Mass Storage Systems, Oct. 31, 1988-Nov. 3, 1988, pp. 45-50, Monterey, CA. |
Cabrera et al., “ADSM: A Multi-Platform, Scalable, Backup and Archive Mass Storage System,” Digest of Papers, Compcon '95, Proceedings of the 40th IEEE Computer Society International Conference, Mar. 5, 1995-Mar. 9, 1995, pp. 420-427, San Francisco, CA. |
Eitel, “Backup and Storage Management in Distributed Heterogeneous Environments,” IEEE, Jun. 12-16, 1994, pp. 124-126. |
Jander, M., “Launching Storage-Area Net,” Data Communications, US, McGraw Hill, NY, vol. 27, No. 4 (Mar. 21, 1998), pp. 64-72. |
Gait, J., “The Optical File Cabinet: A Random-Access File System for Write-Once Optical Disks,” IEEE Computer, vol. 21, No. 6, pp. 11-22 (Jun. 1988). |
Rosenblum et al., “The Design and Implementation of a Log-Structured File System,” Operating Systems Review SIGOPS, vol. 25, No. 5, New York, US, pp. 1-15 (May 1991). |
Hutchinson, Norman C., et al. “Logical vs. physical file system backup.” OSDI. vol. 99. 1999. |
Matthews, Jeanna, et al. “Data protection and rapid recovery from attack with a virtual private file server and virtual machine appliances.” Proceedings of the IASTED International Conference on Communication, Network and Information Security (CNIS 2005). 2005. |
Wu, Chin-Hsien, Tei-Wei Kuo, and Li-Pin Chang. “Efficient initialization and crash recovery for log-based file systems over flash memory.” Proceedings of the 2006 ACM symposium on Applied computing. ACM, 2006. |
Extended European Search Report for Application No. EP 09767119, dated Feb. 11, 2013, 12 pages. |
PCT International Search Report for International Application No. PCT/US09/32325, dated Mar. 17, 2009, 11 pages. |
Pitoura et al., “Locating Objects in Mobile Computing”, IEEE Transactions on Knowledge and Data Engineering, vol. 13, No. 4, Jul./Aug. 2001, pp. 571-592. |
Rowe et al., “Indexes for User Access to Large Video Databases”, Storage and Retrieval for Image and Video Databases II, IS,& T/SPIE Symp. on Elec. Imaging Sci. & Tech., Feb. 1994, pp. 1-12. |
“Multi Instancing,” retrieved from http://documentation.commvault.com/hds/release_8_0_0/books_online_1/english_us/deployment/install/misc/multi_instancing.htm[Feb. 18, 2014 11:57:19 AM] on Feb. 18, 2014, 3 pages. |
Hutchinson, Norman C., et al. “Logical vs. physical file system backup.” OSDI. vol. 99. 1999, 12 pages. |
Matthews, Jeanna, et al. “Data protection and rapid recovery from attack with a virtual private file server and virtual machine appliances.” Proceedings of the IASTED International Conference on Communication, Network and Information Security (CNIS 2005). 2005, 14 pages. |
Quinlan, Sean. “A cached worm file system.” Software: Practice and Experience 21.12 (1991 ): 1289-1299. |
Wu, Chin-Hsien, Tei-Wei Kuo, and Li-Pin Chang. “Efficient initialization and crash recovery for log-based file systems over flash memory.” Proceedings of the 2006 ACM symposium on Applied computing. ACM, 2006, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20140108470 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
61096587 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12553199 | Sep 2009 | US |
Child | 14132458 | US |