User interface (“UI”) features of electronic gaming devices are described herein, along with features of backend processing to implement the UI features. For example, electronic gaming machines (“EGMs”) selectively transfer target symbols between windows and/or selectively start a supplemental feature in windows based at least in part on a count of target symbols.
EGMs provide a variety of wagering games such as slot games, video poker games, video blackjack games, roulette games, video bingo games, keno games and other types of games, which are frequently offered at casinos and other locations for use by players. Play on an EGM typically involves a player establishing a credit balance by inputting money, or another form of monetary credit, and placing a wager (from the credit balance) on one or more outcomes of an instance (or single play) of a primary or base game. In some cases, a player may qualify for a special mode of the base game, a secondary game, or a bonus round of the base game by attaining a certain winning combination or triggering event in, or related to, the base game, or after the player is randomly awarded the special mode, secondary game, or bonus round. In the special mode, secondary game, or bonus round, the player is given an opportunity to win extra game credits, game tokens or other forms of payout. In the case of “game credits” that are awarded during play, the game credits are typically added to a credit meter total on the EGM and can be provided to the player upon completion of a gaming session or when the player wants to “cash out.”
A “slot” type game is often presented to a player in the form of various symbols arrayed in a row-by-column grid (matrix). Specific matching combinations of symbols along predetermined paths (or “pay lines”) through the matrix indicate the outcome of the game. The display typically highlights winning combinations/outcomes for ready identification by the player. Matching combinations and their corresponding awards are usually shown in a “pay table,” which is available to the player for reference. Often, the player may vary his/her wager to include differing numbers of pay lines and/or the amount bet on each line. By varying the wager, the player may sometimes alter the frequency or number of winning combinations, frequency or number of secondary games, and/or the amount awarded.
Typically, a game uses a random number generator (“RNG”) to randomly determine the outcome of the game. A game is designed to return a certain percentage of the amount wagered back to a player over the course of many plays or instances of the game, which is generally referred to as return to player (“RTP”). The RTP and randomness of the RNG ensure the fairness of games and are highly regulated. For example, upon initiation of play, an RNG may randomly determine a game outcome, and symbols are selected which correspond to that outcome. Notably, some games may include an element of skill on the part of the player and are therefore not entirely random.
EGMs depend on usability to enhance the user experience and extend player time on the EGMs. Although previous EGMs include various UI features, and backend operations associated with the UI features, that improve usability and enhance the user experience, there is room for further improvement to EGMs.
In summary, the detailed description presents innovations in user interface (“UI”) features of electronic gaming devices, as well as innovations in features of backend processing to implement the UI features. For example, the detailed description presents processes for electronic gaming machines (“EGMs”) that selectively transfer target symbols between multiple windows, which can be shown on one display screen of an EGM or be split among multiple display screens of the EGM. Each of the windows uses a set of reels, which spin in the respective windows. When at least a threshold count of target symbols lands for a reel in a window, a stack of one or more target symbols is transferred to a corresponding reel in each of one or more other windows. In some example implementations, after the target symbols are transferred, a bonus feature, special mode, or other supplemental feature can be triggered based at least in part on the counts of target symbols in the respective windows. In addition, the target symbols can add credits or other awards in the supplemental feature. As another example, the detailed description presents processes for EGMs that selectively start a bonus feature, special mode, or other supplemental feature in multiple windows based at least in part on a count of target symbols in the windows, collectively. In some example implementations, the innovations improve usability of the EGMs by enhancing the user experience for players, extending player time on the EGMs, and maintaining the interest of current players in the EGMs.
For example, according to a first set of innovations described herein, a computer system is configured to perform UI-focused operations to control the UI of an electronic gaming device. The UI-focused operations include, in each of multiple windows of the electronic gaming device, spinning a set of reels. The operations further include selectively transferring target symbols between at least some of the windows. In particular, a stack of target symbol(s) is transferred from a focus window (among the windows) to each of one or more other windows (among the windows) when at least a first threshold count of target symbols lands for one or more of the reels within the focus window. The operations further include selectively performing operations of a supplemental feature (such as a bonus feature or special mode) for any of the windows that encloses a second threshold count of target symbols (including any transferred target symbols) in the window. Finally, the operations include outputting an indication of an outcome, if any, of the supplemental feature for the any of the windows that encloses the second threshold count of target symbols. Transferring target symbols between windows in this way provides a way to achieve a target level of game volatility while maintaining a designated level of return to player (“RTP”) for a game.
As another example, according to a second set of innovations described herein, a computer system is configured to perform backend operations to control the UI of an electronic gaming device. The backend operations include managing transfer of target symbols between multiple windows, which have sets of reels. The operations also include determining symbol stop positions for at least some of the reels and determining whether to transfer target symbols between at least some of the windows. In particular, the operations include determining whether to transfer a stack of target symbol(s) from a focus window (among the windows) to each of one or more other windows (among the windows) based at least in part on whether at least a first threshold count of target symbols lands for one or more of the reels within the focus window. The operations further include, for each of the windows, determining whether to perform operations of a supplemental feature (such as a bonus feature or special mode), including determining whether the window encloses a second threshold count of target symbols (including any transferred target symbols) in the window. Finally, the operations include determining an outcome, if any, of the supplemental feature for any of the windows that encloses the second threshold count of target symbols. By transferring target symbols between windows, game play can be kept fair and consistent with regulations while also providing variety that achieves a target level of game volatility for a designated level of RTP for a game.
As another example, according to a third set of innovations described herein, a computer system is configured to perform UI-focused operations to control the UI of an electronic gaming device. The UI-focused operations include, in each of multiple windows of the electronic gaming device, spinning a set of reels. The operations further include selectively transferring target symbols between at least some of the windows. In particular, a stack of target symbol(s) is transferred from a focus window (among the windows) to each of one or more other windows (among the windows) when at least a threshold count of target symbols lands for one or more of the reels within the focus window. For at least some of the windows, there can be different likelihoods of at least the threshold count of target symbols landing (e.g., set according to different lookup tables for symbol stop positions). Also, for at least some of the windows, there can be different distributions of values of target symbols in the sets of reels (e.g., set according to different lookup tables for target symbols). In this way, game volatility and RTP can be balanced between the windows. Finally, the operations include outputting an indication of an outcome that is based at least in part on counts of target symbols enclosed in the windows, respectively.
As another example, according to a fourth set of innovations described herein, a computer system is configured to perform backend operations to control the UI of an electronic gaming device. The backend operations include managing transfer of target symbols between multiple windows, which have sets of reels. For example, the managing can include, for at least some of the windows, setting different likelihoods of at least a threshold count of target symbols landing (e.g., using different lookup tables indicating symbol stop positions for the respective windows). As another example, the managing can include, for at least some of the windows, setting different distributions of values of target symbols in the sets of reels (e.g., using different lookup tables indicating target symbols for the respective windows). The operations further include determining symbol stop positions for at least some of the reels and determining whether to transfer target symbols between at least some of the windows. In particular, the operations include determining whether to transfer a stack of target symbol(s) from a focus window (among the windows) to each of one or more other windows (among the windows) based at least in part on whether at least a threshold count of target symbols lands for one or more of the reels within the focus window. Finally, the operations include determining an outcome based at least in part on counts of target symbols enclosed in the windows, respectively. By using different likelihoods of at least the threshold count of target symbols landing and/or using different distributions of values of target symbols in the sets of reels, game volatility and RTP can be balanced between the windows.
As another example, according to a fifth set of innovations described herein, a computer system is configured to perform UI-focused operations to control the UI of an electronic gaming device. The UI-focused operations include, in each of multiple windows of the electronic gaming device, spinning a set of reels. The operations further include selectively performing operations of a supplemental feature (such as a bonus feature or special mode) for all of the windows depending on whether the windows, collectively, enclose at least a threshold count of target symbols. In this way, even if a supplemental feature is not performed for an individual window (e.g., because a threshold count of target symbols is not reached for that individual window), a supplemental feature may be performed if the windows, collectively, enclose enough target symbols. This provides another way to achieve a target level of game volatility while maintaining a designated level of RTP for a game. Finally, the operations include outputting an indication of an outcome, if any, of the supplemental feature.
As another example, according to a sixth set of innovations described herein, a computer system is configured to perform backend operations to control the UI of an electronic gaming device. The backend operations include configuring sets of reels for multiple windows, respectively, of the electronic gaming device, then determining symbol stop positions for at least some of the reels. The operations further include determining whether to perform operations of a supplemental feature (such as a bonus feature or special mode) for all of the windows, including determining whether the windows, collectively, enclose at least a threshold count of target symbols. Finally, the operations include determining an outcome, if any, of the supplemental feature. Checking whether all windows, collectively, enclose at least a threshold count of target symbols provides another way to achieve a target level of game volatility while maintaining a designated level of RTP for a game.
The innovations can be implemented as part of a method, as part of an electronic gaming device such as an EGM or electronic gaming server configured to perform the method, or as part of non-transitory computer-readable media storing computer-executable instructions for causing one or more processors in a computer system to perform the method. The various innovations can be used in combination or separately. This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures and illustrates a number of examples. Examples may also be capable of other and different applications, and some details may be modified in various respects all without departing from the spirit and scope of the disclosed innovations.
The following drawings illustrate some features of the disclosed innovations. The drawings are not necessarily drawn to scale.
The detailed description presents innovations in user interface (“UI”) features of electronic gaming devices, as well as innovations in features of backend processing to implement the UI features. For example, an electronic gaming machine (“EGM”) can selectively transfer target symbols between multiple windows, which can be shown on one display screen of an EGM or be split among multiple display screens of the EGM. Each of the windows uses a set of reels, which spin in the respective windows. When at least a threshold count of target symbols lands for a reel in a window, a stack of one or more target symbols is transferred to a corresponding reel in each of one or more other windows. In some example implementations, after the target symbols are transferred, a bonus feature, special mode, or other supplemental feature can be triggered based at least in part on the counts of target symbols in the respective windows. In addition, the target symbols can add credits or other awards in the supplemental feature. Transferring target symbols between windows provides a way to achieve a desired game volatility (e.g., increase game volatility) while maintaining a designated level of RTP for a game. Furthermore, by managing the likelihood of at least a threshold count of target symbols landing in the respective windows, and by managing values of target symbols in the respective windows, game play can be kept fair and consistent with regulations while also enabling variation of game volatility for a designated level of RTP for a game.
As another example, an EGM can selectively start a supplemental feature (such as a bonus feature or special mode) in multiple windows based at least in part on a count of target symbols in the windows, collectively. When at least a threshold count of target symbols lands in the windows, collectively, the supplemental feature is performed. Checking whether windows, collectively, enclose at least a threshold count of target symbols provides another way to achieve a desired game volatility while maintaining a designated level of RTP for a game.
In the examples described herein, identical reference numbers in different figures indicate an identical component, module, or operation. More generally, various alternatives to the examples described herein are possible. For example, some of the methods described herein can be altered by changing the ordering of the method acts described, by splitting, repeating, or omitting certain method acts, etc. The various aspects of the disclosed technology can be used in combination or separately. Some of the innovations described herein address one or more of the problems noted in the background. Typically, a given technique/tool does not solve all such problems. It is to be understood that other examples may be utilized and that structural, logical, software, hardware, and electrical changes may be made without departing from the scope of the disclosure. The following description is, therefore, not to be taken in a limited sense.
The gaming devices 104A-104X may be EGMs such as slot machines, video poker machines, bingo machines, etc. The gaming devices 104A-104X may alternatively be portable and/or remote gaming devices such as, but not limited to, a smartphone, a tablet, a laptop, or a game console. Gaming devices 104A-104X utilize specialized software and/or hardware to form non-generic, particular machines or apparatuses that comply with regulatory requirements regarding devices used for wagering or games of chance that provide monetary awards.
Communication between the gaming devices 104A-104X and the server computers 102, and among the gaming devices 104A-104X, may be direct or indirect using one or more communication protocols. As an example, gaming devices 104A-104X and the server computers 102 can communicate over one or more communication networks, such as over the Internet through a website maintained by a computer on a remote server or over an online data network including commercial online service providers, Internet service providers, private networks (e.g., local area networks and enterprise networks), and the like (e.g., wide area networks). The communication networks could allow gaming devices 104A-104X to communicate with one another and/or the server computers 102 using a variety of communication-based technologies, such as radio frequency (“RF”) (e.g., wireless fidelity (WiFi®) and Bluetooth®), cable TV, satellite links and the like.
In some embodiments, server computers 102 may not be necessary and/or preferred. For example, in one or more embodiments, a stand-alone gaming device such as gaming device 104A, gaming device 104B or any of the other gaming devices 104C-104X can implement one or more aspects of the present disclosure. In this case, functions normally performed by a server computer or data normally stored on a server computer may instead be performed by or stored on a gaming device. The stand-alone gaming device may be in communication with one or more other gaming devices (but not a server computer). However, it is typical to find multiple EGMs connected to networks implemented with one or more of the different server computers 102 described herein.
A. Example Server Computers.
Server computers 102 can include one or more servers that combine to form a casino management system, which manages one or more gaming devices 104A-X. Each of the servers includes at least one processor, memory, and a network interface, which enables communication over one or more networks between the server computers 102 and the gaming devices 104A-X. In general, the casino management system is configured to receive gaming data from the gaming devices 104A-X as the gaming devices 104A-X conduct rounds of play of one or more wagering games.
As shown in
B. Example Gaming Devices.
Still referring to
Gaming device 104A is often of a cabinet construction which may be aligned in rows or banks of similar devices for placement and operation on a casino floor. The gaming device 104A often includes a main door which provides access to the interior of the cabinet 116. Gaming device 104A typically includes a button area or button deck 120 accessible by a player that is configured with input switches or buttons 122, an access channel for a bill validator 124, and/or an access channel for a ticket-out printer 126. The input switches or buttons 122, along with other input devices, provide at least part of a player interface through which a player controls operation of a game. For example, buttons 122 may be used to start play of a primary game or secondary game. Alternatively, instead of having separate buttons that can be actuated physically, one or more of the buttons 122 can be presented on a touchscreen.
In
In many configurations, the gaming machine 104A may have a main display 128 (e.g., video display monitor) mounted to, or above, the gaming display area 118. The main display 128 can be a high-resolution LCD, plasma, LED, or OLED panel which may be flat or curved as shown, a cathode ray tube (“CRT”), or other conventional electronically controlled video monitor. Alternatively, the main display 128 can be a touchscreen display. The main display 128 is an interface component used to play a game on the gaming device 104A.
In some embodiments, the bill validator 124 may also function as a “ticket-in” reader that allows the player to use a casino issued credit ticket to load credits onto the gaming device 104A (e.g., in a cashless ticket (TITO) system). In such cashless embodiments, the gaming device 104A may also include a “ticket-out” printer 126 for outputting a credit ticket when a “cash out” button is pressed. Cashless TITO systems are used to generate and track unique bar-codes or other indicators printed on tickets to allow players to avoid the use of bills and coins by loading credits using a ticket reader and cashing out credits using a ticket-out printer 126 on the gaming device 104A. The gaming machine 104A can have hardware meters for purposes including ensuring regulatory compliance and monitoring the player credit balance. In addition, there can be additional meters that record the total amount of money wagered on the gaming machine, total amount of money deposited, total amount of money withdrawn, total amount of winnings on gaming device 104A.
In some embodiments, a player tracking card reader 144, a transceiver for wireless communication with a mobile device (e.g., a player's smartphone), a keypad 146, and/or an illuminated display 148 for reading, receiving, entering, and/or displaying player tracking information is provided in EGM 104A. In such embodiments, a game controller within the gaming device 104A can communicate with the player tracking system server 110 to send and receive player tracking information.
Gaming device 104A may also include a bonus topper wheel 134. When bonus play is triggered (e.g., by a player achieving a particular outcome or set of outcomes in the primary game), bonus topper wheel 134 is operative to spin and stop with indicator arrow 136 indicating the outcome of the bonus game. Bonus topper wheel 134 is typically used to play a bonus game, but it could also be incorporated into play of the base or primary game.
A candle 138 may be mounted on the top of gaming device 104A and may be activated by a player (e.g., using a switch or one of buttons 122) to indicate to operations staff that gaming device 104A has experienced a malfunction or the player requires service. The candle 138 is also often used to indicate a jackpot has been won and to alert staff that a hand payout of an award may be needed.
There may also be one or more information panels 152, which may be a back-lit, silkscreened glass panel with lettering to indicate general game information including, for example, a game denomination (e.g., $0.25 or $1), pay lines, pay tables, and/or various game-related graphics. In some embodiments, the information panel(s) 152 may be implemented as an additional video display.
Gaming devices 104A have traditionally also included a handle 132 typically mounted to the side of main cabinet 116, which may be used to initiate game play. In general, a “handle pull” or “spin” of a game may refer to a single play at a gaming device, whether or not a handle is involved in the play, and whether or not a handle is even included in the gaming device. Thus, a play can be initiated by a press of a physical or virtual button, or via another activation mechanism.
Many or all the above described components can be controlled by circuitry (e.g., a gaming controller) housed inside the main cabinet 116 of the gaming device 104A, the details of which are shown in
An alternative example gaming device 104B illustrated in
Example gaming device 104B includes a main cabinet 116 including a main door which opens to provide access to the interior of the gaming device 104B. The main or service door is typically used by service personnel to refill the ticket-out printer 126 and collect bills and tickets inserted into the bill validator 124. The main or service door may also be accessed to reset the machine, verify and/or upgrade the software, and for general maintenance operations.
Another example gaming device 104C shown is the Helix™ model gaming device manufactured by Aristocrat® Technologies, Inc. Where possible, reference numerals identifying similar features of the embodiments of gaming devices 104A and 104B are used to identify corresponding features of gaming device 104C.
Gaming device 104C does not include physical reels and instead shows game play functions on main display 128A and a secondary display 128B. Gaming device 104C includes a main display 128A that is in a landscape orientation. The main display 128A or secondary display 128B can be a high-resolution LCD, plasma, LED, OLED, or SED panel, Although not illustrated by the front view provided, the landscape display 128A may have a curvature radius from top to bottom, or alternatively from side to side. In some embodiments, display 128A is a flat panel display. Alternatively, the main display 128A can be a touchscreen display. Main display 128A is typically used for primary game play while secondary display 128B is typically used for bonus game play, to show game features or attraction activities while the game is not in play or any other information or media desired by the game designer or operator. The secondary display 128B may be in a landscape orientation with curvature radius from top to bottom, or may be flat. In some embodiments, example gaming device 104C may also include speakers 142 to output various audio such as game sound, background music, etc.
Many different types of games, including mechanical slot games, video slot games, video poker, video black jack, video pachinko, keno, bingo, and lottery, may be provided with or implemented within the depicted gaming devices 104A-104C and other similar gaming devices. Each gaming device may also be operable to provide many different games. Games may be differentiated according to themes, sounds, graphics, type of game (e.g., slot game vs. card game vs. game with aspects of skill), denomination, number of paylines, maximum jackpot, progressive or non-progressive, bonus games, and may be deployed for operation in Class 2 or Class 3, etc.
C. Example Components of Gaming Device.
As shown in
The gaming device 200 includes several display screens, each coupled to and operable under the control of the game controller 202. A primary game display 240 acts as a main display 128, 128A as described with reference to
The games available for play on the gaming device 200 are controlled by a game controller 202. In general, the game controller 202 conducts a wagering game, generates gaming data (e.g., for wagers, game outcomes, payouts, player ratings, duration of play, and time between rounds of play), and, for each round of play of the wagering game, awards a payout or win amount according to a pay table. A base game can include a bonus game that the game controller 202 also conducts. In some example implementations, the game controller 202 processes game play instructions to perform operations as described in Section II and/or Section III. Alternatively, the game controller 202 can process game play instructions to perform other and/or additional operations.
The game controller 202 includes one or more processors 204. Processor 204 represents a general-purpose processor, a specialized processor intended to perform certain functional tasks, or a combination thereof. As an example, processor 204 can be a central processing unit (“CPU”) that has one or more multi-core processing units and memory mediums (e.g., cache memory) that function as buffers and/or temporary storage for data. Alternatively, processor 204 can be a specialized processor, such as an application specific integrated circuit (“ASIC”), graphics processing unit (“GPU”), field-programmable gate array (“FPGA”), digital signal processor (“DSP”), or another type of hardware accelerator. In another example, processor 204 is a system on chip (“SoC”) that combines and integrates one or more general-purpose processors and/or one or more specialized processors. Although
Memory 208 can store one or more game programs 206 that provide program instructions and/or data for carrying out various embodiments (e.g., game mechanics) described herein. Stated another way, game program 206 represents an executable program stored in any portion or component of memory 208. In one or more embodiments, game program 206 is embodied in the form of source code that includes human-readable statements written in a programming language or machine code that contains numerical instructions recognizable by a suitable execution system, such as a processor 204 in a game controller or other system. Examples of executable programs include: (1) a compiled program that can be translated into machine code in a format that can be loaded into a random access portion of memory 208 and run by processor 204; (2) source code that may be expressed in proper format such as object code that is capable of being loaded into a random access portion of memory 208 and executed by processor 204; and (3) source code that may be interpreted by another executable program to generate instructions in a random access portion of memory 208 to be executed by processor 204.
Alternatively, game programs 206 can be set up to generate one or more game instances based on instructions and/or data that gaming device 200 exchange with one or more remote gaming devices, such as a central determination gaming system server 106 (not shown in
When games are implemented in an online environment, at least a portion of the game software can be stored in a remote gaming server or in a cloud computing service. Game transactions such as adding money to the game (i.e., cash in) and withdrawing money from the game (i.e., cash out) are substituted by implementing electronic fund transfers. A player deposits money into his online gaming account via checks, debit cards, wire and the like. Once funded, the player can move a portion of the cash in his account into the game he wants to play. This process is referred to as account-based wagering. Account-based wagering is a convenient monetary transaction system for online and mobile wagering environments since the physical bill acceptor and ticket printer are not available. In addition to the accounting meters' separation, detection of the location where the wagering transaction take place is also performed in order to enforce local gaming regulations and properly calculate revenue, profit, and tax withholdings, for example. Thus, a remote gaming device can access a casino via a computer network and participate in a game of chance. The remote gaming device may be a PC, smartphone, or other computing device coupled to the Internet via a wired or wireless link (and, e.g., connecting to a casino management system via a virtual private network). The remote gaming device may be a terminal-based machine, where the actual game (including RNG and outcome determination) is hosted at a gaming server, with the terminal-based machine displaying results of the game via one or more display screens.
The game controller 202 can communicate over a network with one or more other gaming devices or other devices via a communication interface. The communication interface may operate as an input device (e.g., by receiving data from another device) and/or as an output device (e.g., by transmitting data to another device). The gaming device 200 can also include one or more communication ports that enable the game controller 202 to communicate with peripheral devices, external video sources, expansion buses, or display screens.
When a player wishes to play the gaming device 200, he/she can insert cash or a ticket voucher through a coin acceptor (not shown) or bill validator 234 to establish a credit balance on the gaming machine. The credit balance is used by the player to place wagers on instances of the game and to receive credit awards based on the outcome of winning instances. The credit balance is decreased by the amount of each wager and increased upon a win. The player can add additional credits to the balance at any time. The player may also optionally insert a loyalty club card into the card reader 230. During the game, the player views with one or more UIs, the game outcome on one or more of the primary game display 240 and secondary game display 242. Other game and prize information may also be displayed.
For each game instance, a player may make selections, which may affect play of the game. For example, the player may vary the total amount wagered by selecting the amount bet per line and the number of lines played. In many games, the player is asked to initiate or select options during course of game play (such as spinning a wheel to begin a bonus round or selecting various items during a bonus feature). The player may make these selections using the player-input buttons 236, the primary game display 240 which may be a touchscreen, or using some other device which enables a player to input information into the gaming device 200.
During certain game events, the gaming device 200 may display visual and auditory effects that can be perceived by the player. These effects add to the excitement of a game, which makes a player more likely to enjoy the playing experience. Auditory effects include various sounds that are projected by the speakers 220. Visual effects include flashing lights, strobing lights or other patterns displayed from lights on the gaming device 200 or from lights behind the information panel 152 (
When the player is done, he/she cashes out the credit balance (typically by pressing a cash out button to receive a ticket from the ticket printer 222). The ticket may be “cashed-in” for money or inserted into another machine to establish a credit balance for play.
Some embodiments described herein represent improvements in the technical area of EGM software and provide new technology, in that they improve usability of EGMs by enhancing the user experience for players, extending player time on the EGMs, and maintaining the interest of current players in the EGMs. In particular, the staging of operations may provide a build up to higher award amounts, which may occur as a reward to players for extended play on the gaming device 200. These embodiments are thus not merely new game rules or new display patterns.
Gaming devices such as gaming device 200 (as a generalized example of devices 104A-X) typically include special features and/or additional circuitry that differentiates them from general-purpose computers (e.g., desktop computers and laptops). Gaming devices, such as gaming device 200, are highly regulated to ensure fairness and, in many cases, gaming device 200 is operable to award monetary awards (e.g., typically dispensed in the form of a redeemable voucher). Therefore, to satisfy security and regulatory requirements in a gaming environment, hardware and software architectures are implemented in gaming devices 200 that differ significantly from those of general-purpose computers. Adapting general purpose computers to function as gaming devices 200 is not simple or straightforward because of: (1) the regulatory requirements for gaming devices 200, (2) the harsh environment in which gaming devices 200 operate, (3) security requirements, (4) fault tolerance requirements, and (5) the requirement for additional special purpose componentry enabling functionality of an EGM. These differences require substantial engineering effort with respect to game design implementation, game mechanics, hardware components, and software.
One regulatory requirement for games running on gaming device 200 generally involves complying with a certain level of randomness (e.g., that outcomes will be statistically independent, uniformly distributed over their range, unpredictable and pass statistical tests such as chi-square test, equi-distribution test, gap test, runs test, serial correlation test, etc.). Typically, gaming jurisdictions mandate that gaming devices 200 satisfy a minimum level of randomness without specifying how a gaming device 200 should achieve this level of randomness. To comply,
Another regulatory requirement for running games on gaming device 200 includes ensuring a certain level of RTP for a game. Similar to the randomness requirement discussed above, numerous gaming jurisdictions also mandate that gaming device 200 provides a minimum level of RTP (e.g., RTP of at least 75%).
A game can use one or more lookup tables (also called weighted tables) as part of a technical solution that satisfies regulatory requirements for randomness and RTP. In particular, a lookup table can integrate game features (e.g., trigger events for special modes or bonus games; newly introduced game elements such as extra reels, new symbols, or new cards; stop positions for dynamic game elements such as spinning reels, spinning wheels, or shifting reels; or card selections from a deck) with random numbers generated by one or more RNGs, so as to achieve a given level of volatility for a target level of RTP for a game. (In general, volatility refers to the frequency or probability of an event such as a special mode, payout, etc. For example, for a target level of RTP for a game, a higher-volatility game may have a lower payout most of the time with an occasional bonus having a very high payout, while a lower-volatility game has a steadier payout with more frequent bonuses of smaller amounts.) Configuring a lookup table can involve engineering decisions with respect to how RNG outcomes are mapped to game outcomes for a given game feature, while still satisfying regulatory requirements for RTP. Configuring a lookup table can also involve engineering decisions about whether different game features are combined in a given entry of the lookup table or split between different entries (for the respective game features), while still satisfying regulatory requirements for RTP and allowing for varying levels of game volatility.
As noted, gaming devices 200 are specially-configured computer systems and not merely general-purpose computers. For example, one difference between a gaming device 200 and common processor-based computer system is that gaming device 200 is designed to be a state-based system. In a state-based system, the system stores and maintains its current state in non-volatile memory, which can be implemented using battery-backed RAM, flash memory, a solid-state drive, or other persistent memory. Different functions of a game (e.g., bet, play, result, points in the graphical presentation, etc.) may be defined as a state. When a game moves from one state to another, data regarding the game state is stored in a custom non-volatile memory subsystem. In some cases, the gaming device 200 does not advance from a current state to a subsequent state until information that allows the current state to be reconstructed is stored. In the event of a power failure or other malfunction, the gaming device 200 will return to its current state when the power is restored by recovering state information from non-volatile memory. The restored state may include metering information and graphical information that was displayed on the gaming device 200 in the state prior to the malfunction. For instance, if a player was shown an award for a game of chance and, before the award could be provided to the player, the power failed, the gaming device 200, upon the restoration of power, would return to the state where the award is indicated. More generally, the gaming device 200 records, in non-volatile memory, the values of game parameters assigned during play, such as variables determined by an RNG or internal counters. (A game parameter, in general, can be one or more variables whose values govern play at the gaming device and depend on a random selection process.) The value of a game parameter can be recorded periodically, in response to some event such as user input, or whenever the value of the game parameter changes. This way, the gaming device 200 can recover its state in case of a power failure or “tilt” event, allowing the gaming device 200 to reconstruct events that have taken place before the power failure or “tilt” event. In contrast, PCs are not state machines to the same extent, and a majority of data is usually lost when a malfunction occurs. This requirement affects the software and hardware design on a gaming device 200. Game history information regarding previous games played, such as an amount wagered, the outcome of the game and so forth, may also be stored in a non-volatile memory device.
Although
Additionally, or alternatively, gaming devices 104A-104X and 200 can include credit transceivers that wirelessly communicate (e.g., Bluetooth or other near-field communication technology) with one or more mobile devices to perform credit transactions. As an example, bill validator 234 could contain or be coupled to the credit transceiver that output credits from and/or load credits onto the gaming device 104A by communicating with a player's smartphone (e.g., a digital wallet interface).
Gaming devices 104A-104X and 200 may also include other processors that are not separately shown. Using
Those of skill in the art will appreciate that embodiments of the present disclosure could be implemented with more or fewer elements than are depicted in
D. Example Game Processing Architecture.
The UI system 302 includes one or more UIs that a player can interact with. The UI system 302 could include one or more game play UIs 304, one or more bonus game play UIs 308, and one or more multiplayer UIs 306, where each UI type includes one or more mechanical UIs and/or graphical UIs (“GUIs”). In other words, the game play UI 304, bonus game play UI 308, and multiplayer UI 312 may utilize a variety of UI elements, such as mechanical UI elements (e.g., physical “spin” button or mechanical reels) and/or GUI elements (e.g., virtual reels shown on a video display or a virtual button deck) to receive player inputs and/or present game play to a player. Using
The game play UI 304 represents a UI that a player typically interfaces with for a base game. During a game instance of a base game, the game play UI elements 306A-306N (e.g., GUI elements depicting one or more virtual reels) are shown and/or made available to a player. In a subsequent game instance, the UI system 302 could transition out of the base game to one or more bonus games. The bonus game play UI 308 represents a UI that utilizes bonus game play UI elements 310A-310N for a player to interact with and/or view during a bonus game. In one or more embodiments, at least some of the game play UI element 306A-306N are similar to the bonus game play UI elements 310A-310N. In other embodiments, the game play UI element 306A-306N can differ from the bonus game play UI elements 310A-310N.
Based on the player inputs, the UI system 302 could generate RNG calls to a game processing backend system 314. As an example, the UI system 302 could use one or more application programming interfaces (“APIs”) to generate the RNG calls. To process the RNG calls, the RNG engine 316 could utilize gaming RNG 318 and/or non-gaming RNGs 319A-319N. Gaming RNG 318 corresponds to RNG 212 shown in
The RNG conversion engine 320 processes each RNG outcome from RNG engine 316 and converts the RNG outcome to a UI outcome that is fed back to the UI system 302. With reference to
After generating the UI outcome, the game processing backend system 314 sends the UI outcome to the UI system 302. Examples of UI outcomes are symbols to display on a video reel or reel stops for a mechanical reel. In one example, if the UI outcome is for a base game, the UI system 302 updates one or more game play UI elements 306A-306N, such as symbols, for the game play UI 304. In another example, if the UI outcome is for a bonus game, the UI system could update one or more bonus game play UI elements 310A-310N (e.g., symbols) for the bonus game play UI 308. In response to the updating the appropriate UI, the player may subsequently provide additional player inputs to initiate a subsequent game instance that progresses through the game processing pipeline.
The example game processing architecture 300 shown in
E. Example Reel Games.
Depending on implementation, various form factors of EGMs can incorporate the innovations described herein into reel games. For example, for a “thick client” implementation, an EGM (such as a gaming device 104A-X in
The reel games can include base reel games as well as bonus reel games. A “base” or “primary” reel game includes play that involves spinning reels. A “bonus” or “secondary” reel game/feature can add the possibility of winning a relatively large payout. A bonus reel game/feature may require an additional wager, but typically does not. A single play of a reel game can constitute a single complete game or wager, e.g., a single spin of the reels or a series of spins which culminate in a final aggregate outcome.
In some example implementations, the EGM or gaming server can conduct a base reel game (for regular play or free spins), a bonus reel game, and a gateway wheel game. The base reel game and bonus reel game use spinning reels and one or more game windows (reel areas) on a display screen. As in a typical reel game, the reels of the base reel game or bonus reel game “spin” graphically through a game window on the display screen when a player actuates a “spin” or “play” button, which acts as a “handle pull” event. A game controller randomly selects symbol stop positions in the respective reels, and the respective reels stop at the selected symbol stop positions, with some number of symbols visible in the game window for each of the reels. For example, for a given reel, the game controller generates a random number and determines a symbol stop position on the reel strip of the reel using the random number (e.g., with a lookup table). The game controller generates different random numbers for the respective reels that are spun. In this way, the game controller determines which symbols of the respective reels are visible in the game window (reel area) on the display screen.
In general, a display screen (or simply “display” or “screen”) is an area that conveys information to a viewer. The information may be dynamic, in which case, the display screen may use LCD technology, LED technology, CRT technology, or some other display technology. A main display screen (also called a primary game screen or main display) can be a display screen or an area of a display screen used to display game information related to a base reel game, such as a video representation of one or more spinning reels. A secondary display screen (also called a secondary game screen or bonus display) can be a display screen or an area of a display screen used to display secondary game information, such as animations and other graphics associated with a bonus reel game.
A base reel game or bonus reel game may award a special mode or other supplemental feature to a player. A supplemental feature may enhance an EGM and the experience of players by adding elements of excitement and chance. The supplemental feature can utilize a different set of reels, display screens, controls, symbols, etc. than the base reel game or bonus reel game in normal operation. Alternatively, the supplemental feature can reuse or reconfigure at least some of the reels, display screens, symbols, etc. of a base reel game or bonus reel game. The supplemental feature for a base reel game or bonus reel game can be started in response to satisfaction of a start condition. For example, the supplemental feature can be randomly triggered. Alternatively, the supplemental feature can be triggered in some other way (e.g., a combination of symbols in a previous play).
This section describes various innovations in user interface (“UI”) features of electronic gaming machines (“EGMs”), as well as innovations in features of backend processing for EGMs to implement the UI features. For example, an EGM can transfer target symbols between multiple windows. Each of the windows uses a set of reels, which spin in the respective windows. When at least a threshold count of target symbols lands for a reel in a window, a stack of one or more target symbols is transferred to a corresponding reel in each of one or more other windows. In some example implementations, after the target symbols are transferred, a supplemental feature (e.g., bonus feature, special mode) can be triggered based at least in part on the counts of target symbols in the windows, respectively. In addition, the target symbols can add credits or other awards in the supplemental feature. Transferring target symbols between windows provides a way to achieve a desired game volatility (e.g., increase game volatility) while maintaining a designated level of RTP for a game. Furthermore, by managing the likelihood of at least a threshold count of target symbols landing in the respective windows, and by managing values of target symbols in the respective windows, game play can be kept fair and consistent with regulations while also enabling variation of game volatility for a designated level of RTP for a game.
For example, in one implementation, a base reel game uses three sets of reels in three windows, respectively, on a display screen of an EGM. Each set of reels has 5 reels, with 3 full symbols of a reel being visible in a window at a time. The three windows—top, middle, and bottom—are arranged vertically. The EGM selectively transfers target symbols that represent credits between windows during the base reel game. When a wager is placed for the base reel game, the sets of reels in all three windows spin. The reels in the top window land successively. While the reels are still spinning in the middle window and bottom window, any “full stack” of target symbols (representing credit values) that has landed in the top window transfers downward to the corresponding reel in the middle window and corresponding reel in the bottom window. In this way, the full stack of target symbols from the top window is replicated in the middle window and the bottom window, such that credit values associated with the target symbols are also transferred to the middle window and bottom window. After the transfer of target symbols from the top window, any of the reels in the middle window that are still spinning land successively (not any transferred stacks of target symbols, which do not spin). While the reels in bottom window are still spinning, any full stack of target symbols that has landed in the middle window transfers downward to the corresponding reel in the bottom window. In this way, any additional full stack of target symbols from the middle window is replicated in the bottom window, such that credit values associated with the target symbols are also transferred to the bottom window. After the transfer of target symbols from the middle window, any of the reels in the bottom window that are still spinning land successively (not any transferred stacks of target symbols, which do not spin). After all reels have landed, a supplemental feature (specifically, a hold-and-spin feature) is selectively started (that is, activated, triggered, etc.) in each of the three windows depending on count of target symbols. For each of the three windows, if the window encloses at least a threshold count of target symbols (e.g., at least 6 target symbols), the supplemental feature is started within the window. Thus, if two full stacks of target symbols land in the top window, the hold-and-spin feature is activated in the top window. In this case, since the two full stacks of target symbols are also transferred down to the middle window and bottom window, the hold-and-spin feature is also activated in the middle window and in the bottom window, which creates the possibility of a huge win.
RTP and/or volatility can be managed in various ways. The average credit value for target symbols can be set to a different value for the three windows. For example, when stacks of target symbols are selectively transferred in a downward direction, target symbols in the top window can be set to have a high average credit value, followed by target symbols in the middle window, with target symbols in the bottom window having a low average credit value. Since the bottom window is more likely to have target symbols (due to downward transfers), decreasing the average value for target symbols in the set of reels for the bottom window can help equalize volatility and/or RTP between the windows. Or, the likelihood of a full stack of target symbols landing can be set to a different value for the three windows. For example, when stacks of target symbols are selectively transferred in a downward direction, the chance of a full stack of target symbols landing in the top window can be set to a low value (less likely), followed by the chance of a full stack of target symbols landing in the middle window, with the chance of a full stack of target symbols landing in the bottom window being set to a high value (more likely). Since any full stack that lands in the top window is transferred to the other two windows, decreasing the chance of a full stack landing in the top window can help equalize volatility and/or RTP between the windows.
The target symbol transfer mechanism can be implemented in many other ways. For example, the transfer mechanism can be part of a bonus reel game, bonus feature, or special mode. The transfer mechanism can use some other number of windows (e.g., 2, 4, or 5). Instead of full stacks of target symbols, partial stacks of target symbols can be transferred between windows. Or, individual target symbols (a stack of one symbol) can be transferred between windows. In this case, multiple single-symbol stacks in a given reel (separated by one or more other symbols) can be transferred. Stacks (e.g., full stacks, partial stacks, single-symbol stacks) in different reels of a window can be transferred. Windows can be arranged horizontally instead of vertically. Instead of vertical stacks of target symbols, horizontal stacks (rows) of target symbols can be transferred. Windows can be split across multiple display screens instead of being displayed on a single display screen. Target symbols can be transferred between windows in a given direction (e.g., down), in the opposite direction (e.g., up), or in both directions. Target symbols can be transferred to a reel that is still spinning or transferred to a reel that has already stopped (so long as the transfer avoids “taking away” a win that uses any symbol of the stopped reel). Target symbols can be transferred to a single adjacent window (but no further) or transferred to all other windows. Different likelihoods of at least a threshold count of target symbols landing and/or different values of target symbols for different windows can be set in various ways. These variations and many other variations of the transfer mechanism are described herein.
A. Example Game Windows and Transfer Operations.
1. Simplified Example.
In the example shown in
2. Options for Windows, Reels, and Symbols.
Each of the three windows 410, 420, 430 encloses viewable portions of a set of reels associated with the window. Each of the windows 410, 420, 430 can be associated with a different set of reels or the same set of reels. In
In the example shown in
For each of the reels, a reel strip includes x positions along a one-dimensional strip of symbols, where x depends on implementation. For example, x is 30, 80, 100, 200, or some other number of positions. The value of x can be the same or different for different reels (thus, different reels can have different numbers of positions). Each reel can have a data structure (e.g., array, linked list) that tracks the symbols at the respective positions of the reel strip for the reel. In some example implementations, the configuration of the symbols at the positions of the reel strips for the reels of a base reel game is fixed after the base reel game boots, although limited reconfiguration operations may be permitted. In other example implementations, the configuration of the symbols at the positions of the reel strips for the reels of a base reel game can change dynamically after the base reel game boots (e.g., depending on bet level or some other factor). Similarly, the configuration of symbols at positions of reel strips for reels of a supplemental feature can change for each instance of the supplemental feature. Different sets of reels can be used for a base reel game and supplemental feature.
The symbol set for the reels has various types of symbols, including target symbols (shown as star symbols) and other symbols. The symbols can be static or animated. In some example implementations, the symbol set for the reel(s) includes a target symbol type, at least one jackpot symbol type, a wild symbol type, some number of picture symbol types, some number of minor/low symbol types, and a scatter symbol type (which triggers bonuses). Alternatively, the symbol set for the reels can include other and/or additional symbols. The symbol set can be the same or different between a base reel game and supplemental feature. In some example implementations, some types of symbols are dimmed out (not active) at times (e.g., symbols other than target symbols are dimmed out during a supplemental feature).
3. Options for Transfer Operations.
In the example shown in
In the example shown in
In the example shown in
In the example shown in
The example shown in
Alternatively, target symbols can be transferred to a window after reels in that window have stopped. To avoid nullifying a winning combination of symbols that uses a symbol in one of the reels that have already landed in the window, any of several alternative approaches can be adopted.
Alternatively, reels can be linked between windows. If a reel lands with a stack of target symbols in one window, the corresponding reels in the other windows stop at the same symbol stop position, so that they also show stacks of target symbols.
B. Example Lookup Tables.
The likelihood of at least a threshold count of target symbols landing for a reel can be managed using a lookup table. Different windows can use different lookup tables, so as to vary the likelihood of at least a threshold count of target symbols landing for the different windows. One or more lookup tables can also be used to manage which values of target symbols appear in reels. This section describes examples of various types of lookup tables.
1. Lookup Tables, in General.
The sum total of the count values (weights) indicates the range of the options. The backend system 314 can use a random number, generated between 1 and the sum total of the count values, to select one of the entries in the lookup table by comparing the random number to successive running totals. In the example shown in Table 1, if the random number is 40 or less, the first entry is selected. Otherwise, if the random number is between 41 and 70, the second entry is selected. Otherwise, if the random number is between 71 and 90, the third entry is selected. Otherwise, the last entry is selected.
The threshold values for a lookup table can be fixed and pre-determined. Or, the threshold values for a lookup table can vary dynamically (e.g., depending on bet level). Or, a lookup table can be dynamically selected (e.g., depending on bet level, depending on window) from among multiple available lookup tables. Different parameters or choices during game play can use different lookup tables. Or, different combinations of parameters or choices can be combined in entries of a given lookup table.
2. Example Lookup Tables for Symbol Stop Positions.
The example lookup table 510 includes multiple entries. Each entry has a count (weight), which corresponds to the weight given to that entry compared to all of the entries of the lookup table. A lower count (smaller weight) indicates a less likely option. A higher count (larger weight) indicates a more likely option. The counts depend on implementation. In
For the sake of presentation,
In the lookup table 510, symbol stop positions 520 and corresponding weights 530 are set for reel b of window a. Different lookup tables can be used for different windows. For example, weights for symbol stop positions at target symbols in reels of a first window, second window, and third window can be set so that the likelihood of at least a threshold count of target symbols landing is different between the three windows. Suppose stacks of target symbols are selectively transferred in a downward direction. Also suppose that each weight wa,b,11 (for a window a and reel b) corresponds to a symbol stop position at which a full stack of target symbols lands for reel b in window a. Assuming the weights for symbol stop positions for other symbols are the same in the three windows, the weights w1,b,11 can be set to have lower values than the weights w2,b,11, which can be set to have lower values than the weights w3,b,11. In this way, the likelihood of at least a threshold count of target symbols landing can be set to be lower (less likely) in window 1, higher in window 2, and highest in window 3. In some example implementations in which a full stack of target symbols is transferred in a downward direction, the likelihood of a full stack of target symbols landing in window 1 is 1/40, the likelihood of a full stack of target symbols landing in window 2 is 1/25, and the likelihood of a full stack of target symbols landing in window 3 is ⅛. Thus, using different lookup tables for symbol stop positions for different windows, the “hit rate” of landing at least a threshold count of target symbols (so as to trigger transfer of target symbols) can vary between the different windows.
If the direction of transfer is upward or bidirectional, the lookup tables indicating symbol stop positions for different windows can have other weights to compensate for the direction of transfer. In general, the lookup tables can be used to balance RTP and/or volatility depending on the direction of transfer of target symbols (e.g., so that RTP and/or volatility are comparable in each of the windows).
Alternatively, different likelihoods for stacks of target symbols landing in different windows can be set in some other way. For example, with symbol stop positions that are equally likely in a lookup table, reels for a first window can have fewer target symbols, reels for a second window can have more target symbols, and reels for a third window can have the most target symbols. This makes it successively more likely for at least the threshold count of target symbols to land in a reel in the first window, second window, and third window.
3. Example Lookup Tables for Target Symbols.
The example lookup table 610 includes multiple entries. Each entry has a count (weight), which corresponds to the weight given to that entry compared to all of the entries of the lookup table. A lower count (smaller weight) indicates a less likely option. A higher count (larger weight) indicates a more likely option. The counts depend on implementation. In
In the lookup table 610, possible values 620 and corresponding weights 630 are set for window a. Different lookup tables can be used for different windows. For example, suppose that the possible values for target symbols are the same for all windows (all lookup tables), and that target symbols are selectively transferred in a downward direction. Weights for possible values of target symbols in reels of a first window, second window, and third window can be set so that the average value of target symbols is different between the three windows. For example, for possible values of target symbols that are high, the weights w1,d for window 1 can be set to have higher values than the weights w2,d for window 2, which can be set to have higher values than the weights w3,d for window 3. As another example, for possible values of target symbols that are low, the weights w1,d for window 1 can be set to have lower values than the weights w2,d for window 2, which can be set to have lower values than the weights w3,d for window 3. In this way, the average value of target symbols can be set to be highest in window 1 and lowest in window 3. In some example implementations in which a full stack of target symbols is transferred in a downward direction, the average value of target symbols for reels of window 1 is about 900, the average value of target symbols for reels of window 2 is about 250, and the average value of target symbols for reels of window 3 is about 100. Thus, using different lookup tables for possible values of target symbols for different windows, RTP and/or volatility can be controlled between the different windows. In general, such lookup tables can be used to balance RTP and/or volatility depending on the direction of transfer of target symbols (e.g., so that RTP and/or volatility are comparable in each of the windows).
C. Example Screenshots.
In
In
In the screen shot 701 of
In the screen shot 702 of
In
D. Example Techniques for Transferring Target Symbols Between Windows.
With reference to
In general, the techniques 801, 802 shown in
In general, a window spans m reels in a first dimension and spans n symbols in a second dimension orthogonal to the first dimension. The value of m can be 4, 5, 6, 7, 8, or some other number of reels. The value of n can be 2, 3, 4, 5, 6, or some other number of symbols. In some example implementations, the reels in a window are organized in a 5×3 configuration (5 reels, with 3 symbols visible per reel). Typically, the m reels are arranged horizontally in the window from left-to-right, with the m reels spinning vertically and the window showing n symbols of each of the respective reels. Alternatively, the m reels are arranged vertically in the window from top-to-bottom, with the m reels spinning horizontally and the window showing n symbols of each of the respective reels. Also, instead of having the same value of n for all reels across a window, the window can have different numbers of symbols visible for different reels. Thus, the value of n can be different for different reels (e.g., n=3 for a leftmost reel, n=4 for a second reel, n=5 for a center reel, n=4 for a fourth reel, and n=3 for a rightmost reel). Each of the reels has an associated reel strip that is movable through a window upon a spin of the reel.
The target symbols depend on implementation. In some example implementations, the target symbols are credit symbols. The credit symbols have dynamic values, which are assigned when reels are configured. In this way, different credit symbols can have different values but still be counted as target symbols. Alternatively, the target symbols can be credit symbols that have pre-defined values (not dynamic values) that may be different for different target symbols. Or, the target symbols can be credit symbols that have the same value. Or, the target symbols can be wild symbols or some other type of symbol.
In some example implementations, windows are organized vertically, and transferring a stack of one or more target symbols includes transferring the stack of target symbol(s) up and/or down between windows. For example, the stack is a vertical stack of target symbols. Alternatively, windows can be organized horizontally, and a stack of target symbol(s) can be transferred left and/or right between windows. For example, the stack is a horizontal stack of target symbols.
1. Example Backend Operations.
With reference to
At stage 830, the backend system determines symbol stop positions for at least some of the reels. At stage 840, the backend system determines whether to transfer target symbols between at least some of the multiple windows. In particular, the backend system determines whether to transfer a stack of one or more target symbols from a focus window (among the multiple windows) to each of one or more other windows (among the multiple windows) based at least in part on whether at least a threshold count of target symbols lands for one or more of the reels within the focus window. The threshold count of target symbols (for whether to transfer target symbols) depends on implementation. For example, the threshold count is 3 symbols (i.e., the count for a “full” stack of target symbols that lands, for a 5×3 reel configuration). Alternatively, the threshold count is some other number of target symbols, indicating a full stack or partial stack of target symbols, or even a single symbol. Or, when the target symbols have credit values or other numerical values associated with them, the threshold count of target symbols can be a total value of the target symbols (e.g., total credit value). The count of target symbols, whether calculated as a number of target symbols or total value of target symbols, can be evaluated per reel, per group of multiple reels, or for all of the reels of a window, collectively (e.g., for a total number of target symbols or total value of target symbols for the window). The backend system can use any of several different approaches to determine the symbol stop positions (at stage 830) and determine whether to transfer target symbols (at stage 840), as described in Section II.D.3.
When a stack of target symbol(s) is transferred from the focus window to a corresponding reel of another window, the transfer operation can be implemented in various ways. For example, the corresponding reel can be obscured or replaced (completely or partially) by the stack of target symbol(s). The stack of target symbols can be a full stack or partial stack, or even a single symbol. Alternatively, the backend system can cause the corresponding reel to stop at a symbol stop position for which the stack of target symbol(s) lands in the other window.
At stage 850, the backend system determines an outcome based at least in part on the counts of target symbols enclosed in the respective windows (considered as individual windows). For example, when the operations shown in
2. Example Configuration and Management Operations.
This section describes examples of operations to configure sets of reels and manage transfer of target symbols (stage 810).
The backend system can perform various operations when configuring sets of reels (at stage 810). For example, as shown in the example technique 804 of
Alternatively, the backend system can configure the sets of reels in some other way. For example, the sets of reels can include target symbols that do not change.
The backend system can also perform various operations when managing transfer of target symbols (at stage 810). As shown in the example technique 803 of
Alternatively, to set the different likelihoods of at least a threshold count of target symbols landing, the backend system can adjust counts of target symbols in the sets of reels for the multiple windows, respectively. For example, the backend system can add target symbols to one or more sets of reels and/or remove target symbols from one or more sets of reels.
Instead of or in addition to managing the likelihood of at least a threshold count of target symbols landing (stage 811), for at least some of the multiple windows, the backend system can set (at stage 812) different distributions of values of target symbols in the sets of reels. For example, the backend system can select different lookup tables for the multiple windows, respectively, where entries of the different lookup tables provide options for the different distributions of values of target symbols in the sets of reels. For example, the lookup tables are selected from among the lookup tables 322A-322N described with reference to
Alternatively, the backend system can manage transfer of target symbols in some other way.
3. Example Operations to Determine Symbol Stop Positions and Determine Whether to Transfer Target Symbols.
This section describes examples of ways to determine symbol stop positions (at stage 830) and determine whether to transfer target symbols (at stage 840).
In one approach to implementing operations for stages 830 and 840, the backend system determines symbol stop positions (stage 830) on a window-by-window basis for each of the multiple windows as the focus window. For the focus window, the backend system successively determines symbol stop positions for any of the reels in the focus window that is not yet stopped. For a stack of target symbol(s) for a stopped reel in the focus window, the backend system can determine whether to transfer the stack of target symbol(s) to any of the one or more other windows having a corresponding reel that is not yet stopped.
More specifically, in the example technique 807 of
With reference to
Alternatively, the backend system uses another approach to determine (at stage 842) whether to transfer a stack of target symbol(s). In this approach, the backend system transfers a stack of target symbol(s) (for a reel in the focus window) to a corresponding reel in another window regardless of whether the corresponding reel has stopped yet. To do so, the approach accounts for any rules that prevent an award or other win from being “taken away” from a player. For example, the target symbols are wild symbols. In this case, any win that was previously awarded based on a symbol in a stopped corresponding reel is still a win, considering the target symbol (wild symbol) that was transferred to replace a symbol of the corresponding reel. Or, as another example, the backend system can determine outcomes for a base reel game for the respective windows (or otherwise determine outcomes that depend on symbols of corresponding reels that have already stopped) before determining whether to transfer target symbols. In this way, wins that use symbols of corresponding reels that have already stopped are not “taken away” from the player.
Alternatively, the backend system uses some other approach to determine (at stage 842) whether to transfer a stack of target symbol(s).
Returning to
In another approach to implementing operations for stages 830 and 840, the backend system determines symbol stop positions on a window-by-window basis for each of the multiple windows as the focus window, successively determining symbol stop positions for any of the reels in the focus window that is not yet stopped and for which at least the threshold count of target symbols lands in the focus window. Then, after determining whether to transfer target symbols, the backend system determines symbol stop positions on a window-by-window basis for each of the multiple windows as the focus window, successively determining symbol stop positions for any of the reels in the focus window that is not yet stopped. In other words, the backend system first lands reels that have at least the threshold count of target symbols and transfers any stacks of target symbols. After that, the backend system lands the other reels. In this approach, the backend system avoids “taking away” any wins from a player due to the transfer of a stack of target symbol(s) to a reel that has stopped.
4. Example Frontend Operations.
With reference to
At state 870, the UI system selectively transfers target symbols between at least some of the multiple windows. In particular, the UI system transfers a stack of one or more target symbols from a focus window (among the multiple windows) to one or more other windows (among the multiple windows) when at least a threshold count of target symbols lands for one or more of the reels within the focus window. The threshold count of target symbols (for whether to transfer target symbols) depends on implementation. For example, the threshold count is 3 symbols (i.e., a “full” stack of target symbols lands, for a 5×3 reel configuration). Alternatively, the threshold count is some other number of target symbols, indicating a full stack or partial stack of target symbols, or even a single symbol. Or, when the target symbols have credit values or other numerical values associated with them, the threshold count of target symbols can be a total value of the target symbols (e.g., total credit value). The count of target symbols, whether calculated as a number of target symbols or total value of target symbols, can be evaluated per reel, per group of multiple reels, or for all of the reels of a window, collectively (e.g., for a total number of target symbols or total value of target symbols for the window). The UI system can use any of several different approaches to selectively transfer target symbols (at stage 870), as described in Section II.D.5.
When a stack of target symbol(s) is transferred from the focus window to a corresponding reel of another window, the transfer operation can be implemented in various ways. For example, the corresponding reel can be obscured or replaced (completely or partially) by the stack of target symbol(s). The stack of target symbols can be a full stack or partial stack, or even a single symbol. Alternatively, the UI system can cause the corresponding reel to stop at a symbol stop position for which the stack of target symbol(s) lands in the other window. The selectively transferring target symbols can happen during the spinning of reels in other windows, before the spinning of reels in other windows starts, or (in some cases) after the spinning of reels in other windows stops. During the transferring the stack of target symbol(s), the UI system can render one or more animations that indicate the transferring the stack of target symbol(s).
The operations shown in
At stage 890, the UI system outputs an indication of an outcome, if any, of the supplemental feature for the any of the multiple windows that encloses at least the threshold count of target symbols (for triggering the supplemental feature). For example, the UI system renders a graphic (e.g., image, animation) that indicates the outcome. Alternatively, the UI system outputs an indication of an outcome that is based at least in part on the counts of target symbols enclosed in the respective windows in some other way (e.g., showing an award that is based at least in part on counts of target symbols).
5. Example Operations to Selectively Transfer Target Symbols.
This section describes examples of ways to selectively transfer target symbols (at stage 870).
In one approach to implementing operations for stage 870, on a window-by-window basis for each of the multiple windows as the focus window, the UI system successively stops any of the reels in the focus window that is still spinning. For each stopped reel in the focus window for which at least a threshold count of target symbols lands in the focus window, the UI system transfers a stack of target symbol(s) to any of the one or more other windows having a corresponding reel that is still spinning.
More specifically, in the example technique 805 of
For the current reel (which was just stopped), the UI system evaluates (at stage 875) whether at least a threshold count of target symbols has landed for the reel in the focus window. The UI system can make this decision, for example, by counting how many target symbols are visible in the focus window (given the symbol stop position), by checking whether the given symbol stop position is designated as meaning that at least the threshold count of target symbols has landed, or by checking a separate indicator (provided by a backend system) of whether at least a threshold count of target symbols has landed. If at least the threshold count of target symbols has landed for the reel in the focus window, the UI system selectively transfers (at stage 876) a stack of target symbol(s) from the reel of the focus window to a corresponding reel in each of one or more other windows.
Alternatively, the UI system uses another approach to selectively transfer (at stage 876) a stack of target symbols. For example, in one alternative approach, the UI system transfers a stack of target symbol(s) (for a reel in the focus window) to a corresponding reel in another window regardless of whether the corresponding reel is still spinning. To do so, the approach accounts for any rules that prevent an award or other win from being “taken away” from a player. For example, the target symbols are wild symbols. In this case, any win that was previously awarded based on a symbol in a stopped corresponding reel is still a win, considering the target symbol (wild symbol) that was transferred to replace a symbol in the corresponding reel. Or, as another example, outcomes for a base reel game for the respective windows can be determined (or outcomes that depend on symbols of corresponding reels that have already stopped can otherwise be determined) before target symbols are transferred. In this way, wins that use symbols of corresponding reels that have already stopped are not “taken away” from the player.
Alternatively, the UI system uses some other approach to selectively transfer (at stage 876) a stack of target symbol(s). For example, on a window-by-window basis, the UI system can spin the set of reels for a given window and then selectively transfer target symbols to other windows for which reels have not yet started spinning. Thus, on a window-by-window basis, the UI system can interleave operations to spin reels (at stage 860) and selectively transfer target symbols (at stage 870).
Returning to
In another approach to implementing operations for stage 870, on a window-by-window basis for each of the multiple windows as the focus window, the UI system successively stops any of the reels in the focus window that is still spinning and for which at least the threshold count of target symbols lands in the focus window. For each stopped reel in the focus window for which at least the threshold count of target symbols lands in the focus window, the UI system transfers the stack of target symbol(s) to each of the one or more other windows. Then, after selectively transferring target symbols, on a window-by-window basis for each of the multiple windows as the focus window, the UI system successively stops any of the reels in the focus window that is still spinning. In other words, the UI system first lands reels that have at least the threshold count of target symbols and transfers any stacks of target symbols. After that, the UI system lands the other reels. In this approach, the UI system avoids “taking away” any wins from a player due to the transfer of a stack of target symbol(s) to a reel that is still spinning
6. Alternatives.
Although
E. Examples of Outcome Determination and Supplemental Features.
The backend system can determine various outcomes and perform operations for various types of supplemental features. The UI system can output indications of those outcomes and perform operations for various types of supplemental features.
In some example implementations, a hold-and-spin feature is activated for any window that encloses at least a threshold count of target symbols. The hold-and-spin feature occurs in a single window. If the hold-and-spin feature is activated for multiple windows, the hold-and-spin feature is performed in those windows consecutively, one window after another. A window not being used for the hold-and-spin feature can be covered or otherwise indicated to be inactive.
During the hold-and-spin feature, reels can include symbols from the same set of symbols as the base reel game. To distinguish from regular gameplay of the base reel game, inactive symbols (symbols other than target symbols) can be displayed differently during the hold-and-spin feature (e.g., with lower brightness). The target symbols remain active during the hold-and-spin feature.
During the hold-and-spin feature, target symbols are held in place (locked) in a window while reels spin for other symbol positions of the window. The hold-and-spin feature can use different reels than the base reel game. For example, each symbol position in a window can have its own reel. Thus, for each of the 15 symbol positions of a window with a 5×3 configuration of reels, the hold-and-spin feature can use a different reel. (But no reel spins in a position when a target symbol is held in that position.) In the reels for the hold-and-spin feature, target symbols can have values assigned as described with reference to
Initially, a player is given p spins for the hold-and-spin feature in a window. For example, p is 3. Alternatively, p has some other value. When the player actuates a button to spin the reels or otherwise starts a spin of the hold-and-spin feature, all non-locked reels in the window spin and eventually stop, and p is decremented. If any new target symbols land in the window, those new target symbol(s) as well as previous target symbols are held in place (locked) and p is reset to its initial value. Locked target symbols are held until the end of the hold-and-spin feature. When p reaches 0 or all symbol positions are occupied by target symbols, an outcome is determined based on the target symbols (e.g., adding credit values of the target symbols).
Alternatively, another type of supplemental feature can be activated if a window includes at least a threshold count of target symbols.
In addition, in some example implementations, after reels have landed (stopped) in a window, any win conditions can be detected and any win amounts can be awarded to the player (e.g., credited to the player's credit balance). For example, win conditions are defined as pay lines (also called win lines) across at least a portion of a window on a display screen. For a round of play, when a certain combination of symbols appears along a pay line, a win amount corresponding to that combination of symbols and that pay line is awarded. Win amounts can vary according to the combination of symbols and according to the particular pay line along which the combination of symbols appears. Win amounts are typically determined according to a pay table defined for the base reel game, where the pay table comprehends the various combinations of symbols and pay lines, i.e., the win conditions that may occur in the base reel game. (The win conditions for a supplemental feature can be evaluated in the same way as win conditions for a base reel game, with win conditions being more likely in the supplemental feature. Or, win conditions can be evaluated in different ways for the supplemental feature and base reel game.) The win amount for a round of play may be a fraction of an amount wagered for that round of play for certain win conditions. For other win conditions, the win amount may be much larger than the amount wagered.
The number of pay lines and base credit cost to play depends on implementation. In some example implementations, there are 50 pay lines and a 150 credit cost. There are 2×, 3×, 4×, and 5× bet multipliers (also called bet levels), which sets a max bet of 650 credits. Multipliers can also appear as symbols in reels. Alternatively, there could be higher bet multipliers (e.g., up to 8×, with a max bet of 1200 credits), different credit options, and/or a different number of pay lines.
Instead of evaluating win conditions on pay lines across reels in a window, an award can be determined according to a “ways” approach. For example, a player may obtain a win entitlement by selecting a number of reels to play and an amount to wager per reel. Examples of such implementations may be marketed under the trade name “Reel Power” by Aristocrat Leisure Industries Pty Ltd. The selection of a reel means that each displayed symbol of the reel (in the window) can be substituted for a symbol at one or more designated display positions. In other words, all symbols displayed at symbol display positions in the window for a selected reel can be used to form symbol combinations (one symbol per reel in a combination) with any of the symbols displayed at designated, symbol display positions of each of the other reels. For example, if there are five reels and three symbol display positions for each reel in a window (such that the symbol display positions comprise three rows of five symbol display positions), the symbol displayed in the center row is used for a non-selected reel, and the symbols displayed in all three rows are used for a selected reel. Each possible path through the designated (active) symbol display position(s) of the respective reels provides a way to win. As a result, the total number of ways to win is determined by multiplying the number of active display position(s) of each reel, where the active display position(s) for a reel are all display positions in the reel area for a selected reel but only the designated (e.g., center) display position in the reel area of a non-selected reel. As a result, for five reels and fifteen display positions, there are 35=243 ways to win if five reels are selected, 3×3×3×1×1=27 ways to win if three reels are selected, and so on.
F. Example of Integration into Electronic Gaming Devices.
Innovations described in Section II can be implemented in a gaming server 102 and/or gaming device 104A, 104B, 104C, 104X, 200 described with reference to
As explained with reference to
Innovations described in Section II can be implemented in a game processing pipeline that follows the example game processing architecture 300 described with reference to
In general, the example game processing architecture 300 shown in
The backend system 314 returns the generated results to the game play UI 304 (or bonus game play UI 308) of the UI system 302, which spins reels in the respective windows and selectively transfers target symbols between windows. The generated results returned by the backend system 314 can include game-related information (such as symbol stop positions for the respective reels, transferred target symbols, outcomes) as well as animation effects not related to game parameters. Alternatively, the game play UI 304 (or bonus game play UI 308) can make one or more separate RNG calls to the backend system 314 to determine animation effects. In response, the backend system 314 can use the gaming RNG 318 and/or one or more of the non-gaming RNGs 319A . . . 319N to generate random numbers, which the RNG conversion engine 320 uses (with one or more of the lookup tables 322A . . . 322N) to determine animation effects. The game play UI 304 (or bonus game play UI 308) can perform operations consistent with the animation effects, which are returned from the backend system 314.
Eventually, the game play UI 304 (or bonus game play UI 308) stops the spinning of the reels at the symbol stop positions returned for the respective reels, and selectively transfers target symbols between windows. Finally, the game play UI 304 (or bonus game play UI 308) outputs an indication of the outcome of the spin (e.g., showing any win conditions on pay lines in the respective windows, showing an animation to start a supplemental feature in a window).
G. Example Technical Effects.
In terms of technical effects, innovative features of selectively transferring target symbols between windows represent improvements in the technical area of EGM software and provide new technology, in that they improve usability of EGMs by enhancing the user experience for players, extending player time on the EGMs, and maintaining the interest of current players in the EGMs. In some example implementations, the transfer of target symbols is visible to players. In particular, the transfer of target symbols may provide a build up to higher award amounts, which may occur as a reward to players for extended play on the gaming device 200. These embodiments are thus not merely new game rules or new display patterns.
This section describes various innovations in UI features of EGMs, as well as innovations in features of backend processing for EGMs to implement the UI features. For example, an EGM can start a supplemental feature (such as a bonus feature or special mode) in multiple windows based at least in part on a count of target symbols in the windows, collectively. When at least a threshold count of target symbols lands in the windows, collectively, the supplemental feature is performed. Checking whether windows, collectively, enclose at least a threshold count of target symbols provides another way to achieve a desired game volatility while maintaining a designated level of RTP for a game.
For example, in one implementation, a base reel game uses three sets of reels in three windows, respectively, on a display screen of an EGM. Each set of reels has 5 reels, with 3 full symbols of a reel being visible in a window at a time. The three windows—top, middle, and bottom—are arranged vertically. When a wager is placed for the base reel game, the sets of reels in all three windows spin. After the reels in all three windows have landed, a supplemental feature (specifically, a hold-and-spin feature for all three windows) is selectively started (that is, activated, triggered, etc.) depending on a count of target symbols in the three windows, collectively. The target symbols represent credits. If the three windows collectively enclose at least a threshold count of target symbols (e.g., at least 12 target symbols anywhere within the three windows), the supplemental feature is started within the three windows. For the hold-and-spin feature, the three windows can be merged into a single window, and the sets of reels for the three windows can be replaced with a set of reels for the single window.
The supplemental feature activation mechanism can be implemented in many other ways. For example, the supplemental feature activation mechanism can use some other number of windows (e.g., 2, 4, or 5). Windows can be arranged horizontally instead of vertically. Windows can be split across multiple display screens instead of being displayed on a single display screen. These variations and many other variations of the supplemental feature activation feature are described herein.
A supplemental feature activation mechanism described in Section III can be used in combination with a target symbol transfer mechanism described in Section II. Or, a supplemental feature activation mechanism described in Section III can be used without a target symbol transfer mechanism described in Section II. A target symbol transfer mechanism described in Section II can be used without a supplemental feature activation mechanism described in Section III.
A. Example Game Windows and Start Conditions.
1. Simplified Example.
2. Options for Windows, Reels, and Symbols.
Each of the three windows 910, 920, 930 encloses viewable portions of a set of reels associated with the window. Each of the windows 910, 920, 930 can be associated with a different set of reels or the same set of reels. In
In the example shown in
The threshold count of target symbols depends on implementation. The threshold count can be set to manage volatility and/or RTP for a game. For example, the threshold count can be increased to make activation of the supplemental feature less likely, or the threshold count can be decreased to make activation of the supplemental feature more likely. The threshold count can be different depending on whether target symbols are selectively transferred between windows. For example, the threshold count is increased if target symbols are selectively transferred between windows. Volatility and/or RTP can also be managed by setting target symbols in the set of reels used for the supplemental feature.
B. Example Techniques for Starting a Supplemental Feature Based at Least in Part on Target Symbol Count.
With reference to
In general, the techniques 1001, 1002 shown in
In general, a window spans m reels in a first dimension and spans n symbols in a second dimension orthogonal to the first dimension. The value of m can be 4, 5, 6, 7, 8, or some other number of reels. The value of n can be 2, 3, 4, 5, 6, or some other number of symbols. In some example implementations, the reels in a window are organized in a 5×3 configuration (5 reels, with 3 symbols visible per reel). Typically, the m reels are arranged horizontally in the window from left-to-right, with the m reels spinning vertically and the window showing n symbols of each of the respective reels. Alternatively, the m reels are arranged vertically in the window from top-to-bottom, with the m reels spinning horizontally and the window showing n symbols of each of the respective reels. Also, instead of having the same value of n for all reels across a window, the window can have different numbers of symbols visible for different reels. Thus, the value of n can be different for different reels (e.g., n=3 for a leftmost reel, n=4 for a second reel, n=5 for a center reel, n=4 for a fourth reel, and n=3 for a rightmost reel). Each of the reels has an associated reel strip that is movable through a window upon a spin of the reel.
The target symbols depend on implementation. In some example implementations, the target symbols are credit symbols. The credit symbols have dynamic values, which are assigned when reels are configured. In this way, different credit symbols can have different values but still be counted as target symbols. Alternatively, the target symbols can be credit symbols that have pre-defined values (not dynamic values) that may be different for different target symbols. Or, the target symbols can be credit symbols that have the same value. Or, the target symbols can be wild symbols or some other type of symbol.
1. Example Backend Operations.
With reference to
At stage 1020, the backend system determines symbol stop positions for at least some of the reels. At stage 1030, the backend system determines whether to perform operations of a supplemental feature for all of the windows. In particular, the backend system determines whether the windows, collectively, enclose at least a threshold count of target symbols in the windows. The threshold count of target symbols (for whether to start the supplemental feature) depends on implementation. For example, the threshold count is 12 symbols. Alternatively, the threshold count is some other number of target symbols. Or, when the target symbols have credit values or other numerical values associated with them, the threshold count of target symbols can be a total value of the target symbols (e.g., total credit value). The count of target symbols, whether calculated as a number of target symbols or total value of target symbols, is evaluated for all of the reels of the windows, collectively (e.g., for a total number of target symbols or total value of target symbols for the windows).
At stage 1040, the backend system determines an outcome, if any, of the supplemental feature. If the supplemental feature is started for the windows, the backend system performs operations for the supplemental feature for the windows (e.g., determining symbol stop positions for reels, decrementing or resetting a spin counter) and eventually determines an outcome of the supplemental feature. For the supplemental feature, multiple windows from a base reel game can be merged into a single window. Alternatively, the multiple windows can remain separated. For the supplemental feature, the backend system can replace the sets of reels for the multiple windows, respectively, with other reels. Alternatively, the same sets of reels can be used for a base reel game and supplemental feature. For a hold-and-spin feature, target symbols are held in place in a window while other reels spin.
2. Example Frontend Operations.
With reference to
At stage 1060, the UI system selectively performs operations of a supplemental feature for all of the windows depending on whether the windows, collectively, enclose at least a threshold count of target symbols in the multiple windows. The threshold count of target symbols (for whether to start the supplemental feature) depends on implementation. For example, the threshold count is 12 symbols. Alternatively, the threshold count is some other number of target symbols. Or, when the target symbols have credit values or other numerical values associated with them, the threshold count of target symbols can be a total value of the target symbols (e.g., total credit value). The count of target symbols, whether calculated as a number of target symbols or total value of target symbols, is evaluated for all of the reels of the windows, collectively (e.g., for a total number of target symbols or total value of target symbols for the windows). For the supplemental feature, multiple windows from a base reel game can be merged into a single window. Alternatively, the multiple windows can remain separated. For the supplemental feature, the sets of reels for the multiple windows, respectively, can be replaced with other reels. Alternatively, the same sets of reels can be used for a base reel game and supplemental feature. For a hold-and-spin feature, target symbols are held in place in a window while other reels spin.
At stage 1070, the UI system outputs an indication of an outcome, if any, of the supplemental feature. For example, the UI system renders a graphic (e.g., image, animation) that indicates the outcome.
3. Alternatives.
Although
C. Examples of Outcome Determination and Supplemental Features.
The backend system can determine various outcomes and perform operations for various types of supplemental features. The UI system can output indications of those outcomes and perform operations for various types of supplemental features.
In some example implementations, a hold-and-spin feature is activated for all windows if the windows, collectively, enclose at least a threshold count of target symbols. The hold-and-spin feature occurs in the multiple windows. During the hold-and-spin feature, reels can include symbols from the same set of symbols as the base reel game. To distinguish from regular gameplay of the base reel game, inactive symbols (symbols other than target symbols) can be displayed differently during the hold-and-spin feature (e.g., with lower brightness). The target symbols remain active during the hold-and-spin feature.
During the hold-and-spin feature, target symbols are held in place (locked) in the windows while reels spin for other symbol positions of the windows. The hold-and-spin feature can use different reels than the base reel game. For example, each symbol position in the windows can have its own reel. Thus, for each of the 45 symbol positions of three windows having a 5×3 configuration of reels per window, the hold-and-spin feature can use a different reel. (But no reel spins in a position when a target symbol is held in that position.) In the reels for the hold-and-spin feature, target symbols can have values assigned as described with reference to
Initially, a player is given p spins for the hold-and-spin feature in the windows. For example, p is 3. Alternatively, p has some other value. When the player actuates a button to spin the reels or otherwise starts a spin of the hold-and-spin feature, all non-locked reels in the windows spin and eventually stop, and p is decremented. If any new target symbols land in any of the windows, those new target symbol(s) as well as previous target symbols are held in place (locked) and p is reset to its initial value. Locked target symbols are held until the end of the hold-and-spin feature. When p reaches 0 or all symbol positions are occupied by target symbols, an outcome is determined based on the target symbols (e.g., adding credit values of the target symbols).
Alternatively, another type of supplemental feature can be activated if all windows, collectively, enclose at least a threshold count of target symbols.
In addition, in some example implementations, after reels have landed (stopped) in a window, any win conditions can be detected and any win amounts can be awarded to the player (e.g., credited to the player's credit balance), as described in Section II.E.
D. Example Screenshots.
In
In
In the screen shot 1101 of
In the screen shot 1102 of
E. Examples of Integration into Electronic Gaming Devices.
Innovations described in Section III can be implemented in a gaming server 102 and/or gaming device 104A, 104B, 104C, 104X, 200 described with reference to
As explained with reference to
Innovations described in Section III can be implemented in a game processing pipeline that follows the example game processing architecture 300 described with reference to
In general, the example game processing architecture 300 shown in
The backend system 314 returns the generated results to the game play UI 304 (and/or bonus game play UI 308) of the UI system 302, which spins reels in the respective windows. The generated results returned by the backend system 314 can include game-related information (such as symbol stop positions for the respective reels, outcomes) as well as animation effects not related to game parameters. Alternatively, the game play UI 304 (or bonus game play UI 308) can make one or more separate RNG calls to the backend system 314 to determine animation effects. In response, the backend system 314 can use the gaming RNG 318 and/or one or more of the non-gaming RNGs 319A . . . 319N to generate random numbers, which the RNG conversion engine 320 uses (with one or more of the lookup tables 322A . . . 322N) to determine animation effects. The game play UI 304 (or bonus game play UI 308) can perform operations consistent with the animation effects, which are returned from the backend system 314.
Eventually, the game play UI 304 stops the spinning of the reels at the symbol stop positions returned for the respective reels, and selectively starts a supplemental feature based at least in part on count of target symbols in multiple windows, collectively. If the supplemental feature starts, the game play UI 304 can show an animation indicating the start of the supplemental feature in the windows, and the bonus game play UI 308 can perform operations for the supplemental feature. Finally, the game play UI 304 (or bonus game play UI 308) outputs an indication of the outcome, if any, of the supplemental feature. The game play UI 304 can also output an indication of an outcome of the spin (e.g., showing any win conditions on pay lines in the respective windows).
F. Example Technical Effects.
In terms of technical effects, innovative features of selectively starting a supplemental feature based at least in part on count of target symbols in multiple windows, collectively represent improvements in the technical area of EGM software and provide new technology, in that they improve usability of EGMs by enhancing the user experience for players, extending player time on the EGMs, and maintaining the interest of current players in the EGMs. In some example implementations, the landing of target symbols in the multiple windows is visible to players. In particular, the successive landing of target symbols may provide a build up to higher award amounts, which may occur as a reward to players for extended play on the gaming device 200. Also, in some example implementations, even if a supplemental feature is not performed for an individual window (e.g., because a threshold count of target symbols is not reached for that individual window), a supplemental feature may be performed if the windows, collectively, enclose enough target symbols, which potentially provides a reward to players for extended play on the gaming device 200. These embodiments are thus not merely new game rules or new display patterns.
Numerous embodiments are described in this disclosure, and are presented for illustrative purposes only. The described embodiments are not, and are not intended to be, limiting in any sense. The present disclosure is widely applicable to numerous embodiments, as is readily apparent from the disclosure. One of ordinary skill in the art will recognize that the innovations described herein may be practiced with various modifications and alterations, such as structural, logical, software, and electrical modifications. Although particular features of the innovations described herein may be described with reference to one or more particular embodiments and/or drawings, it should be understood that such features are not limited to usage in the one or more particular embodiments or drawings with reference to which they are described, unless expressly specified otherwise.
The present disclosure is neither a literal description of all embodiments nor a listing of features of the innovations described herein that must be present in all embodiments.
The Title (set forth at the beginning of the first page of this disclosure) is not to be taken as limiting in any way as the scope of the disclosed embodiments. Headings of sections provided in this disclosure are for convenience only, and are not to be taken as limiting the disclosure in any way.
When an ordinal number (such as “first,” “second,” “third” and so on) is used as an adjective before a term, that ordinal number is used (unless expressly specified otherwise) merely to indicate a particular feature, such as to distinguish that particular feature from another feature that is described by the same term or by a similar term. For example, a “first widget” may be so named merely to distinguish it from, e.g., a “second widget.” Thus, the mere usage of the ordinal numbers “first” and “second” before the term “widget” does not indicate any other relationship between the two widgets, and likewise does not indicate any other characteristics of either or both widgets. For example, the mere usage of the ordinal numbers “first” and “second” before the term “widget” (1) does not indicate that either widget comes before or after any other in order or location; (2) does not indicate that either widget occurs or acts before or after any other in time; and (3) does not indicate that either widget ranks above or below any other, as in importance or quality. In addition, the mere usage of ordinal numbers does not define a numerical limit to the features identified with the ordinal numbers. For example, the mere usage of the ordinal numbers “first” and “second” before the term “widget” does not indicate that there must be no more than two widgets.
When introducing elements of aspects of the present disclosure or embodiments thereof, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
When a single device, component, structure, or article is described herein, more than one device, component, structure or article (whether or not they cooperate) may alternatively be used in place of the single device, component or article that is described. Accordingly, the functionality that is described as being possessed by a device may alternatively be possessed by more than one device, component or article (whether or not they cooperate).
Similarly, where more than one device, component, structure, or article is described herein (whether or not they cooperate), a single device, component, structure, or article may alternatively be used in place of the more than one device, component, structure, or article that is described. For example, a plurality of computer-based devices may be substituted with a single computer-based device. Accordingly, the various functionality that is described as being possessed by more than one device, component, structure, or article may alternatively be possessed by a single device, component, structure, or article.
The functionality and/or the features of a single device that is described may be alternatively embodied by one or more other devices that are described but are not explicitly described as having such functionality and/or features. Thus, other embodiments need not include the described device itself, but rather can include the one or more other devices which would, in those other embodiments, have such functionality/features.
Further, the systems and methods described herein are not limited to the specific embodiments described herein but, rather, operations of the methods and/or components of the system and/or apparatus may be utilized independently and separately from other operations and/or components described herein. Further, the described operations and/or components may also be defined in, or used in combination with, other systems, methods, and/or apparatus, and are not limited to practice with only the systems, methods, and storage media as described herein.
Devices that are in communication with each other need not be in continuous communication with each other, unless expressly specified otherwise. On the contrary, such devices need only transmit to each other as necessary or desirable, and may actually refrain from exchanging data most of the time. For example, a machine in communication with another machine via the Internet may not transmit data to the other machine for weeks at a time. In addition, devices that are in communication with each other may communicate directly or indirectly through one or more intermediaries.
A description of an embodiment with several components or features does not imply that all or even any of such components and/or features are required. On the contrary, a variety of optional components are described to illustrate the wide variety of possible embodiments of the innovations described herein. Unless otherwise specified explicitly, no component and/or feature is essential or required.
Further, although process steps, algorithms or the like may be described in a sequential order, such processes may be configured to work in different orders. In other words, any sequence or order of steps that may be explicitly described does not necessarily indicate a requirement that the steps be performed in that order. The steps of processes described herein may be performed in any order practical. Further, some steps may be performed simultaneously despite being described or implied as occurring non-simultaneously (e.g., because one step is described after the other step). Moreover, the illustration of a process by its depiction in a drawing does not imply that the illustrated process is exclusive of other variations and modifications thereto, does not imply that the illustrated process or any of its steps are necessary to the innovations described herein, and does not imply that the illustrated process is preferred.
Although a process may be described as including a plurality of steps, that does not indicate that all or even any of the steps are essential or required. Various other embodiments within the scope of the present disclosure include other processes that omit some or all of the described steps. Unless otherwise specified explicitly, no step is essential or required.
Although a product may be described as including a plurality of components, aspects, qualities, characteristics and/or features, that does not indicate that all of the plurality are essential or required. Various other embodiments within the scope of the present disclosure include other products that omit some or all of the described plurality.
An enumerated list of items (which may or may not be numbered) does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. Likewise, an enumerated list of items (which may or may not be numbered) does not imply that any or all of the items are comprehensive of any category, unless expressly specified otherwise.
For the sake of presentation, the detailed description uses terms like “determine” and “select” to describe computer operations in a computer system. These terms denote operations performed by a computer, and should not be confused with acts performed by a human being. The actual computer operations corresponding to these terms vary depending on implementation. For example, “determining” something can be performed in a variety of manners, and therefore the term “determining” (and like terms) can indicate calculating, computing, deriving, looking up (e.g., in a table, database or data structure), ascertaining, recognizing, and the like.
As used herein, the term “send” denotes any way of conveying information from one component to another component, and the term “receive” denotes any way of getting information at one component from another component. The two components can be part of the same computer system or different computer systems. The information can be passed by value (e.g., as a parameter of a message or function call) or passed by reference (e.g., in a buffer). Depending on context, the information can be communicated directly between the two components or be conveyed through one or more intermediate components. As used herein, the term “connected” denotes an operable communication link between two components, which can be part of the same computer system or different computer systems. The operable communication link can be a wired or wireless network connection, which can be direct or pass through one or more intermediate components (e.g., of a network). Communication among computers and devices may be encrypted to insure privacy and prevent fraud in any of a variety of ways well known in the art.
It will be readily apparent that the various methods and algorithms described herein may be implemented by, e.g., appropriately programmed general-purpose computers and computing devices. Typically a processor (e.g., one or more microprocessors) will receive instructions from a memory or like device, and execute those instructions, thereby performing one or more processes defined by those instructions. Further, programs that implement such methods and algorithms may be stored and transmitted using a variety of media (e.g., computer readable media) in a number of manners. In some embodiments, hard-wired circuitry or custom hardware may be used in place of, or in combination with, software instructions for implementation of the processes of various embodiments. Thus, embodiments are not limited to any specific combination of hardware and software. Accordingly, a description of a process likewise describes at least one apparatus for performing the process, and likewise describes at least one computer-readable medium for performing the process. The apparatus that performs the process can include components and devices (e.g., a processor, input and output devices) appropriate to perform the process. A computer-readable medium can store program elements appropriate to perform the method.
The term “computer-readable medium” refers to any non-transitory storage or memory that may store computer-executable instructions or other data in a computer system and be read by a processor in the computer system. A computer-readable medium may take many forms, including but not limited to non-volatile storage or memory (such as optical or magnetic disk media, a solid-state drive, a flash drive, PROM, EPROM, and other persistent memory) and volatile memory (such as DRAM). The term “computer-readable media” excludes signals, waves, and wave forms or other intangible or transitory media that may nevertheless be readable by a computer.
The present disclosure provides, to one of ordinary skill in the art, an enabling description of several embodiments and/or innovations. Some of these embodiments and/or innovations may not be claimed in the present application, but may nevertheless be claimed in one or more continuing applications that claim the benefit of priority of the present application. Applicants may file additional applications to pursue patents for subject matter that has been disclosed and enabled but not claimed in the present application.
The foregoing description discloses only exemplary embodiments of the present disclosure. Modifications of the above disclosed apparatus and methods which fall within the scope of the present disclosure will be readily apparent to those of ordinary skill in the art. For example, although the examples discussed above are illustrated for a gaming market, embodiments of the present disclosure can be implemented for other markets. The gaming system environment of the examples is not intended to suggest any limitation as to the scope of use or functionality of any aspect of the disclosure.
Aside from the innovative features recited in the claims, innovative features of the present disclosure include, but are not limited to the following.
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.
This patent application is a continuation of U.S. patent application Ser. No. 16/565,212, filed Sep. 9, 2019, the disclosure of which is hereby incorporated by reference. U.S. patent application Ser. No. 16/565,212 claims the benefit of U.S. Provisional Pat. App. No. 62/894,591, filed Aug. 30, 2019, the disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6159095 | Frohm | Dec 2000 | A |
7753777 | Giuffria | Jul 2010 | B1 |
8388435 | Anderson | Mar 2013 | B2 |
10403093 | Halvorson | Sep 2019 | B1 |
20030060268 | Falconer | Mar 2003 | A1 |
20110218042 | Anderson | Sep 2011 | A1 |
20140274294 | Baerlocher | Sep 2014 | A1 |
20150348358 | Comeau | Dec 2015 | A1 |
20160027238 | Zurawski | Jan 2016 | A1 |
20160284158 | Singer | Sep 2016 | A1 |
20170046914 | Rodgers | Feb 2017 | A1 |
20170103613 | Berman | Apr 2017 | A1 |
20180061186 | Berman | Mar 2018 | A1 |
20180130286 | Berman | May 2018 | A1 |
20190051109 | Marks | Feb 2019 | A1 |
20190102972 | Watkins | Apr 2019 | A1 |
20190122485 | Singer | Apr 2019 | A1 |
20190130704 | Cormack | May 2019 | A1 |
20190325693 | McLeneghan | Oct 2019 | A1 |
20200013257 | Watkins | Jan 2020 | A1 |
20200111294 | Halvorson | Apr 2020 | A1 |
Entry |
---|
“Aristocrat Mighty Cash Slot Machine I Long Teng Hu Xiao I Bonus Live Play I Choctaw Casino Durant,” including screenshots showing relevant feature, downloaded from https://www.youtube.com/watch?v=X2mLJAR1Zdk, 4 pp. (Jul. 2019). |
Office Action dated Nov. 4, 2020 for U.S. Appl. No. 16/565,212 (pp. 1-12). |
Office Action dated May 24, 2021 for U.S. Appl. No. 16/565,212 (pp. 1-16). |
4 Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Sep. 29, 2021 for U.S. Appl. No. 16/565,212 (pp. 1-7). |
Number | Date | Country | |
---|---|---|---|
20220139172 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
62894591 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16565212 | Sep 2019 | US |
Child | 17578283 | US |