This application claims the benefit of priority to Japanese Patent Application No. 2003-083327, herein incorporated by reference.
1. Field of the Invention
The present invention relates to a transflective film and a liquid crystal display device using the same.
2. Description of the Related Art
Since the battery life of portable electronic apparatuses, such as a mobile phone and a portable game device, considerably affect the use thereof, the portable electronic apparatuses are provided with reflective liquid crystal display devices capable of reducing power consumption as display units. For example, the reflective liquid crystal display device comprises a reflector that totally reflects external light incident from the front side of the reflective liquid crystal display device or a reflector that reflects external light incident from the front side of the reflective liquid crystal display device and transmits backlight incident from the backside of the reflective liquid crystal display device. As such a reflector, a reflector, on which a plurality of fine concave portions or convex portions is formed, is widely known in order to maximize the reflectance of light (for example, see Patent Document 1).
[Patent Document 1]
Japanese Unexamined Patent Application Publication No. 2003-14912
In particular, a reflector, which reflects external light incident from the front side of the reflective liquid crystal display device and transmits backlight incident from the backside thereof, is referred to as a transflector. For example, as shown in
When external light incident through the liquid crystal display panel is reflected to the liquid crystal display panel again, the fine concave portions 102 formed on the surface of the transflective film 101 reflect the incident external light effectively in a wide range. As marked by the symbol Q1 in
However, in the above-mentioned conventional transflective film 101, since the desired reflection characteristic is obtained using sixteen concave portions 102 that are arranged in four rows of four concave portions as one unit, one or two columns or rows of concave portions 102 situated within an interval t1 in the width direction between the outer circumference 103a of the opening 103 and the edge 106a of the pixel 106 make only a small contribute to reflection. If regions that correspond to one or two columns or rows of concave portions 102 formed around the opening 103 do not contribute to reflection, the liquid crystal display panel is not effectively illuminated by external light, and it is impossible to improve the luminance of the liquid crystal display panel.
The present invention is designed to solve the above problems, and it is an object of the present invention to provide a transflective film capable of effectively reflecting incident external light and a liquid crystal display device using the same.
To achieve this object, there is provided a transflective film which is formed between a liquid crystal display panel and an illuminating device for illuminating the liquid crystal display panel from the backside of the liquid crystal display panel and in which a plurality of fine concave or convex portions is formed on one surface thereof and openings for transmitting light are formed at positions corresponding to pixels of the liquid crystal display panel, wherein an interval between at least one side of each of the openings and the edge of each of the pixels is smaller than the width of one concave or convex portion.
In the transflective film according to the present invention, the desired reflection characteristic can be obtained using a predetermined number of concave portions as a unit. Therefore, when the interval between the sides of the opening and the edge of the pixel is smaller than the width of one concave portion formed on the transflective film, concave portions that contribute the least to reflection can be minimized. In this way, units of the predetermined number of concave or convex portions, which contribute to the exhibition of the desired reflection characteristic, can be maximized, and the reflectance of the transflective film can be maximized.
The interval is preferably set in the range of 0.1 to 5.0 μm. In addition, according to a liquid crystal display device comprising the transflective film, an illuminating device, and a liquid crystal display panel, no matter whether external light or the illuminating device is used as a light source, it is possible to provide a liquid crystal display device capable of perform clear display with high luminance.
a) to 7(d) are plan views of a transflective film according to another embodiment of the present invention;
Preferred embodiments of the present invention will now be described with reference to the drawings.
An organic film 11 for forming concave portions (dimples) 31 on a reflecting film 12 formed thereon, a transflective film 12 which reflects light incident on the liquid crystal display device 1 and transmits light from a backlight 5, a color filter 13 for performing color display, an overcoat film 14 for coating and protecting the transflective film 12 and the organic film 11 and for planarizing unevenness caused by the organic film 11 and the color filter 13, an electrode layer 15 for driving a liquid crystal layer 30, and an alignment film 16 for controlling the alignment of liquid crystal molecules constituting the liquid crystal layer 30 are sequentially stacked between the liquid crystal layer 30 and the first substrate 10. In addition, an electrode layer 25, an overcoat film 24, and an alignment film 26 are sequentially stacked between the liquid crystal layer 30 and the second substrate 20.
In the color filter 13, for example, the three primary colors R, G, and B may be formed in a repeated pattern. In order to prevent mixed color of light between adjacent color filters 13, a light-shielding wall 35, which is referred to as a black matrix, is formed between the color filters 13. Regions partitioned by the light shielding walls 13 constitute pixel regions 36.
A polarizing plate 18 is provided on one surface of the first substrate 10 (the outer surface of the first substrate 10) opposite to the liquid crystal layer 30, and a phase difference plate 27 and a polarizing plate 28 are sequentially stacked on one surface of the second substrate 20 (the outer surface of the second substrate 20) opposite to the liquid crystal layer 30.
In addition, the backlight 5, functioning as an illuminating device for performing transmissive display in the liquid crystal display device 1, is disposed on the outside of the polarizing plate 18 on the first substrate 10.
The organic film 11 is provided to effectively scatter reflection light by forming concave portions 31 on the transflective film 12 formed thereon. By forming the concave portions 31 on the reflective film 12, external light incident on the liquid crystal display device 1 can be effectively reflected. Thus, bright display can be performed when illuminated by external light reflection.
The transflective film 12 is formed of a thin metallic film having high reflectance, such as aluminum. Openings 32 are formed on the transflective film 12 so as to correspond to the respective pixels of the liquid crystal display panel 9. The openings 32 function to make the light emitted from the backlight (the illuminating device) 5 transmitted into the transflective film 12 composed of a thin metallic film.
According to the above configuration, for example, when external light N is incident on the liquid crystal display panel 9 of the liquid crystal display device 1 in an outdoor environment during the day, the incident external light N is reflected from reflecting regions other than the openings 32 of the transflective film 12 formed of a thin metallic film and illuminates the liquid crystal display panel 9. Meanwhile, in an environment in which external light is insufficient, such as during the night or in a dark indoor environment, when the backlight 5 turns on, illumination light B emitted from the backlight 5 transmits the openings 32 of the transflective film 12 and illuminates the liquid crystal display panel 9. In this way, in the liquid crystal display device 1, the liquid crystal display panel 9 can be illuminated with high luminance by the action of the transflective film 12 no matter whether external light or the backlight 5 is used as a light source.
Preferably, the concave portions 31 are randomly formed in the depth range of 0.1 to 3 μm, for example, the pitch between adjacent concave portions 31 is randomly arranged in the range of 5 to 50 μm, and the inclined angle of the inside of the concave portion 31 is set in the range of −30° to +30°. In particular, it is important that the inclined angle of the inside of the concave portion 31 is set in the range of −30° to +30°, and that the pitch between adjacent concave portions 31 is randomly arranged in all directions in plan view. The reason is that if the pitch between adjacent concave portions 31 is regularly arranged, reflection light is colored due to the interference of light.
In addition, if the inclined angle of the inside of the concave portion 31 exceeds the range of −30° to +30°, the diffusion angle of reflection light is excessively widened, and thus the intensity of reflection light is lowered. Therefore, bright display cannot be performed (the diffusion angle of reflection light is more than 30° in the air, the peak of reflection strength inside the liquid crystal display is lowered, and total reflection loss increases). Moreover, if the depth of the concave portions 31 is more than 3 μm, the top of a convex portion is not buried with a planarization film (the overcoat film 14) when the concave portions 31 are planarized by a subsequent process, and the desired planarization cannot be obtained, causing nonuniform display.
When the pitch between adjacent concave portions 31 is less than 5 μm, there is a limitation in manufacturing a transfer mold used to form the organic film 11, the processing time is lengthened, a shape which optimizes reflection characteristic cannot be formed, and interference light occurs. In addition, practically, when diamond particles having a diameter of 30 to 100 μm are used, preferably, the pitch between adjacent concave portions 31 is 5 to 50 μm.
According to this configuration, it is possible for the transflective film 12 to transmit illumination light B from the backlight 5 through the openings 32 and to effectively reflect external light N from the reflecting region 33 in which a plurality of the concave portions 31 is formed.
As marked by the symbol Q2 in
Furthermore, the interval t2 between the sides 32a of the opening 32 and the edge 36 of the pixel region 36 may be appropriately selected according to the width of the concave portion 31. In addition, for at least one side 32a of the opening 32, the interval between the sides 32a of the opening 32 and the edge 36a of the pixel region 36 may be closed up to the interval t2. Furthermore, the shape or position of the concave portion or the opening according to the present invention is not limited to the above-described example, but a concave portion having any shape and an opening having any shape may be formed at any position.
As shown in
The inclined angle of the first curve A with respect to the flat surface S is steeper than the inclined angle of the second curve B. The maximum depth point D deviates from the center O of the concave portion 31 in the x-direction. In other words, the average value of absolute values of the inclined angles of the first curve A with respect to the flat surface S is larger than the average value of absolute values of the inclined angles of the second curve B with respect to the flat surface S. Even in the present embodiment, preferably, the average value of absolute values of the inclined angles of the first curve A constituting each of the concave portions 31 is irregularly distributed in the range of 1 to 89°. In addition, preferably, the average value of absolute values of the inclined angles of the second curve B constituting each of the concave portions 31 is irregularly distributed in the range of 0.5 to 88°.
The inclined angles of the first and second curves A and B are gently varied from the circumferential part of the concave portion 31 to the maximum depth point D. Thus, the maximum inclined angle δa (an absolute value) of the first curve A shown in
For example, the maximum inclined angle δa of each of the concave portions 31 is irregularly distributed in the range of 2 to 90°. However, the maximum inclined angles δa of a number of concave portions 31 are irregularly distributed in the range of 4 to 35°. In addition, a concave surface of the concave portion 31 shown in
Preferably, the first curve A of the plurality of concave portions 31 is aligned in a single direction. According to this configuration, the direction of reflection light reflected from the transflective film 12 may be changed from the direction of specular reflection to a specific direction. As a result, in the overall reflection characteristics in a specific longitudinal cross section, reflectance in a direction where light is reflected from the surface around the second curve B increases, and thus a reflection characteristic of focusing reflection light in a specific direction can be obtained.
As can be seen from
c) shows an example in which an opening 62 of a transflective film 61 is formed of a triangular shape. In this embodiment, an interval t5 between two sides 62a of the triangular opening 62 and an edge 63a of a pixel 63 is smaller than the width of one concave portion formed on the transflective film 61. In addition,
Furthermore, according to the above-described embodiments, the concave portions are formed on the transflective film. However, for example, as shown in FIG. 8, even if a plurality of fine convex portions 72 is formed on the surface of a transflective film 71, the same effects can be obtained.
As described above, in the transflective film according to the present invention, the desired reflection characteristic can be obtained using a predetermined number of concave portions as a unit. However, an interval between the sides of an opening and the edge of a pixel is smaller than the width of one concave portion formed on the transflective film, and thus concave portions that contribute the least to reflection can be minimized. In this way, units of the predetermined number of concave portions, which contribute to the exhibition of the desired reflection characteristic, can be maximized, and the reflectance of the transflective film can be maximized.
Preferably, the interval is set in the range of 0.1 to 5.0 μm. In addition, in a liquid crystal display device comprising the transflective film, an illuminating device, and a liquid crystal display panel, no matter whether external light or the illuminating device is used as a light source, it is possible to provide a liquid crystal display device capable of perform clear display with high luminance.
Number | Date | Country | Kind |
---|---|---|---|
2003-083327 | Mar 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6191835 | Choi | Feb 2001 | B1 |
6380995 | Kim | Apr 2002 | B1 |
6522377 | Kim et al. | Feb 2003 | B2 |
6693697 | Sakamoto et al. | Feb 2004 | B2 |
6697138 | Ha et al. | Feb 2004 | B2 |
6717638 | Kim | Apr 2004 | B1 |
6727964 | Tanaka et al. | Apr 2004 | B2 |
6762082 | Yamazaki et al. | Jul 2004 | B2 |
6798473 | Kaneda et al. | Sep 2004 | B2 |
6831718 | Wei et al. | Dec 2004 | B2 |
6853421 | Sakamoto et al. | Feb 2005 | B2 |
6872586 | Kiguchi et al. | Mar 2005 | B2 |
6873382 | Chang et al. | Mar 2005 | B2 |
6917393 | Sakamoto et al. | Jul 2005 | B2 |
7046315 | Kim et al. | May 2006 | B2 |
20050094068 | Ikeno et al. | May 2005 | A1 |
Number | Date | Country |
---|---|---|
2003-14912 | Jan 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20040189903 A1 | Sep 2004 | US |