Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage

Information

  • Patent Grant
  • 8409288
  • Patent Number
    8,409,288
  • Date Filed
    Friday, March 17, 2006
    18 years ago
  • Date Issued
    Tuesday, April 2, 2013
    11 years ago
Abstract
This present invention concerns a transforaminal intersomatic cage for an intervertebral fusion graft, and an instrument and method for implanting the cage, an embodiment of the cage having a body in the shape of a circular arc and comprising a lateral concave surface, a lateral convex surface, a straight upper surface, a straight lower surface and an end wall having at least one hole, called the end hole, designed to receive a rod of an instrument for implanting the cage between the vertebrae, wherein: the end hole has an orientation that is more or less tangential to the circular arc described by the body;the extremity opposite to the end wall of the body includes a return part extending the body toward the center of the circle on which the circular arc described by the body lies.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. 119 to French Patent Application No. FR0601315, filed in FRANCE on Feb. 15, 2006, which in incorporated herein by reference for all purposes.


BACKGROUND

This present invention concerns the area of intervertebral arthrodeses (fusion of two vertebrae) and in particular of intersomatic cages implanted between two adjacent vertebrae to allow the insertion and the growth of grafts of osseous tissue (or of substitute) in the disc space. In fact, after the insertion of the cage or implant, the intervertebral space is filled with autologous spongy bone or suitable bone substitutes. The invention also concerns an instrument for implanting the cage between the vertebrae, in particular through the transforaminal approach. The intersomatic cages are designed to be positioned between two vertebrae, in order to restore and/or maintain the disc space by replacing the intervertebral disc, and the grafts of osseous tissue or of substitute are designed to allow fusion between the two adjacent vertebrae between which they are inserted.


Various types of intersomatic cage are known from prior art. Some intersomatic cages known from prior art are machined from bone, most often cortical bone, so as to fuse with the graft inserted into the disc space. These cages composed of bone have the disadvantage to being capable of causing illness in the event of imperfect sterilisation.


Different intersomatic cages in solid materials of various types are also known from prior art. These cages include openings on their lower surface, their upper surface and on at least one of their lateral surfaces. One of these cages, in particular known from patent application WO0187194 (A1) submitted by the present applicant, has the shape of an open ring and can be used in combination with another cage of the same type by placing the open lateral surfaces of the two cages opposite to each other. Whatever the type of cage in question, spongy bone is compacted inside the cage, in order to finally achieve an osseous fusion (or arthrodesis) of the two vertebrae separated by a suitable disc space. Other cages known from previous designs are of parallelepiped shape, with the top and the bottom of the cage being completely open, and the top and bottom openings being designed to be positioned facing two vertebrae which have to be kept apart from each other. Openings created in the lateral faces of the parallelepipeds allow the graft to grow toward the exterior of the cage and possibly to reach a graft implanted in another cage also inserted into the disc space. These intersomatic cages have the disadvantage, firstly, of requiring a relatively large incision in the annulus (the outer part of the intervertebral disc), secondly, of requiring a relatively long time before achieving an arthrodesis, because of the confinement of the graft within a chamber at the centre of the cage and, thirdly, of having dimensions that are too large to be implanted through the transforaminal approach without partial or total ablation of the articular processes located posterior to the foramen through which the transforaminal approach runs.


Also known from previous designs in prior art, in particular from American patent application US 2005/0038511(A1), are intersomatic cages of various shapes and dimensions, machined from bone, and in particular an intersomatic cage of banana (or simple bracket) shape defining a longitudinal axis of the cage and having a lower surface and an upper surface, both straight, equipped with serrations and more or less parallel to the longitudinal axis of the cage, a concave lateral wall, a convex lateral wall, and two straight end walls that are more or less perpendicular to the top and bottom surfaces. One of the end walls of the cage includes a hole oriented toward the centre of the cage and intended to receive a rod of an instrument for insertion of the cage between the vertebrae. This intersomatic cage has the disadvantage of being in osseous tissue and therefore, as mentioned previously, of being capable of causing illness in the event of imperfect sterilisation. This cage may also have the disadvantage of eventually not being sufficiently solid to reliably take the stresses which will be applied to it when implanted in the disc space. Furthermore, this cage has the disadvantage of having a hole oriented toward the centre of the cage and in particular toward the centre of the concave surface, the result of which is to make the cage even more fragile. Moreover, the axis defined by this hole forms an angle, in relation to an axis parallel to a tangent to one of the concave and convex surfaces, that is too large to allow to an instrument for insertion of the cage between the vertebrae to fit onto the cage in an orientation that is more or less parallel to a tangent to one of the concave and convex surfaces. Thus, the orientation of the hole does not conform to the general curvature of the cage obtained by its convex and concave surfaces and does not allow an effective thrust to be applied to the cage on its axis of curvature. The cage, which is made fragile by this hole, is therefore in danger of breaking when pressure has to be applied at an angle that is too large in relation to the axis of curvature of the cage, which therefore proves difficult to implant by the transforaminal approach. Finally, withdrawal of the instrument inserted into the hole proves to be difficult due to the unsuitable orientation of the latter.


In this context, it is of interest to propose an intersomatic cage, preferably in a solid and sterile material, that has a shape and dimensions that make it suitable to be implanted through the transforaminal approach without an excessively large lesion of the articular processes, and having resources to fit onto an instrument for insertion of the cage between the vertebrae, with an orientation that conforms to the general shape of the cage. It is also of interest to propose an instrument for implanting the cage, and which is designed for the shapes and dimensions of the cage, allowing easy implantation of the cage between the vertebrae. Also known from prior art are previous designs of instruments for the implantation of intersomatic cages that have at least one rod designed to be inserted into a hole in the cage in order to hold the latter during passage through the foramen. However some of these instruments known from prior art require an ablation of at least one part of the articular processes impeding access to the foramen when the cage and the instrument have excessively large dimensions. Moreover, the transforaminal approach is relatively obstructed and is not perfectly straight. It is therefore desirable that the instrument should have an elbow (a curved or angled portion) at the end holding the cage. Some instruments known from prior art have dimensions that are small enough not to necessitate ablation of the articular processes, and some of these instruments have an angled portion that allows one to bypass the structure obstructing access to the disc space, but the rod designed to hold the cage, as well as the hole of the cage in which this rod is designed to be inserted, have an orientation that it not very compatible with the optimal thrust axis allowing insertion of the cage between the vertebrae and not very compatible with easy withdrawal of the rod when the cage has been implanted. It is therefore desirable to propose an instrument whose shape and dimensions are suitable for insertion using the transforaminal approach, having an angled portion to bypass the structures obstructing access to the disc space and having a rod designed to be inserted into a hole in the cage with an orientation that is optimal in order to facilitate the implantation of the cage between the vertebrae, and then withdrawal of the instrument.


SUMMARY

This present invention has as its objective to circumvent some disadvantages of the previous designs by proposing an intersomatic cage for an intervertebral fusion graft of suitable shape and of limited dimensions to be implanted through the transforaminal approach while also having adequate robustness to effectively maintain a disc space that allows the growth of the graft.


This objective is met by a transforaminal intersomatic cage for an intervertebral fusion graft having a body in the shape of a circular arc, comprising a lateral concave surface, a lateral convex surface, a straight upper surface, a straight lower surface and an end wall with at least one hole, called the end hole, designed to receive a rod of an instrument for the implantation of a cage between the vertebrae, wherein:

    • the end hole has an orientation that is more or less tangential to the circular arc described by the body;
    • the extremity opposite to the end wall of the body includes a return part extending the body toward the centre of the circle on which the circular arc described by the body lies.


According to another feature, the end wall includes at least one recess designed to receive at least one pin of a cage implantation instrument.


According to another feature, the return part includes at least one hole, called the return hole, whose orientation is more or less tangential to a circular arc defined by the concave surface of the body and designed to receive at least one end portion of a cage implantation instrument.


According to another feature, the fitting together of the end hole, the recess and the return hole with, respectively, the rod, the pin and the end portion of the cage implantation instrument ensures a good grip on the cage by the instrument when one end of the rod is placed in the end hole, and facilitates the implantation of the cage, with the rod sliding in the instrument so that it can be removed from the end hole and allow freeing of the cage and withdrawal of the instrument.


According to another feature, at least one of the upper and lower surfaces of the body is endowed with serrations that oppose the movement of the cage in relation to the adjacent vertebrae between which it is implanted.


According to another feature, the return part includes upper and lower surfaces extending, respectively, the upper and lower surfaces of the body, with at least one of these upper and lower surfaces of the return part also being equipped with serrations that oppose the movement of the cage.


According to another feature, the return part includes upper and lower surfaces extending, respectively, the upper and lower surfaces of the body, with at least one of these upper and lower surfaces of the return part having at least one chamfer facilitating the insertion of the cage into the disc space.


According to another feature, the extremities of the circular arc described by the body define a longitudinal axis of the cage, with at least one part of the serrations being oriented parallel to this longitudinal axis of the cage.


According to another feature, the extremities of the circular arc described by the body define a longitudinal axis of the cage, with at least one part of the serrations being oriented perpendicularly to this longitudinal axis of the cage.


According to another feature, the extremities of the circular arc described by the body define a longitudinal axis of the cage, with at least one part of the serration having the shape of chevrons centred on an axis perpendicular to this longitudinal axis of the cage.


According to another feature, the extremities of the circular arc described by the body define a longitudinal axis of the cage, with at least one part of the serrations describing concentric circular arcs each having, together with the circular arc described by the body, an axial symmetry whose axis of symmetry is parallel to this longitudinal axis of the cage.


According to another feature, at least one part of the serrations are oriented parallel to radii defined by the circle on which the circular arc described by the body lies.


According to another feature, the serrations present on a given surface of the cage have the same orientation.


According to another feature, the serrations present on a given surface of the cage do not have the same orientation.


According to another feature, the serrations present on two opposite surfaces of the cage have the same orientation.


According to another feature, the serrations present on two opposite surfaces of the cage do not have the same orientation.


According to another feature, the body includes at least one radio-opaque marker allowing the cage to be viewed by x-ray.


Another objective of this present invention is to propose an instrument for implanting an intersomatic cage between the vertebrae, facilitating access to the disc space and allowing a good grip to be obtained on the cage.


This objective is met by an instrument for the implantation of a transforaminal intersomatic cage for an intervertebral fusion graft having a body in the shape of a circular arc, comprising a lateral concave surface, a lateral convex surface, a straight upper surface, a straight lower surface, and an end wall having at least one hole, called the end hole, designed to receive one end of a rod of the instrument, with the end hole having an orientation that is more or less tangential to the circular arc described by the body, wherein said instrument comprises an extremity for gripping the cage, called the gripping end, and an extremity for manipulating the instrument, called the handling end, wherein:

    • the gripping end comprises at least one tube, called the guide tube onto one end of which is mounted, on one edge, a spatula, called the support spatula, in a circular arc, designed to at least partially fit onto the circular arc described by the body of the cage,
    • the guide tube comprising, at the base of the support spatula, an opening through which one end of the rod, mounted to slide in the guide tube, has a shape and dimensions making it suitable to be inserted into the end hole of the cage, so as to allow the cage to be gripped.


According to another feature, the rod extends up to the vicinity of the handling end of the instrument.


According to another feature, the rod includes at least one button projecting through a groove on at least one edge of the instrument, where this button allows the rod to be slid and its position to be adjusted in relation to the opening present at the end of the guide tube holding the support spatula.


According to another feature, the guide tube includes, at the end on which the support spatula is mounted but on the opposite edge, at least one pin whose shape and dimensions are suitable to fit onto at least one recess present on the end wall of the cage.


According to another feature, the support spatula includes, at the end opposite to the guide tube, at least one end portion whose shape and dimensions make it suitable to be inserted into at least one hole, called the return hole, present on a return part extending the body of the cage toward the centre of the circle on which the circular arc defined by this body lies, at the end opposite to the end wall of the body, this return hole having an orientation that is more or less tangential to a circular arc defined by the concave surface of the body.


According to another feature, the fitting together of the rod, the pin and the end portion of the cage implantation instrument with, respectively, the end hole, the recess and the return hole of the cage, ensures a good grip on the cage by the instrument when one end of the rod is placed in the end hole, and facilitates the implantation of the cage, with the rod to slide in the guide tube allowing withdrawal of the rod from the hole and freeing of the cage, and facilitating the withdrawal of the instrument once the cage has been implanted.


According to another feature, the guide tube includes, at the end opposite to that holding the support spatula, a mobile portion that pivots in relation to a tube, called the aiming tube, extending up close to the handling end of the instrument, said mobile portion pivoting in at least one direction that is more or less parallel to the orientation of the circular arc defined by the support spatula.


According to another feature, the mobile portion and the aiming tube form a ball and socket connection, one of them having one end in the form of a sphere and the other having a hollow end forming a spherical recess whose shape and dimensions are complementary to those of this sphere.


According to another feature, at least the edge of the spherical recess located on the same side of the instrument as the support spatula, in the ball and socket connection formed by the mobile portion and the aiming tube, encompasses the sphere to a lesser extent than the other edges of this recess, so as to allow pivoting at least in a direction that is more or less parallel to the orientation of the circular arc defined by the support spatula.


According to another feature, the rod is flexible and traverses the ball and socket connection at its centre, the sphere having a channel at its centre to allow the rod to slide, where this channel has a hollowed portion at least on its edge located on the same side of the instrument as the support spatula, so as to allow the rod to slide through the ball and socket connection even when the instrument is in its angled position due to pivoting of the ball and socket connection in a direction that is more or less parallel to the orientation of the circular arc defined by the support spatula.


According to another feature, a locking tube is screwed onto the aiming tube and includes a locking ring that allows the locking tube to be screwed in, so that screwing in and unscrewing results in forward and reverse motion of the locking tube in relation to the aiming tube, the forward motion of the locking tube resulting in bringing the locking tube into contact with the mobile portion and, as a consequence, preventing the pivoting of the mobile portion of the guide tube in relation to the aiming tube, to any angle between the guide tube and the aiming tube.


According to another feature, the mobile portion that pivots in relation to the aiming tube includes at least one serration which is used to obtain a given angle between the guide tube and the aiming tube, where the maximum angle in the presence of this serration is greater than in its absence because of the presence of the locking tube.


According to another feature, at least one edge of one end of the locking tube locks into the serration, when the guide tube forms a given angle with the aiming tube, so as to prevent pivoting and to maintain the instrument in at least one position, until it is totally immobilised by screwing in the locking tube.


According to another feature, the handling end of the instrument is fitted with a handle allowing the manipulation of the instrument and facilitating the implantation of the cage between the vertebrae, by allowing effective thrust to be applied to the instrument.


Another objective of the preset invention is to propose a method for implanting a transforaminal intersomatic cage according to the invention into the disc space with an instrument according to the invention.


This objective is reached by a method for implanting a transforaminal intersomatic cage for an intervertebral fusion graft having a body in the shape of a circular arc, comprising a lateral concave surface, a lateral convex surface, a straight upper surface, a straight lower surface and an end wall with at least one hole, called the end hole, having an orientation that is more or less tangential to the circular arc described by the body and designed to receive a rod of an instrument for the implantation of a cage between the vertebrae, the extremity opposite to the end wall of the body including a return part extending the body toward the centre of the circle on which the circular arc described by the body lies, said return part including at least one hole, called the return hole, whose orientation is more or less tangential to a circular arc defined by the concave surface of the body and designed to receive at least one end portion of a cage implantation instrument, said method comprising a step of insertion of the cage in the disc space with an instrument comprising an extremity for gripping the cage, called the gripping end, and an extremity for manipulating the instrument, called the handling end, said gripping end comprising at least one tube, called the guide tube onto one end of which is mounted, on one edge, a spatula, called the support spatula, in a circular arc, designed to at least partially fit onto the circular arc described by the body of the cage, said spatula including, at the end opposite to the guide tube, at least one end portion whose shape and dimensions make it suitable to be inserted into the return hole and said guide tube comprising, at the base of the support spatula, an opening through which one end of the rod, mounted to slide in the guide tube, has a shape and dimensions making it suitable to be inserted into the end hole of the cage, said method comprising the following steps:

    • incising the skin and muscles laterally to the vertebral column,
    • incising the annulus, removing the nucleus and clearing the disc space,
    • inserting the end portion of the spatula into the return hole of the cage, moving the circular arc of the body in relation to the spatula and locking the cage onto the instrument by sliding the rod until it enters into the end hole,
    • impacting the cage in the disc space, in a circular movement,
    • releasing the cage from the instrument by sliding the rod until it exits from the end hole and removing the instrument,
    • suturing the annulus and the skin.


According to another feature, the step of impacting the cage in the disc space is preceded or accompanied by a step of articulating a mobile portion at a distal end of the instrument to find the most appropriate angle for engagement of the cage in the disc space, said step of articulating the mobile portion being followed by a step of locking the mobile portion at the desired angle by screwing a locking tube preventing the pivoting of the mobile portion.


According to another feature, the step of impacting the cage in the disc space is followed by a step of checking the position and orientation of the cage in the disc space by applying x-ray detecting at least one radio-opaque marker present in the body of the cage, said step of checking being, if necessary, followed by a step of adjusting the position and/or orientation of the cage in the disc space, prior to release from the instrument.


According to another feature, the step of inserting the end portion of the spatula into the return hole of the cage and moving the circular arc of the body in relation to the spatula is followed, when the guide tube of the instrument includes, at the end on which the support spatula is mounted but on the opposite edge, a pin whose shape and dimensions are suitable to fit onto at least one recess present on the end wall of the cage, by a step of locking said pin into said recess, prior to locking the cage onto the instrument by sliding the rod until it enters into the end hole.


According to another feature, the step of impacting the cage in the disc space is preceded by a step of distraction of the adjacent vertebrae by tools of known types, in order to facilitate the access to the disc space





BRIEF DESCRIPTION OF THE DRAWINGS

Other features and advantages of this present invention will appear more clearly on reading the description that follows, provided with reference to the appended drawings, in which:



FIGS. 1A, 1B, 1C and 1D are views in perspective of the intersomatic cage according to various embodiments of the invention;



FIGS. 2A and 2C are views in profile of one embodiment of the instrument for implanting intersomatic cage between the vertebrae, with the gripping end of the instrument in position, respectively straight and angled, with FIGS. 2B and 2D showing the detail of the portions indicated by circles 2B and 2D respectively in FIGS. 2A and 2C respectively;



FIG. 3A provides a top view of one embodiment of the instrument for implanting an intersomatic cage with a plane section 3B-3B, with FIG. 3B showing a view in section according to axis 3B-3B of this embodiment of the insertion instrument, and FIGS. 3C and 3D showing the detail of the portions indicated, respectively, by circles 3C and 3D in FIG. 3B;



FIG. 4A provides a view in profile of one embodiment of the instrument for implanting an intersomatic cage with a method for insertion of the intersomatic cage held at the gripping end of the instrument, with FIG. 4B showing the detail of the portion indicated by circle 4B in FIG. 4A, and FIG. 4C showing a top view of this embodiment of the instrument holding the intersomatic cage, with a plane section 4D-4D, where FIG. 4D provides a view in section according to axis 4D-4D of this embodiment, and FIG. 4E shows the detail of the portion indicated by circle 4E in FIG. 4D.





DETAILED DESCRIPTION OF THE EMBODIMENTS

This present invention concerns a transforaminal intersomatic cage for an intervertebral fusion graft. This cage is used to maintain a disc space that is sufficient to allow a graft to be inserted into the disc space in order to grow and to allow an osseous fusion (arthrodesis) of the adjacent vertebrae. This cage is called transforaminal since it is particularly suitable to be implanted through the transforaminal approach, although it can also be implanted by any approach to suit the convenience of the surgeon responsible for the implantation. In a manner which is already known, this intersomatic cage has a body (1) in the shape of a circular arc having a lateral concave surface (10), a lateral convex surface (11), a straight upper surface (12), and a straight lower surface (13). The body (1) therefore has more or less the shape of a banana or simple bracket, and therefore does indeed describe a circular arc.


This circular arc shape of the cage according to various embodiments of the invention is particularly well-matched to the shape of the edges of the vertebral plates, which allows the cage to be positioned in the vicinity of the periphery of the vertebral plates, that is to say on their most solid portion. A cage according to various embodiments the invention will therefore be implanted at the level of the anterior peripheral portion of the vertebral plates, for example. This positioning of the cage close to the edges of the vertebral plates also enables to obtain a large initial surface for an osseous graft or a substitute. At one of the extremities of the body (1), the cage includes an end wall (14) having at least one hole (30), called the end hole, designed to receive a rod (53) of an instrument (5) for implantation of the cage between the vertebrae.


In a particularly advantageous embodiment of the cage according to the invention, the end hole (30) has an orientation that is more or less tangential to the circular arc described by the body (1). This orientation of the end hole (30) tangentially to the circular arc described by the body (1) facilitates the thrusting of the cage by the cage implantation instrument (5) and facilitates the insertion and withdrawal of the rod (53) of this instrument (5), respectively, into and out of the end hole (30). Moreover, this end wall (14) includes at least one recess (31) designed to receive at least one pin (54) of a cage implantation instrument (5). This recess (31) is used to provide an additional surface for the gripping of the cage by the instrument. It can consist of a simple shoulder or a recess of more complex shape such as, for example, a recess with a groove in which a serration of the pin (54) (thus having the shape of a spur, for example) of the instrument (5) can be locked.


In a particularly advantageous embodiment of the cage according to the invention, the extremity opposite to the end wall (14) of the body (1) includes a return part (15) extending the body (1) toward the centre of the circle on which the circular arc described by the body (1) lies. This return part provides better stability of the intersomatic cage between the vertebrae without increasing its dimensions excessively. This return part is used to prevent the intersomatic cage from tilting to one of its sides under the effect of the stresses to which it is subjected when implanted between two vertebrae of a patient. Moreover, this return part (15) includes at least one hole (32), called the return hole, whose orientation is more or less tangential to a circular arc defined by the concave surface (10) of the body (1) and designed to receive at least one end portion (55) of a cage implantation instrument (5). Thus, the instrument (5) can include a spatula (56) having a shape complementary to that of the circular arc described by the body. This spatula (56) thus hugs the shape of the cage by fitting its body (1). At one end of the spatula (56), an end portion (55) can be designed for insertion into this return hole (32). The fitting together of the end hole (30), the recess (31) and the return hole (32) with the rod (53), the pin (54) and the end portion (55) of the cage implantation instrument (5) respectively, ensures a good grip on the cage by the instrument (5) when one end of the rod (53) is placed in the end hole (30). This complete gripping of the cage up to the most distal end facilitates the implantation of the cage by providing good stability of the cage at the end of the instrument (5). This good stability is also particularly important in the case of implantation through the transforaminal approach. The rod (53) is designed to slide in the instrument (5) so that it can be withdrawn from the end hole (30) and to allow freeing of the cage and withdrawal of the instrument (5).


In a manner which is already known, at least one of the upper and lower surfaces of the body (1) is equipped with serrations (20) that oppose the movement of the cage in relation to the adjacent vertebrae between which it is implanted. The invention provides for different possible orientations of the serrations (20). In an advantageous manner, in one embodiment of the invention, the serrations (20) present on two opposite surfaces of the cage may not have the same orientation, so as to oppose the movement of the cage in different directions for each of the faces, as can be seen particularly in FIGS. 1A to 1C. In another embodiment, the serrations (20) present on two opposite surfaces of the cage will have the same orientation, as can be seen particularly in FIG. 1D. Likewise, serrations (20) present on one surface of the cage can have an orientation that is different from other serrations located on the same surface. Conversely, all the serrations (20) present on a given surface of the cage can have the same orientation. Depending on the embodiment, the intersomatic cage can therefore include any combination of these orientations on all or part of either of its surfaces. The extremities of the circular arc described by the body (1) define a longitudinal axis of the cage. The cage has larger dimensions on this longitudinal axis than on the axis perpendicular to it. This longitudinal axis will allow the different possible orientations of the serrations to be defined. Thus in one embodiment, at least one part of the serrations (20) can be oriented parallel, as can be seen particularly in FIG. 1C, or perpendicular to this longitudinal axis of the cage. In another embodiment, they can be oriented so as to form an angle of between 0 and 90 degrees in relation to this longitudinal axis of the cage. In another embodiment, at least one part of the serrations (20) can describe chevrons that are centred in relation to an axis perpendicular to this longitudinal axis, as can be seen particularly in FIG. 1A. In another embodiment, at least one part of the serrations (20) can describe concentric circular arcs, each with, in relation to the circular arc described by the body (1), an axial symmetry whose axis of symmetry is parallel to this longitudinal axis of the cage. In another embodiment, at least one part of the serrations (20) will be oriented parallel to radii defined by the circle on which the circular arc described by the body lies (1), as can be seen particularly in FIGS. 1B and 1D.


Furthermore, the return part (15) includes upper and lower surfaces extending the upper and lower surfaces respectively of the body (1). In one embodiment, at least one of these upper and lower surfaces of the return part (15) can also be equipped with serrations (20) that oppose the movement of the cage. In another embodiment, at least one of these upper and lower surfaces of the return part (15) can include at least one chamfer (16) facilitating the insertion of the cage in the disc space, as can be seen particularly in FIG. 1A.


This present invention also concerns an instrument (5) for the implantation of an intersomatic cage between the vertebrae. This instrument according to the invention is particularly suitable for implantation, through the transforaminal approach, of an intersomatic cage for an intervertebral fusion graft, although it could naturally be used for any approach that is convenient for the surgeon responsible for the implantation. The instrument (5) is designed to be particularly suitable for use in combination with the intersomatic cage described previously. The instrument (5) according to an embodiment of the invention includes an extremity for gripping the cage allowing the cage to be held at the end of the instrument and called the gripping end. The extremity of the instrument opposite its gripping end allows the manipulation of the instrument by the surgeon and is called the handling end. The gripping end of the instrument (5) includes at least one tube (52), called the guide tube. At the extremity of this guide tube (52), on one edge of the latter, is mounted a spatula (56), called the support spatula. This spatula (56) has the shape of a circular arc, designed to at least partially fit onto the circular arc described by the body (1) of the cage. By hugging the shape of the body (1), this spatula provides the cage with solidity. The spatula will therefore protect the cage in particular against impact, to which it is sometimes less resistant than to pressures. At the base of the support spatula (56), the guide tube (52) includes an opening through which one end of the rod (53) passes to fit into the end hole (30) of the cage. This rod (53) is mounted to slide in the guide tube (52) and has a shape and dimensions that make it suitable to be inserted into the end hole (30) of the cage, so as to allow the cage to be gripped. In one embodiment, this rod (53) extends up to the vicinity of the handling end of the instrument (5). The rod (53) includes at least one button (61) projecting through a groove (610) on at least one edge of the instrument (5), this button (61) allowing the rod to be slid (53) and its position to be adjusted in relation to the opening present at the end of the guide tube (52) holding the support spatula (56). This button will preferably be located at the extremity of the rod (53) and, according to the embodiment, can therefore be located close to the handling end of the instrument (5) or anywhere on the instrument, although it would obviously be more practical, in principle, that it should be close to the handling end.


In one embodiment, the guide tube (52), at the end on which the support spatula is mounted (56) but on the opposite edge, includes at least one pin (54) whose shape and dimensions are suitable to fit onto at least one recess (31) present on the end wall (14) of the cage. This embodiment is particularly suitable for the one of the embodiments of the cage presented above and improves the quality of the grip on the cage by the instrument (5).


In one embodiment, the support spatula (56), at the end opposite to the guide tube (52), includes at least one end portion (55) whose shape and dimensions make it suitable to be inserted into at least one hole (32), called the return hole, present on a return part (15) of the cage. This embodiment is particularly suitable for the one of the embodiments of the cage in which a return part (15) extends the body (1) toward the centre of the circle on which the circular arc described by the body (1) lies. Since this return hole (32) has an orientation that is more or less tangential to a circular arc defined by the concave surface (10) of the body (1), the end portion (55) at the end of the spatula (56) in a circular arc will therefore have a shape that is particularly suitable to fit into the return hole (32). In one embodiment that combines the resources for fitting together the instrument and the cage, described above, with the fitting together of the rod (53), the pin (54) and the end portion (55) of the cage implantation instrument (5) to the end hole (30), the recess (31) and the return hole (32) respectively of the cage, ensures a good grip on the cage by the instrument (5) when one end of the rod (53) is placed in the end hole (30), and facilitates the implantation of the cage.


In a particularly advantageous embodiment and suitable for the transforaminal approach, the guide tube (52), at the end opposite to that holding the support spatula (56), includes a mobile portion (57) that pivots in relation to a tube (59), called the aiming tube, extending up close to the handling end of the instrument (5). This mobile portion (57) pivots in at least one direction that is more or less parallel to the orientation of the circular arc defined by the support spatula (56). As can be seen particularly in FIG. 3C, the mobile portion (57) and the aiming tube (59) together can form a ball and socket connection (or swivel link), one of them having one end in the form of a ball or sphere (592) and the other having a hollow end forming a socket, called spherical recess (571), whose shape and dimensions are complementary to those of this sphere. In the embodiment illustrated in FIG. 3C, one end of the aiming tube (59) has a shape of sphere (592) and the corresponding end of the guide tube (52) forms a spherical recess. In one embodiment of the invention, at least the edge (575) of the spherical recess (571) located on the same side of the instrument (5) as the support spatula (56), in the ball and socket connection formed by the mobile portion (57) and the aiming tube (59), encompasses the sphere to a lesser extent than the other edges (576) of this recess (571), so as to allow pivoting at least in a direction that is more or less parallel to the orientation of the circular arc defined by the support spatula (56).


In one embodiment, the rod (53) is flexible, and traverses the ball and socket connection at its centre. The sphere (592) then has a channel at its centre to allow the rod to slide (53). This channel will be hollowed out at least on its edge located on the same side of the instrument (5) as the support spatula (56). Thus, the channel will include a hollowed out portion (593) allowing the rod (53) to slide through the ball and socket connection even when the instrument (5) is in its angled position due to pivoting of the ball and socket connection, as illustrated in FIGS. 2C and 2D.


In one embodiment, a locking tube (58) is screwed onto the aiming tube (59) and includes a locking ring (60) that allows the locking tube to be screwed in (58). Screwing-in and unscrewing allows the forward and backward motion of the locking tube (58) in relation to the aiming tube (59). The forward motion of the locking tube (58) results naturally in bringing the locking tube (58) into contact with the mobile portion (57) and, as a consequence, prevents the pivoting of the mobile portion (57). Thus, the guide tube (52) can be locked in relation to the aiming tube (59), at any angle between the guide tube (52) and the aiming tube (59). The mobile portion (57) that pivots in relation to the aiming tube (59) can also, in one embodiment, include at least one serration (574), particularly visible in FIG. 3C. The presence of this serration (574) allows pivoting of the mobile portion (57) through a larger amplitude than if the mobile portion entered directly into contact with the locking tube (58). This serration (574) allows to obtain a particular angle formed by the angled portion between the support tube (52) and the aiming tube (59). Moreover, in one embodiment, this serration (574) can be designed so that when the guide tube (52) forms a given angle with the aiming tube (59), one edge of one end of the locking tube (58) locks into this serration (574), as illustrated in FIGS. 2A to 2D. This serration (574) is therefore used to stop the pivoting and to maintain the instrument in at least one position until it is totally immobilised by screwing-in of the locking tube (58).


In a manner which is already known, the handling end of the instrument (5) can naturally be fitted with a handle (62) allowing the manipulation of the instrument (5) and facilitating the implantation of the cage between the vertebrae by allowing effective thrust to be applied to the instrument (5).


As mentioned previously, the intersomatic cage and the instrument according to this present invention are particularly suitable for implantation of the cage between two adjacent vertebrae using the transforaminal approach. This implantation can be performed as described below, although other procedural variants can naturally exist, and the surgeon can naturally adapt the technique described here at his convenience, in accordance with any changes in the techniques employed conventionally for example. In particular, this present invention can be used in combination with osseous anchor implants, connected together by immobilising bars, allowing the movement of the two adjacent vertebrae, between which the cage is designed to be inserted, to be eliminated or limited. These osseous anchor implants can consist, for example, of those described in the international patent applications submitted by this present applicant and published under the numbers WO02/080788(A1), WO03/049629(A1) and WO2005/020829(A1) or by any other type of resources for immobilisation of the adjacent vertebrae. The procedure relating to the joining of the adjacent vertebrae is specific to the resources used to immobilise the adjacent vertebrae and therefore need not be described here.


Only the procedure used during an implantation through the transforaminal approach will be detailed here, the implantation by other approaches being relatively similar but easier, in particular because of the fact that the transforaminal approach needs to bypass the articular processes. The procedure for implantation through the transforaminal approach begins naturally by at least one incision laterally to the axis of the vertebral column. Preferably, two intermuscular incisions will be made, along a path that is well known to the professional surgeon for example, as described by Dr Wiltse. According to the size of the cage chosen and/or according to the space between the two vertebrae, a resection, at least partial, of the articular processes can be effected in order to improve access to the foramen and to the disc space. These articular processes will then preferably be resected laterally, on the side for insertion of the cage. If an intra-articular graft is desired, an opening and an avivement (withdrawal of the cartilage) of the articular processes, at least on one side but possibly on both sides, will allow the insertion of at least one intra-articular graft. The insertion of the osseous anchor implants designed to immobilise the two adjacent vertebrae can be effected at this stage of the procedure. These osseous anchor implants screwed into each of the adjacent vertebrae and connected together by a bar, here allow a first posterior distraction in order to facilitate access to the disc space. A tool of known type such as a nerve root retractor (or root spreader) can be used to protect the roots of the vertebrae. A lateral incision in the external layer of the annulus, between the transverse articular processes for example, will provide access to the disc space. In a manner which is already familiar, the formation of an open flap, held by suspension ties for example, will facilitate the following operations. Then the surgeon will proceed to the complete removal of the nucleus and of the internal layers of the annulus. Different tools of known types, such as an angled disc clamp, curettes and rasps (straight and angled) will be used at this stage to prepare the disc space and withdraw the cartilage from the vertebral plates without damaging or weakening it.


At this stage of the procedure, the surgeon will have cleared access to the disc space. The osseous anchor implants will allow the surgeon to spread the vertebrae so as to facilitate insertion of the cage. For example, the surgeon will use osseous anchor implants screwed into the vertebrae and connected together by a bar parallel to the axis of the vertebral column. The osseous anchor implants generally include screws driven into the vertebrae and defining a longitudinal securing axis. At this stage, these longitudinal axes of the osseous anchor implants are not parallel to each other but cross in front of the vertebral column. Together with the axis of the bar, these axes form an inverted capital A. The surgeon will then adjust the spread of the osseous anchor implants. To this end, the surgeon can position spreader tubes on the heads of the osseous anchor implants in order to spread these as much as possible, and will then screw in the head of these osseous anchor resources on the bar to fix their position along the bar parallel to the axis of the vertebral column. The osseous anchor implants thus implanted and held securely on the bar will allow an anterior distraction to be performed. The surgeon applies pressure to the spreader tubes so as to move them toward each other, which tends to open the inverted capital A at its base, so that it becomes a capital H. This operation can possibly be repeated several times by unscrewing the heads of the osseous anchor implants from the bar and separating the spreader tubes to spread the heads and then screwing in the heads of the implants and drawing together the spreader tubes to spread the feet of the capital H, thus opening the disc at the front. This anterior opening of the disc space can be accompanied by an adjustment of the lordosis.


The surgeon will then proceed to the choice of the cage to be implanted, using trial cages with the same dimensions as the cages designed to be implanted. A trial cage is placed on the instrument (5) and is then impacted into the disc space. Impaction should be effected without excessive force in order not to weaken (damage) the vertebral plates. The trial cage is removed using a tool of known type such as an extraction masselotte (or extractor or removal masselotte or bobweight), and this operation can be repeated until a cage of satisfactory size has been found.


The definitive cage can then be placed on the implantation instrument (5) by inserting the end portion (55) of the spatula (56) into the return hole (32) of the cage and moving the circular arc of the body (1) in relation to the spatula (56) until the pin (54) locks into the recess (31) of the end wall (14). The cage is then locked onto the instrument (5) by means of the sliding rod (53) which enters into the end hole (30). Articulation of the instrument at its distal part by means of the mobile portion (57) allows the most appropriate angle to be found for engagement of the cage in the intersomatic space. The angle can be locked by the screwing in the locking tube (58) using the threaded ring (60) for example by means of a tool of known type such as a pin wrench. The cage thus held on the instrument and oriented in an optimal manner can then be impacted between the vertebrae. The cage will preferably be impacted as anteriorly as possible, in a circular movement. In order to optimise the positioning of the cage, the angle of the articulation formed by the mobile part (57) can be adjusted during impaction, taking care to correctly lock this angle by means of the locking ring (60). The position and the orientation of the cage in the intersomatic disc space can then be verified by means of an x-ray appliance of known type, such as a brightness amplifier for example. In fact, in one embodiment the cage includes at least one radio-opaque marker which will be detected by the brightness amplifier. The surgeon can then adjust the positioning of the cage according to the position and the orientation of the marker or markers. When the cage has been correctly implanted, it will be released from the instrument (5) by moving the sliding rod (53) in the direction of the handling end. The surgeon then only has to position the osseous graft(s) or substitute(s) between the cage (preferably placed at the level of the anterior edges of the vertebral plates) and the medulary cavity. To this end, the surgeon will use a tool of known type, such as a spatula for example. The flap formed in the external layer of the annulus can then be re-closed and sutured, so as to maintain the graft in place. A graft, of the posterolateral type for example, can be effected at this stage in order to optimise the joining together of the vertebrae. Graft will be then placed on the transverse articular process for example. A redon drain can possibly then be put in place, and a subcutaneous suturing followed by a cutaneous suturing of the incisions will allow the surgical procedure to be finalised.


It should be obvious to people well versed in these techniques that this present invention allows embodiments in many other specific forms without the moving outside the scope of the invention as claimed. As a consequence, the present embodiments should be considered as illustrations only, but can be modified within the domain defined by the reach of the attached claims, and the invention must not be limited to the details given above.

Claims
  • 1. An intersomatic cage for an intervertebral fusion graft comprising a body generally defining an arc, the body comprising: a first longitudinal extremity of the body; a second longitudinal extremity of the body; a lateral concave surface defining a lateral arc congruent with the lateral concave surface and extending past the first longitudinal extremity and the second longitudinal extremity of the body and defining opposite convex and concave sides of the lateral arc, with the lateral concave surface configured to mate with a complementary support of an insertion instrument; a lateral convex surface; a substantially transverse upper surface; a substantially transverse lower surface; an end wall at the first longitudinal extremity of the body, the end wall comprising an end hole configured to receive a retaining end of a rod of an implantation instrument and oriented substantially tangential to the arc defined by the body; and an incurvate return part located at the second longitudinal extremity of the body opposite the end wall and protruding from the body across the lateral arc, with the incurvate return part disposed on the concave side of the lateral arc and the rest of the body lying on the convex side of the lateral arc.
  • 2. An intersomatic cage according to claim 1, wherein the end wall comprises a recess configured to receive a pin of an implantation instrument.
  • 3. An intersomatic cage according to claim 2, wherein the return part comprises a return hole oriented substantially tangential to the arc defined by the body and configured to receive an end portion of an implantation instrument.
  • 4. An intersomatic cage according to claim 1, wherein the return part comprises a return hole oriented substantially tangential to the arc defined by the body and configured to receive an end portion of an implantation instrument.
  • 5. An intersomatic cage according to 4, wherein the end wall comprises a recess configured to receive a pin of an implantation instrument, the end hole, the recess, and the return hole being configured to cooperate with, respectively, a retaining end of a rod, a pin, and an end portion of an implantation instrument, to secure a grip on the intersomatic cage by the implantation instrument.
  • 6. An intersomatic cage according to claim 5, wherein the lateral concave surface is configured to mate with a convex surface of a spatula of an implantation instrument between the end hole and the recess.
  • 7. An intersomatic cage according to claim 1, wherein at least one of the upper and lower surfaces of the body comprises serrations oriented to oppose the movement of the intersomatic cage following intervertebral implantation of the intersomatic cage.
  • 8. An intersomatic cage according to claim 7, wherein the first and second longitudinal extremities of the body define a longitudinal axis of the intersomatic cage, and at least some of the serrations are oriented substantially parallel to the longitudinal axis of the intersomatic cage.
  • 9. An intersomatic cage according to claim 7, wherein the first and second longitudinal extremities of the body define a longitudinal axis of the intersomatic cage, and at least some of the serrations are oriented substantially perpendicular to the longitudinal axis of the intersomatic cage.
  • 10. An intersomatic cage according to claim 7, wherein the first and second longitudinal extremities of the body define a longitudinal axis of the intersomatic cage, and at least some of the serrations are disposed in a chevron configuration about an axis substantially perpendicular to the longitudinal axis of the intersomatic cage.
  • 11. An intersomatic cage according to claim 7, wherein the first and second longitudinal extremities of the body define a longitudinal axis of the intersomatic cage, and at least some of the serrations define concentric circular arcs each being disposed symmetrically to the arc defined by the body, in relation to an axis of symmetry substantially parallel to the longitudinal axis of the intersomatic cage.
  • 12. An intersomatic cage according to claim 7, wherein at least some of the serrations are oriented substantially normal to the arc defined by the body.
  • 13. An intersomatic cage according to claim 7, wherein all of the serrations on the upper or lower surface of the intersomatic cage have substantially the same orientation.
  • 14. An intersomatic cage according to claim 7, wherein some of the serrations on the upper or lower surface of the intersomatic cage do not have the same orientation as other serration on the same surface of the intersomatic cage.
  • 15. An intersomatic cage according to claim 7, wherein serrations on each of the upper and lower surfaces of the intersomatic cage have the same orientation.
  • 16. An intersomatic cage according to claim 7, wherein the serrations on the upper surface of the intersomatic cage have an orientation different from the orientation of the serrations on the lower surface of the intersomatic cage.
  • 17. An intersomatic cage according to claim 1, wherein the return part comprises upper and lower surfaces extending, respectively, the upper and lower surfaces of the body, at least one of the upper and lower surfaces of the return part comprising serrations configured to oppose the movement of the intersomatic cage following intervertebral implantation of the intersomatic cage.
  • 18. An intersomatic cage according to claim 1, wherein the return part comprises upper and lower surfaces extending, respectively, the upper and lower surfaces of the body, at least one of the upper and lower surfaces of the return part comprising a chamfer configured to facilitate the intervertebral implantation of the intersomatic cage.
  • 19. An intersomatic cage according to claim 1, wherein the body comprises a radio-opaque marker configured to identify the intersomatic cage in x-ray images.
Priority Claims (1)
Number Date Country Kind
06 01315 Feb 2006 FR national
US Referenced Citations (355)
Number Name Date Kind
3374786 Callender, Jr. Mar 1968 A
3791380 Dawidowski Feb 1974 A
3892232 Neufeld Jul 1975 A
4009712 Burstein et al. Mar 1977 A
4175555 Herbert Nov 1979 A
4237875 Termanini Dec 1980 A
4379451 Getscher Apr 1983 A
4409974 Freedland Oct 1983 A
4432358 Fixel Feb 1984 A
4488543 Tornier Dec 1984 A
4494535 Haig Jan 1985 A
4519100 Wills et al. May 1985 A
4561432 Mazor Dec 1985 A
4599086 Doty Jul 1986 A
4612920 Lower Sep 1986 A
4621629 Koeneman Nov 1986 A
4632101 Freedland Dec 1986 A
4653489 Tronzo Mar 1987 A
4657001 Fixel Apr 1987 A
4714469 Kenna Dec 1987 A
4721103 Freedland Jan 1988 A
4759352 Lozier Jul 1988 A
4787378 Sodhi Nov 1988 A
4791918 Von Hasselbach Dec 1988 A
4898156 Gatturna et al. Feb 1990 A
4904261 Dove et al. Feb 1990 A
4946468 Li Aug 1990 A
4964403 Karas et al. Oct 1990 A
4968315 Gatturna Nov 1990 A
4969887 Sodhi Nov 1990 A
4973332 Kummer Nov 1990 A
4973333 Treharne Nov 1990 A
4997432 Keller Mar 1991 A
5002550 Li Mar 1991 A
5007910 Anapliotis et al. Apr 1991 A
5032125 Durham et al. Jul 1991 A
5041114 Chapman et al. Aug 1991 A
5041116 Wilson Aug 1991 A
5046513 Gatturna et al. Sep 1991 A
5057103 Davis Oct 1991 A
5062851 Branemark Nov 1991 A
5087266 Connell et al. Feb 1992 A
5098433 Freedland Mar 1992 A
5116336 Frigg May 1992 A
5129901 Decoste Jul 1992 A
5176681 Lawes et al. Jan 1993 A
5192303 Gatturna et al. Mar 1993 A
5192327 Brantigan Mar 1993 A
5207679 Li May 1993 A
5217486 Rice et al. Jun 1993 A
5242448 Pettine et al. Sep 1993 A
5246458 Graham Sep 1993 A
5300074 Frigg Apr 1994 A
5306307 Senter et al. Apr 1994 A
5306309 Wagner et al. Apr 1994 A
5324292 Meyers Jun 1994 A
5342394 Matsuno et al. Aug 1994 A
5356410 Pennig Oct 1994 A
5356413 Martins et al. Oct 1994 A
5372599 Martins Dec 1994 A
5397364 Kozak et al. Mar 1995 A
5417692 Goble et al. May 1995 A
5417712 Whittaker et al. May 1995 A
5425772 Brantigan Jun 1995 A
5429641 Gotfried Jul 1995 A
5437674 Worcel et al. Aug 1995 A
5456721 Legrand Oct 1995 A
5458601 Young, Jr. et al. Oct 1995 A
5458638 Kuslich et al. Oct 1995 A
5472452 Trott Dec 1995 A
5478342 Kohrs Dec 1995 A
5489210 Hanosh Feb 1996 A
5507754 Green et al. Apr 1996 A
5522845 Wenstrom, Jr. Jun 1996 A
5531792 Huene Jul 1996 A
5534004 Santangelo Jul 1996 A
5534029 Shima Jul 1996 A
5549617 Green et al. Aug 1996 A
5554191 Lahille et al. Sep 1996 A
5562689 Green et al. Oct 1996 A
5571104 Li Nov 1996 A
5571109 Bertagnoli Nov 1996 A
5571189 Kuslich Nov 1996 A
5578035 Lin Nov 1996 A
5591168 Judet et al. Jan 1997 A
5593409 Michelson Jan 1997 A
5609636 Kohrs et al. Mar 1997 A
5613974 Andreas et al. Mar 1997 A
5620012 Benderev et al. Apr 1997 A
5643321 McDevitt Jul 1997 A
5702449 McKay Dec 1997 A
5713899 Godard Feb 1998 A
5741253 Michelson Apr 1998 A
5755798 Papavero et al. May 1998 A
5766252 Henry et al. Jun 1998 A
5766253 Brosnahan, III Jun 1998 A
5772661 Michelson Jun 1998 A
5776199 Michelson Jul 1998 A
5782830 Farris Jul 1998 A
5782919 Zdeblick et al. Jul 1998 A
5797909 Michelson Aug 1998 A
5800550 Sertich Sep 1998 A
5860973 Michelson Jan 1999 A
5865845 Thalgott Feb 1999 A
5888222 Coates et al. Mar 1999 A
5888223 Bray Mar 1999 A
5888224 Beckers et al. Mar 1999 A
5888227 Cottle Mar 1999 A
5895427 Kuslich et al. Apr 1999 A
5968098 Winslow Oct 1999 A
5980522 Koros et al. Nov 1999 A
5984967 Zdeblick et al. Nov 1999 A
5989289 Coates et al. Nov 1999 A
6001130 Bryan et al. Dec 1999 A
6033438 Bianchi et al. Mar 2000 A
6045579 Hochshuler et al. Apr 2000 A
6063121 Xavier et al. May 2000 A
6066174 Farris May 2000 A
6080158 Lin Jun 2000 A
6080193 Hochshuler et al. Jun 2000 A
6093205 McLeod et al. Jul 2000 A
6096038 Michelson Aug 2000 A
6096080 Nicholson Aug 2000 A
6111164 Rainey Aug 2000 A
6113637 Gill et al. Sep 2000 A
6113638 Williams et al. Sep 2000 A
6120502 Michelson Sep 2000 A
6123705 Michelson Sep 2000 A
6129763 Chauvin et al. Oct 2000 A
6136031 Middleton Oct 2000 A
6143032 Schafer et al. Nov 2000 A
6146421 Gordon et al. Nov 2000 A
6149650 Michelson Nov 2000 A
6156067 Bryan et al. Dec 2000 A
6174311 Branch et al. Jan 2001 B1
6179875 Von Strempel Jan 2001 B1
6193757 Foley et al. Feb 2001 B1
6206922 Zdeblick et al. Mar 2001 B1
6206923 Boyd et al. Mar 2001 B1
6210412 Michelson Apr 2001 B1
6214050 Huene Apr 2001 B1
6224595 Michelson May 2001 B1
6235059 Benezech et al. May 2001 B1
6241733 Nicholson et al. Jun 2001 B1
6241769 Nicholson et al. Jun 2001 B1
6241770 Michelson Jun 2001 B1
6245072 Zdeblick et al. Jun 2001 B1
6245108 Biscup Jun 2001 B1
6251140 Marino et al. Jun 2001 B1
6258094 Nicholson et al. Jul 2001 B1
6258125 Paul et al. Jul 2001 B1
6261293 Nicholson et al. Jul 2001 B1
6261295 Nicholson et al. Jul 2001 B1
6264656 Michelson Jul 2001 B1
6267764 Elberg Jul 2001 B1
6270498 Michelson Aug 2001 B1
6277149 Boyle et al. Aug 2001 B1
6296664 Middleton Oct 2001 B1
6302914 Michelson Oct 2001 B1
6306170 Ray Oct 2001 B2
6315797 Middleton Nov 2001 B1
6348071 Steffee et al. Feb 2002 B1
6350283 Michelson Feb 2002 B1
6364880 Michelson Apr 2002 B1
6371988 Pafford et al. Apr 2002 B1
6375655 Zdeblick et al. Apr 2002 B1
6395031 Foley et al. May 2002 B1
6395035 Bresina et al. May 2002 B2
6402750 Atkinson et al. Jun 2002 B1
6402785 Zdeblick et al. Jun 2002 B1
6409765 Bianchi et al. Jun 2002 B1
6419704 Ferree Jul 2002 B1
6423095 Van Hoeck et al. Jul 2002 B1
6432106 Fraser Aug 2002 B1
6432107 Ferree Aug 2002 B1
6447512 Landry et al. Sep 2002 B1
6447544 Michelson Sep 2002 B1
6447547 Michelson Sep 2002 B1
6454769 Wagner et al. Sep 2002 B2
6458159 Thalgott Oct 2002 B1
6461359 Tribus et al. Oct 2002 B1
6468310 Ralph et al. Oct 2002 B1
6471724 Zdeblick et al. Oct 2002 B2
6478823 Michelson Nov 2002 B1
6482233 Aebi et al. Nov 2002 B1
6482584 Mills et al. Nov 2002 B1
6497726 Carter et al. Dec 2002 B1
6500205 Michelson Dec 2002 B1
6524312 Landry et al. Feb 2003 B2
6527806 Ralph et al. Mar 2003 B2
6540785 Gill et al. Apr 2003 B1
6554863 Paul et al. Apr 2003 B2
6576016 Hochshuler et al. Jun 2003 B1
6579291 Keith et al. Jun 2003 B1
6582468 Gauchet Jun 2003 B1
6592624 Fraser et al. Jul 2003 B1
6599320 Kuslich et al. Jul 2003 B1
6605089 Michelson Aug 2003 B1
6610065 Branch et al. Aug 2003 B1
6610089 Liu et al. Aug 2003 B1
6610092 Ralph et al. Aug 2003 B2
6613091 Zdeblick et al. Sep 2003 B1
6613278 Mills et al. Sep 2003 B1
6616671 Landry et al. Sep 2003 B2
6635086 Lin Oct 2003 B2
6635087 Angelucci et al. Oct 2003 B2
6645206 Zdeblick et al. Nov 2003 B1
6645249 Ralph et al. Nov 2003 B2
6652584 Michelson Nov 2003 B2
6652818 Mills et al. Nov 2003 B1
6660038 Boyer, II et al. Dec 2003 B2
6666890 Michelson Dec 2003 B2
6669730 Ralph et al. Dec 2003 B2
6669731 Ralph et al. Dec 2003 B2
6673113 Ralph et al. Jan 2004 B2
6676703 Biscup Jan 2004 B2
6679887 Nicholson et al. Jan 2004 B2
6679915 Cauthen Jan 2004 B1
6695851 Zdeblick et al. Feb 2004 B2
6695882 Bianchi et al. Feb 2004 B2
6706067 Shimp et al. Mar 2004 B2
6709458 Michelson Mar 2004 B2
6716247 Michelson Apr 2004 B2
6719794 Gerber et al. Apr 2004 B2
6733504 Lin et al. May 2004 B2
6733531 Trieu May 2004 B1
6733535 Michelson May 2004 B2
6736850 Davis May 2004 B2
6740117 Ralph et al. May 2004 B2
6740118 Eisermann et al. May 2004 B2
6743255 Ferree Jun 2004 B2
6743256 Mason Jun 2004 B2
6743257 Castro Jun 2004 B2
6749636 Michelson Jun 2004 B2
6758849 Michelson Jul 2004 B1
6767367 Michelson Jul 2004 B1
6770074 Michelson Aug 2004 B2
6793679 Michelson Sep 2004 B2
RE38614 Paul et al. Oct 2004 E
6800092 Williams et al. Oct 2004 B1
6800093 Nicholson et al. Oct 2004 B2
6805713 Carter et al. Oct 2004 B1
6964687 Bernard et al. Nov 2005 B1
6994727 Khandkar et al. Feb 2006 B2
7018412 Ferreira et al. Mar 2006 B2
7048762 Sander et al. May 2006 B1
7048765 Grooms et al. May 2006 B1
7060097 Fraser et al. Jun 2006 B2
7153325 Kim et al. Dec 2006 B2
7172627 Fiere et al. Feb 2007 B2
7276081 Coates et al. Oct 2007 B1
7291170 Huppert Nov 2007 B2
7361196 Fallin et al. Apr 2008 B2
7479160 Branch et al. Jan 2009 B2
7594931 Louis et al. Sep 2009 B2
7604654 Fallin et al. Oct 2009 B2
7625393 Fallin et al. Dec 2009 B2
7695516 Zeegers Apr 2010 B2
8147556 Louis et al. Apr 2012 B2
8241359 Davis et al. Aug 2012 B2
20010018614 Bianchi Aug 2001 A1
20010020185 Ray Sep 2001 A1
20010031254 Bianchi et al. Oct 2001 A1
20010031967 Nicholson et al. Oct 2001 A1
20020016592 Branch et al. Feb 2002 A1
20020026243 Lin Feb 2002 A1
20020032483 Nicholson et al. Mar 2002 A1
20020072806 Buskirk et al. Jun 2002 A1
20020082597 Fraser Jun 2002 A1
20020082700 Bianchi et al. Jun 2002 A1
20020106393 Bianchi et al. Aug 2002 A1
20020107572 Foley et al. Aug 2002 A1
20020119437 Grooms et al. Aug 2002 A1
20020138143 Grooms et al. Sep 2002 A1
20020151893 Santilli Oct 2002 A1
20020165612 Gerber et al. Nov 2002 A1
20020193880 Fraser Dec 2002 A1
20030023304 Carter et al. Jan 2003 A1
20030027125 Mills et al. Feb 2003 A1
20030028249 Baccelli et al. Feb 2003 A1
20030060886 Van Hoeck et al. Mar 2003 A1
20030069640 Ferreira et al. Apr 2003 A1
20030097179 Carter et al. May 2003 A1
20030100950 Moret May 2003 A1
20030109928 Pasquet et al. Jun 2003 A1
20030139815 Grooms et al. Jul 2003 A1
20030149438 Nichols et al. Aug 2003 A1
20030167091 Scharf Sep 2003 A1
20030195514 Trieu et al. Oct 2003 A1
20030195626 Huppert Oct 2003 A1
20030195629 Pafford et al. Oct 2003 A1
20030195632 Foley et al. Oct 2003 A1
20030204260 Ferree Oct 2003 A1
20030233147 Nicholson et al. Dec 2003 A1
20040073307 Keller Apr 2004 A1
20040073309 Bianchi et al. Apr 2004 A1
20040073313 Link et al. Apr 2004 A1
20040093083 Branch et al. May 2004 A1
20040097929 Branch et al. May 2004 A1
20040115172 Bianchi et al. Jun 2004 A1
20040117022 Marnay et al. Jun 2004 A1
20040127990 Bartish et al. Jul 2004 A1
20040127993 Kast et al. Jul 2004 A1
20040127994 Kast et al. Jul 2004 A1
20040148029 Bianchi et al. Jul 2004 A1
20040162617 Zucherman et al. Aug 2004 A1
20040172130 Nakahara et al. Sep 2004 A1
20040199254 Louis et al. Oct 2004 A1
20040210308 Carter et al. Oct 2004 A1
20040230306 Hoeck et al. Nov 2004 A1
20040243238 Arnin et al. Dec 2004 A1
20040243240 Beaurain et al. Dec 2004 A1
20050004672 Pafford et al. Jan 2005 A1
20050027359 Mashburn Feb 2005 A1
20050027360 Webb et al. Feb 2005 A1
20050038511 Martz et al. Feb 2005 A1
20050060034 Berry et al. Mar 2005 A1
20050085917 Marnay et al. Apr 2005 A1
20050096742 Mills et al. May 2005 A1
20050096745 Andre et al. May 2005 A1
20050100862 Mills et al. May 2005 A1
20050101957 Buskirk et al. May 2005 A1
20050119744 Buskirk et al. Jun 2005 A1
20050119747 Fabris Monterumici et al. Jun 2005 A1
20050143733 Petit Jun 2005 A1
20050149189 Mokhtar et al. Jul 2005 A1
20050165483 Ray, III et al. Jul 2005 A1
20050171554 Estes et al. Aug 2005 A1
20050288788 Dougherty-Shah Dec 2005 A1
20060069437 Weber Mar 2006 A1
20060136063 Zeegers Jun 2006 A1
20060155377 Beaurain et al. Jul 2006 A1
20060235426 Lim et al. Oct 2006 A1
20070073404 Rashbaum et al. Mar 2007 A1
20070260249 Boyajian et al. Nov 2007 A1
20070270951 Davis et al. Nov 2007 A1
20080021562 Huppert Jan 2008 A1
20080051887 Carter et al. Feb 2008 A1
20080109083 Van Hoeck et al. May 2008 A1
20080125865 Abdelgany May 2008 A1
20080161933 Grotz et al. Jul 2008 A1
20090105832 Allain et al. Apr 2009 A1
20090186333 Mills et al. Jul 2009 A1
20090204219 Beaurain et al. Aug 2009 A1
20090222092 Davis et al. Sep 2009 A1
20090270990 Louis et al. Oct 2009 A1
20100057207 Ray, III et al. Mar 2010 A1
20100063554 Branch et al. Mar 2010 A1
20100082104 Carter et al. Apr 2010 A1
20100217396 Bianchi et al. Aug 2010 A1
20100268349 Bianchi et al. Oct 2010 A1
20110301707 Buskirk et al. Dec 2011 A1
20120004660 Grooms et al. Jan 2012 A1
20120116466 Dinville et al. May 2012 A1
20120191196 Louis et al. Jul 2012 A1
Foreign Referenced Citations (48)
Number Date Country
3741493 Jun 1989 DE
20320454 Oct 2004 DE
10323363 Dec 2004 DE
0637439 Feb 1995 EP
0697200 Feb 1996 EP
0951879 Oct 1999 EP
0965313 Dec 1999 EP
2113228 Nov 2009 EP
2327375 Jun 2011 EP
2340788 Jul 2011 EP
2363080 Sep 2011 EP
2703580 Oct 1994 FR
2733413 Oct 1996 FR
2747034 Oct 1997 FR
2808995 Nov 2001 FR
2823095 Oct 2002 FR
2827156 Jan 2003 FR
2846550 May 2004 FR
2861582 May 2005 FR
2879436 Jun 2006 FR
2880795 Jul 2006 FR
2891135 Mar 2007 FR
2897259 Aug 2007 FR
2916956 Dec 2008 FR
WO9508306 Mar 1995 WO
WO 9715248 May 1997 WO
WO 9801091 Jan 1998 WO
WO 9855052 Dec 1998 WO
WO 9909914 Mar 1999 WO
WO9956676 Nov 1999 WO
WO9963914 Dec 1999 WO
WO0024327 May 2000 WO
WO0170141 Sep 2001 WO
WO 0187194 Nov 2001 WO
WO0213732 Feb 2002 WO
WO02058599 Aug 2002 WO
WO02089701 Nov 2002 WO
WO 03005939 Jan 2003 WO
WO2004034935 Apr 2004 WO
WO2004041129 May 2004 WO
WO2004089256 Oct 2004 WO
WO2006047587 May 2006 WO
WO2006120505 Nov 2006 WO
WO2007078978 Jul 2007 WO
WO2007093900 Aug 2007 WO
WO2008149223 Dec 2008 WO
WO2009033100 Mar 2009 WO
WO2011080535 Jul 2011 WO
Non-Patent Literature Citations (130)
Entry
dictionary.reference.com, accessed Feb. 6, 2009.
U.S. Appl. No. 60/121,705, filed Feb. 25, 1999, Biscup.
FR 2 808 995 Preliminary Search Report, National Institute of Industrial Property (France), Jan. 29, 2001.
FR 2 827 156 Preliminary Search Report, National Institute of Industrial Property (France), Apr. 5, 2002.
Greffe et fusion, Website: http://www.ldrmedical.fr/roi.htm, Sep. 19, 2004.
Mc+ Le choix de l'ancrage, Website: http://www.ldrmedical.fr/mcplus.htm, Sep. 19, 2004.
PCT/FR01/01545, International Preliminary Examination Report, EPO, Aug. 30, 2002.
PCT/FR01/01545, International Search Report, EPO, Sep. 5, 2001.
PCT/IB02/03390, International Preliminary Examination Report, EPO, Nov. 6, 2003.
PCT/IB02/03390, International Search Report, EPO, Mar. 3, 2003.
ROI Privilegier la greffe en creant la chambre de fusion, Website: http://www.ldrmedical.fr/roi.htm, Sep. 19, 2004.
Intervertebral nucleus prosthesis and surgical procedure, U.S. Appl. No. 10/060,862, filed Jan. 30, 2002, 7,037,340, May 2, 2006.
Intersomatic cage with unified grafts, U.S. Appl. No. 10/276,712, filed Mar. 26, 2003, 7,291,170, Nov. 6, 2007.
Spinal Osteosynthesis Device and Preparation Method, U.S. Appl. No. 10/473,999, filed Apr. 12, 2004, 7,507,248, Mar. 24, 2009.
Intervertebral Disc Prosthesis and Fitting Tools, U.S. Appl. No. 10/476,565, filed Jun. 8, 2004, 7,326,250, Feb. 5, 2008.
Vertebral Cage Device With Modular Fixation, U.S. Appl. No. 10/483,563, filed May 21, 2004, 7,594,931, Sep. 29, 2009.
Progressive approach osteosynthesis device and preassembly method, U.S. Appl. No. 10/492,753, filed Aug. 9, 2004, 8,221,457, Jul. 17, 2012.
Plate for osteosynthesis device and method of preassembling such device, U.S. Appl. No. 10/492,827, filed Jul. 15, 2004, 8,162,988, Apr. 24, 2012.
Osseous Anchoring Device for Prosthesis, U.S. Appl. No. 10/494,418, filed Jul. 22, 2004, 7,056,344, Jun. 6, 2006.
Implant for Osseous Anchoring with Polyaxial Head, U.S. Appl. No. 10/498,234, filed Dec. 7, 2004.
Invertebral Disk Prosthesis, U.S. Appl. No. 10/533,846, filed Nov. 11, 2005, 7,682,396, Mar. 23, 2010.
Osseous anchoring implant with a polyaxial head and method for installing the implant, U.S. Appl. No. 10/570,080, filed Jun. 9, 2006.
Device and method for sectioning a vertebral lamina, U.S. Appl. No. 10/575,065, filed May 30, 2006, 8,221,422, Jul. 17, 2012.
Intervertebral Disc Prosthesis, U.S. Appl. No. 11/051,710, filed Feb. 4, 2005.
Intervertebral Disc Prosthesis, U.S. Appl. No. 11/098,266, filed Apr. 4, 2005, 7,494,508, Feb. 24, 2009.
Intervertebral Disc Prosthesis, U.S. Appl. No. 11/109,276, filed Apr. 18, 2005, 7,695,516, Apr. 13, 2010.
Instrumentation and Methods for Inserting an Intervertebral Disc Prosthesis, U.S. Appl. No. 11/180,868, filed Jul. 13, 2005, 7,632,282, Dec. 15, 2009.
Intervertebral Disc Prosthesis, U.S. Appl. No. 11/341,007, filed Jan. 27, 2006, 7,842,088, Nov. 30, 2010.
Intervertebral Disc Prothesis and Instrumentation for Insertion of the Prosthesis Between the Vertebrae, U.S. Appl. No. 11/362,253, filed Feb. 24, 2006.
Transforanimal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage, U.S. Appl. No. 11/378,165, filed Mar. 17, 2006.
Intervertebral nucleus prosthesis and surgical procedure, U.S. Appl. No. 11/390,711, filed Mar. 27, 2006, 7,695,518, Apr. 13, 2010.
Intervertebral disc prosthesis insertion assemblies, U.S. Appl. No. 11/676,237, filed Feb. 16, 2007.
Intersomatic cage with unified grafts, U.S. Appl. No. 11/767,386, filed Jun. 22, 2007.
Modular intervertebral prosthesis, U.S. Appl. No. 11/874,144, filed Oct. 17, 2007.
Vertebral Support Device, U.S. Appl. No. 11/958,285, filed Dec. 17, 2007.
Intervertebral disc prosthesis, surgical methods, and fitting tools, U.S. Appl. No. 12/025,677, filed Feb. 4, 2008.
Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments, U.S. Appl. No. 12/134,884, filed Jun. 6, 2008.
Transverse spinal linking device and system, U.S. Appl. No. 12/172,074, filed Jul. 11, 2008, 8,262,700, Sep. 11, 2012.
Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage, U.S. Appl. No. 12/279,664, filed Apr. 22, 2009, 8,241,359, Aug. 14, 2012.
Intervertebral Disc Prosthesis, U.S. Appl. No. 12/360,050, filed Jan. 26, 2009, 8,257,439, Sep. 4, 2012.
Intervertebral Disc Prosthesis, U.S. Appl. No. 12/391,086, filed Feb. 23, 2009, 8,002,835, Aug. 23, 2011.
Spinal Osteosynthesis Device and Preparation Method, U.S. Appl. No. 12/409,327, Mar. 23, 2009.
Intervertebral Disk Prosthesis, U.S. Appl. No. 12/424,364, filed Apr. 15, 2009, 8,267,999, Sep. 18, 2012.
Vertebral Cage Device With Modular Fixation, U.S. Appl. No. 12/430,768, filed Apr. 27, 2009, 8,147,556, Apr. 3, 2012.
Instrumentation and Methods for Inserting an Intervertebral Disc Prosthesis, U.S. Appl. No. 12/435,955, filed May 5, 2009.
Intervertebral disc prosthesis insertion assemblies, U.S. Appl. No. 12/527,373, filed Mar. 19, 2010.
Intervertebral Disc Prosthesis, U.S. Appl. No. 12/955,898, filed Nov. 29, 2010.
Instruments and Methods for Removing Fixation Devices from Intervertebral Implants, U.S. Appl. No. 13/158,761, filed Jun. 13, 2011.
Intervertebral Disc Prosthesis, U.S. Appl. No. 13/215,123, filed Aug. 22, 2011.
Interspinous Implant and Implantation Instrument, U.S. Appl. No. 13/369,650, filed Feb. 9, 2012.
Vertebral Cage Device With Modular Fixation, U.S. Appl. No. 13/438,352, filed Apr. 3, 2012.
Plate for osteosynthesis device and method of preassembling such device, U.S. Appl. No. 13/454,927, filed Apr. 24, 2012.
Anchoring Device and System for an Intervertebral Implant, Intervertebral Implant and Implantation Instrument, U.S. Appl. No. 13/520,041, filed Jun. 29, 2012.
Anchoring Device and System for an Intervertebral Implant, Intervertebral Implant and Implantation Instrument, U.S. Appl. No. 13/538,078, filed Jun. 29, 2012.
Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage, U.S. Appl. No. 13/585,063, filed Aug. 14, 2012.
Intervertebral Disc Prosthesis, U.S. Appl. No. 13/603,043, filed Sep. 4, 2012.
Transverse spinal linking device and system, U.S. Appl. No. 13/609,826, filed Sep. 11, 2012.
Intervertebral Disk Prosthesis, U.S. Appl. No. 13/616,448, filed Sep. 14, 2012.
Intervertebral Disc Prosthesis and Instrumentation for Insertion of the Prosthesis Between the Vertebrae, U.S. Appl. No. 13/620,797, filed Sep. 15, 2012.
LDR Medical, by its attorneys; Amendment for Pub'n No. EP1996127; Nov. 26, 2008; EPO; Munich, Germany; all pages.
National Institute of Industrial Property (France); Search Report for Pub'n No. FR2897259; Oct. 11, 2006; National Institute of Industrial Property (France); France; all pages.
World Intellectual Property Organization; International Preliminary Report on Patentability for PCT Pub'n No. WO2007093900; Feb. 5, 2008; WIPO; Geneva, Switzerland; all pages.
World Intellectual Property Organization; International Search Report for PCT Pub'n No. WO2007093900; Oct. 22, 2007; WIPO; Geneva, Switzerland; all pages.
World Intellectual Property Organization; Written Opinon of the International Searching Authority for PCT Pub'n No. WO2007093900; Oct. 22, 2007; WIPO; Geneva, Switzerland; all pages.
European Patent Office; Notice of Intent to Grant Patent for Pub'n No. EP1406563; Aug. 26, 2010; EPO; Munich, Germany; all pages.
European Patent Office; Office Action for Pub'n No. EP1406563; Mar. 13, 2009; EPO; Munich, Germany; all pages.
European Patent Office; Office Action for Pub'n No. EP1406563; Aug. 4, 2009; EPO; Munich, Germany; all pages.
LDR Medical, by its attorneys; Reply to Office Action for Pub'n No. EP1406563; Jul. 22, 2009; EPO; Munich, Germany; all pages.
LDR Medical, by its attorneys; Reply to Office Action for Pub'n No. EP1406563; Oct. 14, 2009; EPO; Munich, Germany; all pages.
LDR Medical, by its attorneys; Amendment for Pub'n No. EP2113228; Apr. 26, 2010; EPO; Munich, Germany; all pages.
European Patent Office; Search Report for Pub'n No. EP2113228; Oct. 6, 2009; EPO; Munich, Germany; all pages.
European Patent Office; Search Report for Pub'n No. EP2340788; Jun. 8, 2011; EPO; Munich, Germany; all pages.
LDR Medical, by its attorneys; Amendment for Pub'n No. EP2162098; Jan. 6, 2010; EPO; Munich, Germany; all pages.
European Patent Office; Office Action for Pub'n No. EP2162098; Jan. 17, 2012; EPO; Munich, Germany; all pages.
LDR Medical, by its attorneys; Reply to Office Action for Pub'n No. EP2162098; Jul. 27, 2012; EPO; Munich, Germany; all pages.
National Institue of Industrial Property (France); Search Report for Pub'n No. FR2916956; Jan. 30, 2008; National Institute of Industrial Property (France); France; all pages.
LDR Medical, by its attorneys; Amendment for Pub'n No. WO2008149223; May 13, 2009; WIPO; Geneva, Switzerland; all pages.
World Intellectual Property Organization; International Preliminary Report on Patentablility for PCT Pub'n No. WO2008149223; Aug. 5, 2009; WIPO, Geneva, Switzerland; all pages.
World Intellectual Property Organization; International Search Report for PCT Pub'n No. WO2008149223; Feb. 16, 2009; WIPO; Geneva, Switzerland; all pages.
World Intellectual Property Organization; Written Opinion of the International Searching Authority for PCT Pub'n No. WO2008149223; Feb. 16, 2009; WIPO; Geneva, Switzerland; all pages.
LDR Medical, by its attorneys; Amendment for Pub'n No. WO2011080535; Apr. 2, 2012; WIPO; Geneva, Switzerland; all pages.
LDR Medical, by its attorneys; Demand for PCT Pub'n No. WO2011080535; Apr. 22, 2011; WIPO; Geneva, Switzerland; all pages.
World Intellectual Property Organization; Interview Summary for PCT Pub'n No. WO2011080535; Feb. 14, 2012; WIPO; Geneva, Switzerland; all pages.
World Intellectual Property Organization; International Preliminary Report on Patentability for PCT Pub'n No. WO2011080535; Apr. 18, 2012; WIPO; Geneva, Switzerland; all pages.
World Intellectual Property Organization; International Search Report for PCT Pub'n No. WO2011080535; Feb. 2, 2011; WIPO; Geneva, Switzerland; all pages.
World Intellectual Property Organization; Written Opinon of the International Searching Authority for PCT Pub'n No. WO2011080535; Feb. 2, 2011; WIPO; Geneva, Switzerland; all pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 10/276,712; Jun. 30, 2004; USPTO; Alexandria, Virgina; All Pages.
LDR Medical, by its attorneys; Reply to Office Action in U.S. Appl. No. 10/276,712; Sep. 27, 2004; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 10/276,712; Jan. 23, 2004; USPTO; Alexandria, Virgina; All Pages.
LDR Medical, by its attorneys; Reply to Office Action in U.S. Appl. No. 10/276,712; Mar. 1, 2005; USPTO; Alexandria, Virginia; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 10/276,712; May 27, 2005; USPTO; Alexandria, Virgina; All Pages.
LDR Medical, by its attorneys; Reply to Office Action in U.S. Appl. No. 10/276,712; Aug. 29, 2005; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 10/276,712; Nov. 14, 2005; USPTO; Alexandria, Virginia; All Pages.
LDR Medical, by its attorneys; Reply to Office Action in U.S. Appl. No. 10/276,712, Jan. 17, 2006; USPTO; Alexandria, Virginia; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 10/276,712; Feb. 8, 2006; USPTO; Alexandria, Virgina; All Pages.
LDR Medical, by its attorneys; Reply to Office Action in U.S. Appl. No. 10/276,712; Mar. 14, 2006; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 10/276,712; Jun. 7, 2006; USPTO; Alexandria, Virgina; All Pages.
LDR Medical, by its attorneys; Reply to Office Action in U.S. Appl. No. 10/276,712; Oct. 6, 2006; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 10/276,712; Dec. 20, 2006; USPTO; Alexandria, Virgina; All Pages.
LDR Medical, by its attorneys; Reply to Office Action in U.S. Appl. No. 10/276,712; Jun. 19, 2007; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Notice of Allowance in U.S. Appl. No. 10/276,712; Jul. 30, 2007; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 11/767,386; Dec. 24, 2009; USPTO; Alexandria, Virgina; All Pages.
LDR Medical, by its attorneys; Reply to Office Action in U.S. Appl. No. 11/767,386; Apr. 26, 2010; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 11/767,386; Jul. 21, 2010; USPTO; Alexandria, Virgina; All Pages.
LDR Medical, by its attorneys; Reply to Office Action in U.S. Appl. No. 11/767,386; Jan. 21, 2011; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 11/767,386; Mar. 24, 2011; USPTO; Alexandria, Virgina; All Pages.
LDR Medical, by its attorneys; Reply to Office Action in U.S. Appl. No. 11/767,386; Sep. 26, 2011; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 10/483,563; Feb. 21, 2007; USPTO; Alexandria, Virgina; All Pages.
LDR Medical, by its attorneys; Reply to Office Action in U.S. Appl. No. 10/483,563; Aug. 21, 2007; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 10/483,563; Oct. 30, 2007; USPTO; Alexandria, Virgina; All Pages.
LDR Medical, by its attorneys; Reply to Office Action in U.S. Appl. No. 10/483,563; Nov. 19, 2007; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 10/483,563; Jan. 31, 2008; USPTO; Alexandria, Virgina; All Pages.
LDR Medical, by its attorneys; Reply to Office Action in U.S. Appl. No. 10/483,563; Jul. 31, 2008; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 10/483,563; Oct. 28, 2008; USPTO; Alexandria, Virgina; All Pages.
LDR Medical, by its attorneys; Reply to Office Action in U.S. Appl. No. 10/483,563; Apr. 28, 2009; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Notice of Allowance in U.S. Appl. No. 10/483,563; Jun. 5, 2009; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Notice of Allowance in U.S. Appl. No. 10/483,563; Jun. 19, 2009; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 12/430,768; Jun. 14, 2011; USPTO; Alexandria, Virgina; All Pages.
LDR Medical, by its attorneys; Reply to Office Action in U.S. Appl. No. 12/430,768; Dec. 14, 2011; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Notice of Allowance in U.S. Appl. No. 12/430,768; Jan. 11, 2012; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Notice of Allowance in U.S. Appl. No. 12/430,768; Jan. 19, 2012; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 12/279,664; Sep. 14, 2011; USPTO; Alexandria, Virgina; All Pages.
LDR Medical, by its attorneys; Reply to Office Action in U.S. Appl. No. 12/279,664; Mar. 14, 2012; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Notice of Allowance and Interview Summary in Application U.S. Appl. No. 12/279,664; Apr. 11, 2012; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Notice of Allowance in U.S. Appl. No. 12/279,644; May 29, 2012; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 12/134,884; Jan. 31, 2012; USPTO; Alexandria, Virgina; All Pages.
LDR Medical, but its attorneys; Reply to Office Action in U.S. Appl. No. 12/134,884; Jul. 31, 2012; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Notice of Allowance in U.S. Appl. No. 12/134,884; Nov. 1, 2012; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Office Action in U.S. Appl. No. 13/158,761; Oct. 17, 2012; USPTO; Alexandria, Virgina; All Pages.
U.S. Patent & Trademark Office; Examiner's Interview Summary in U.S. Appl. No. 13/158,761; Oct. 21, 2012; USPTO; Alexandria, Virgina; All Pages.
Related Publications (1)
Number Date Country
20070270951 A1 Nov 2007 US