The present invention relates to toy vehicles, particularly those having unusual transforming characteristics. More specifically, the invention relates to transforming toy vehicles having only two wheels for support and propulsion.
Briefly stated, the present invention is a toy vehicle comprising a central housing having first and second oppositely disposed sides. A first wheel is rotatably mounted on the first side of the housing and a second wheel is rotatably mounted on the second side of the housing. Each of the first and second wheels have a central hub. Each hub has a center disposed along a common first axis of rotation. A plurality of vanes are attached to the hub and form the first and second wheels. An end of each vane distal to the hub forms an outermost circumferential surface portion of one of the first and second wheels most distal to the first axis in all configurations of the first and second wheels. Each vane is individually and separately manually angularly repositionable about a second axis of rotation, each second axis extending from an end of the vane proximal to the hub transversely away from the hub and the first axis.
The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings an embodiment which is presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
In the drawing:
Certain terminology is used in the following description for convenience only and is not limiting. The words “right,” “left,” “upper,” and “lower” designate directions in the drawings to which reference is made. The terminology includes the words above specifically mentioned, derivatives thereof, and words of similar import.
Referring to the drawings, wherein like numerals indicate like elements throughout, there is shown, in
Referring specifically to
The vehicle 10 is configured in a way to be described in greater detail below to permit individual and separate manual angular repositioning of each of the vanes 18 of the first and second wheels 14 and 16 about the second vane axis 18′ of the vane 18 between a first extreme rotational position of each vane 18 yielding a first, ball-like, preferably generally spherical configuration 24 seen in
The vehicle 10 can further be configured in a third, “paddle wheel” configuration 25, as shown in
Referring now to
With the above-described configuration, when the user desires to reconfigure the toy vehicle 10, the user must individually rotate each of the vanes 18 to achieve the desired configuration. It is noted that, while only three configurations 24, 25, 26 are specifically described herein, any number of configurations can be achieved by simply rotating different vanes 18 to different orientations with respect to one another, rather than orienting all of the vanes 18 to the same position. While the above-described post 18, sleeve, and hole configuration is preferred, it is within the spirit and scope of the present invention that the vanes 18 be selectively retained/rotated in a different manner, including, but not limited to, mirror cruciform, or star or polygonal shaped hole and post configurations or a spring-biased detent mechanism with multiple contacted detent surfaces. Moreover, while it is preferred that the vanes 18 be retained in the hub 20 while manually rotated by the provision of a pliant post 18a and hole, it is also part of the invention that neither the post 18a nor the hole be sufficiently pliant to permit rotation of the vane 18 while connected with the hub 20, and that manual angular repositioning includes permitting manual removal and reinsertion of the post in the hole in any angular orientation permitted by the post and hole configurations.
While it is preferred that the post 18a be part of the vane 18 and the hole be in the hub 20, the invention includes a reversal of positions with the posts projecting generally radially outwardly from the hubs 20 and the vanes 18 being provided with the holes.
The vanes 18 can be made from any suitable material. If desired, the vanes 18 can each be formed from a foam polymer molded to a solid support shaft. Such foamed polymer vanes would not only be resiliently flexible themselves, providing considerable cushioning to the outer housing 12, but also would provide sufficient buoyancy to the vehicle 10 to enable it to be driven in water.
Referring again to
Referring to
The first motor 42 is actuated to rotate a first output shaft 42a with a first pinion 44a. The first pinion 44a is the first gear of a first reduction gear train 44 that drivingly couples the first motor 42 to the first wheel 14. The first reduction gear train 44, depicted in detail in
While the above-described drive mechanism configuration is preferred, it is within the spirit and scope of the present invention that other drive mechanism configurations be used, provided the alternate drive mechanism configuration functions to cause movement of the first and second wheels 14, 16 of the toy vehicle 10. For instance, a single motor and a drive train having a generally convention throw-out gear could be used. In this way, when the motor is driven in a first direction, both wheels rotate together in one direction (i.e., a forward motion of the toy vehicle), and, when the motor is driven in a second direction, the wheel on one side of the toy vehicle is caused to rotate in one direction, while the wheel on the other side of the toy vehicle, through operation of the throw-out gear, is caused to either rotate in an opposite direction or to stop motion, thereby allowing the toy vehicle to be turned.
Referring now to
As shown in
The toy vehicle 10 is provided with a control unit 100 mounted on a conventional circuit board 101. The control unit 100 includes a controller 102 preferably having a wireless signal receiver 102b and a microprocessor 102a plus any necessary related elements such as memory. The motors 42 and 52 are reversible and are controlled by the microprocessor 102a through motor control subcircuits 42′ and 52′ which, under control of microprocessor 102a, selectively couples each motor 42, 52 with an electric power supply 106 (such as one or more disposable or rechargeable batteries 13).
In operation, the wireless remote control transmitter 105 sends signals to the toy vehicle 10 that are received by the wireless signal receiver 102b. The wireless signal receiver 102b is in communication with and is operably connected motors 42, 52 through the microprocessor 102b for controlling the toy vehicle's 10 speed and maneuverability. Operation of the propulsion drive motors 42, 52 serve to propel and steer the toy vehicle's 10 through separate and individual control of each motor 42, 52. The drive motors 42, 52 and control unit 100 components are conventional devices readily known in the art and a detailed description of their structure and operation is not necessary for a complete understanding of the present invention. However, exemplary drive motors can include brushless electric motors, preferably providing a minimum of 1,360 revolutions per minute per volt.
In use, the toy vehicle 10 is driven on a surface by rotation in either rotational direction of the first and/or second wheels 14, 16. The toy vehicle 10 can be transformed by manually rotating or otherwise repositioning the vanes 18 of the first and second wheels 14, 16 about the second axes 18′ between the first position 24 in which the toy vehicle 10 is generally spherical in shape and the third position 26 in which the entire central housing 12 is exposed. Further, the tail 28 is able to be positioned in the extended position 28b or wrapped partially around the central housing 12 in the retracted position 28a with rotation of the outer housing 12 caused by driving of the first and second wheels 14, 16 in forward or reverse direction, respectively. The vanes 18 of the toy vehicle 10 can also be configured in the intermediate position 25 (
If provided with buoyant vanes 18 and tail 28, the toy vehicle 10, with the chassis/housing 12 otherwise sealed, can then be driven on the surface of water. Although intended to be driven on water when in the intermediate position 25, the toy vehicle 10 can also be driven on dry land with the vanes 18 in any position. Moreover, it is contemplated that the toy vehicle 10 can be driven on water with the vanes 18 in any position including but not limited to either of the first and second positions 24, 26, though not as effectively as the third position 25.
While remote control of the toy vehicle is preferred, it will be appreciated that the toy vehicle can be factory preprogrammed to perform a predetermined movement or series of movements or configured to be selectively programmed by a user to create such predetermined movement(s). Alternatively or in addition, the toy vehicle can be equipped with sensors, e.g., switches, proximity detectors, etc., that will control the toy vehicle to turn away from or reverse itself automatically from whatever direction it was moving in if or when an obstacle is contacted or otherwise sensed.
It will be appreciated by those skilled in the art that changes could be made to the embodiment described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiment disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claim.
This patent application claims priority to U.S. Provisional Patent Application No. 60/797,790, filed May 4, 2006, entitled “MINI SHELL SHOCKER RC—Generally Spherical Transforming Toy Vehicle” and to U.S. Provisional Patent Application No. 60/915,715, filed May 3, 2007, entitled “Transformable Toy Vehicle”, and is a continuation of International Application No. PCT/US07/10909 filed May 4, 2007 entitled “Transformable Toy Vehicle”, the disclosures of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1871297 | Berger | Aug 1932 | A |
2104636 | Burcham | Jan 1938 | A |
2372043 | Aghnides | Mar 1945 | A |
2949697 | Licitis et al. | Aug 1960 | A |
3226878 | Glass et al. | Jan 1966 | A |
3312013 | Graves | Apr 1967 | A |
3327796 | Hanmer | Jun 1967 | A |
3500579 | Bryer | Mar 1970 | A |
3555725 | Orfei et al. | Jan 1971 | A |
3667156 | Tomiyama et al. | Jun 1972 | A |
3722134 | Merrill et al. | Mar 1973 | A |
3733739 | Terzian | May 1973 | A |
3746117 | Alred | Jul 1973 | A |
3798835 | McKeehan | Mar 1974 | A |
3893707 | Samsel | Jul 1975 | A |
4057929 | Ogawa | Nov 1977 | A |
4143484 | Yonezawa | Mar 1979 | A |
4173096 | Meyer et al. | Nov 1979 | A |
4300308 | Ikeda | Nov 1981 | A |
D262224 | Aoki | Dec 1981 | S |
4310987 | Chieffo | Jan 1982 | A |
4386787 | Maplethorpe et al. | Jun 1983 | A |
4391224 | Adler | Jul 1983 | A |
4438588 | Martin | Mar 1984 | A |
4471567 | Martin | Sep 1984 | A |
4501569 | Clark, Jr. et al. | Feb 1985 | A |
4505346 | Mueller | Mar 1985 | A |
4541814 | Martin | Sep 1985 | A |
4547173 | Jaworski et al. | Oct 1985 | A |
4568306 | Martin | Feb 1986 | A |
4599077 | Vuillard | Jul 1986 | A |
4601519 | D'Andrade | Jul 1986 | A |
4601675 | Robinson | Jul 1986 | A |
4609196 | Bozinovic | Sep 1986 | A |
4643696 | Law | Feb 1987 | A |
4648853 | Siegfried | Mar 1987 | A |
4666420 | Nagano | May 1987 | A |
4671779 | Kurosawa | Jun 1987 | A |
4674585 | Barlow et al. | Jun 1987 | A |
4680022 | Hoshino et al. | Jul 1987 | A |
4693696 | Buck | Sep 1987 | A |
4698043 | May et al. | Oct 1987 | A |
4726800 | Kobayashi | Feb 1988 | A |
4773889 | Rosenwinkel et al. | Sep 1988 | A |
4892503 | Kumazawa et al. | Jan 1990 | A |
4897070 | Wagstaff | Jan 1990 | A |
4927401 | Sonesson | May 1990 | A |
5041051 | Sonesson | Aug 1991 | A |
5102367 | Mullaney et al. | Apr 1992 | A |
5131882 | Kiyokane | Jul 1992 | A |
5171181 | Freeman | Dec 1992 | A |
5228880 | Meyer et al. | Jul 1993 | A |
5267888 | Hippely et al. | Dec 1993 | A |
5439408 | Wilkinson | Aug 1995 | A |
5487692 | Mowrer et al. | Jan 1996 | A |
5533921 | Wilkinson | Jul 1996 | A |
5618219 | Simone et al. | Apr 1997 | A |
5626506 | Halford et al. | May 1997 | A |
5667420 | Menow et al. | Sep 1997 | A |
5692946 | Ku | Dec 1997 | A |
5752871 | Tsuzuki | May 1998 | A |
5769441 | Namngani | Jun 1998 | A |
5797815 | Goldman et al. | Aug 1998 | A |
5871386 | Bart et al. | Feb 1999 | A |
5919075 | George et al. | Jul 1999 | A |
5921843 | Skrivan et al. | Jul 1999 | A |
6024627 | Tilbor et al. | Feb 2000 | A |
6066026 | Bart et al. | May 2000 | A |
6086026 | Pearce | Jul 2000 | A |
6095890 | George et al. | Aug 2000 | A |
6129607 | Hoeting et al. | Oct 2000 | A |
6132287 | Kuralt et al. | Oct 2000 | A |
6227934 | Isaksson et al. | May 2001 | B1 |
6264283 | Rehkemper et al. | Jul 2001 | B1 |
6394876 | Ishimoto | May 2002 | B1 |
6414457 | Agrawal et al. | Jul 2002 | B1 |
6439948 | Ostendorff et al. | Aug 2002 | B1 |
6458008 | Hyneman | Oct 2002 | B1 |
6461218 | Mullaney et al. | Oct 2002 | B1 |
6475059 | Lee | Nov 2002 | B1 |
6481513 | Buehler et al. | Nov 2002 | B2 |
6502657 | Kerrebrock et al. | Jan 2003 | B2 |
6540583 | Hoeting et al. | Apr 2003 | B1 |
6648722 | Lynders et al. | Nov 2003 | B2 |
6672934 | Hornsby et al. | Jan 2004 | B2 |
6681150 | Haga et al. | Jan 2004 | B1 |
6752684 | Lee | Jun 2004 | B1 |
6764374 | Tilbor et al. | Jul 2004 | B2 |
6860346 | Burt et al. | Mar 2005 | B2 |
6902464 | Lee | Jun 2005 | B1 |
6926581 | Lynders et al. | Aug 2005 | B2 |
6964309 | Quinn et al. | Nov 2005 | B2 |
7017687 | Jacobsen et al. | Mar 2006 | B1 |
7033241 | Lee et al. | Apr 2006 | B2 |
7040951 | Hornsby et al. | May 2006 | B2 |
7172488 | Moll et al. | Feb 2007 | B2 |
7217170 | Moll et al. | May 2007 | B2 |
7234992 | Weiss et al. | Jun 2007 | B2 |
20020011368 | Berg | Jan 2002 | A1 |
20050133280 | Horchler et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
88033082 | Jun 1988 | DE |
2539904 | Jul 1984 | FR |
1292441 | Oct 1972 | GB |
2194457 | Mar 1988 | GB |
58167263 | Oct 1983 | JP |
59167584 | Sep 1984 | JP |
61139288 | Jun 1986 | JP |
63269701 | Nov 1988 | JP |
WO-0224417 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20090124164 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
60797790 | May 2006 | US | |
60915715 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2007/010909 | May 2007 | US |
Child | 12263882 | US |