The present invention relates to toy vehicles, particularly those having unusual transforming characteristics.
Briefly stated, the present invention is a toy vehicle comprising a central housing having first and second oppositely disposed sides. A first wheel is rotatably mounted on the first side of the housing, and a second wheel is rotatably mounted on the second side of the housing. Each of the first and second wheels has a central hub and a plurality of individual vanes movably attached to the hub. Each huh has a center disposed along a first axis of rotation. Each vane is repositionable about a second vane axis extending transversely with respect to the first axis. An end of each vane distal to the hub forms a circumferential surface portion of one of the first and second wheels.
In another aspect, the present invention is a transformable toy vehicle for movement on a surface. The toy vehicle comprises a housing and at least two reconfigurable wheels mounted on the housing for rotation about a common axis extending through the housing. Rotation of the wheels causes the toy vehicle to move on the surface. Each of the two wheels has at least a first configuration in which the wheel is generally shaped to receive and surround a portion of the housing adjoining the wheel and at least a second configuration different from the first configuration. Each of the two reconfigurable wheels includes a central huh centered on the common axis. The central hubs are maintained at a constant axial thickness and an unchanged distance apart along the common axis in at least the first and second configurations of the two reconfigurable wheels.
The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings an embodiment which is presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
In the drawings:
Certain terminology is used in the following description for convenience only and is not limiting. The words “right,” “left,” “upper,” and “lower” designate directions in the drawings to which reference is made. The terminology includes the words above specifically mentioned, derivatives thereof, and words of similar import.
Referring to the drawings in detail, wherein like numerals indicate like elements throughout, there is shown in
The toy vehicle 10 preferably includes at least two reconfigurable “wheels” rotatably engaged with the central housing 12. Specifically, a first “wheel” rotatably mounted on the first side 12a of the housing 12, and a second “wheel” 40 is rotatably mounted on the second side 12b of the housing 12. Rotation of the first and second “wheels” 30, 40 causes the toy vehicle 10 to move on the surface.
Referring now to
Preferably, the vanes 20 are rotatable about the individual second axes 20′ between a first position 22 (
It is preferred that the first and second wheels 30, 40, and specifically the vanes 20 thereof, are rotatable about 180° between the first and second positions 22, 24, and further can be oriented in at least one intermediate rotational position 26 between the first and second positions 22, 24. Preferably, the vanes 20 can be oriented at least to an intermediate position 26 rotationally halfway between the first and second positions 22, 24, such that the first and second wheels 30, 40 generally resemble paddle wheels, as shown in
Referring to
Preferably, when in the retracted position 72, the tail 70 is disposed between open ends of the first and second wheels 30, 40 with the vanes 20 in the first position 22, such that the toy vehicle 10 is generally spherical or, alternatively, generally ovular in shape. Preferably, the tail 70 includes at least one tail wheel 76 proximate the second end 70e for contacting a surface (not shown) in at least the extended position 74 of the tail 70. The tail wheel 76 is preferably rotatably coupled to the second end 70e of the tail 70 so as to roll along the surface during movement of the toy vehicle 10. Although only one tail wheel 76 is shown, it is within the spirit and scope of the present invention that there be more than one wheel or, alternatively, no wheels on the tail 70, such that the second end 70e of the tail 70 merely slides along the surface during movement of the toy vehicle 10.
If desired, the tail 70 and the vanes 20 of the first and second wheels 30, 40 can be made buoyant in water. Buoyancy of the tail and vanes 20 can be accomplished in any number of ways, including, but not limited to, forming the tail 70 and vanes 20 of generally hollow, sealed, shell-like forms and/or making the tail 70 and the vanes 20 at least partially from a plastic foam material. Although these methods of making the tail 70 and the vanes 20 buoyant are preferred, they are not meant to be limiting, as it is within the spirit and scope of the present invention for the tail 70 and the vanes 20 to be made buoyant in another manner that is generally known to one skilled in the art or to be made non-buoyant for use of the toy vehicle only on solid surfaces. By constructing the vanes 20 and the tail 70 in a manner so that the vanes 20 and tail 70 are buoyant, the toy vehicle 10 can be made capable of traveling along the surface of the water, if so desired.
Referring to
Referring now to
Referring specifically to
It is preferred that at least one of the first and second compound gears 822, 824 of the first drive gear train include a clutch (not shown) therein in order to limit damage of the first drive gear train 82 and/or the first motor 83 should the first wheel 30 be stopped or otherwise held up during driving thereof. Preferably, the second compound gear 824 includes the clutch. While the clutch is not shown in detail, such clutches are well known in the art. Preferably, the clutch included with the second compound gear 824 is a generally circular leaf spring disposed between the separate first and second spur portions 824a, 824b, which allows rotation of the first spur portion 824a with respect to the second spur portion 824b when a certain threshold torque is reached, the threshold torque generally being the amount of torque experienced by the second compound gear 824 when the first wheel 30 is powered but unable to move.
Referring again to
Referring specifically to
Preferably, the transformation gear train 86 includes a slip clutch (unnumbered) on the third compound gear 866 in order to limit damage to the transformation gear train 86 and/or the third motor 87 if, during driving of the transformation gear train 86, the vanes 20 are stuck or otherwise prevented from rotating or manually forced to rotate about the second axes 20′. It is preferred that the third compound gear 866 have separate first and second spur portions 866a, 866b, with engagement surfaces (e.g., serrated surfaces, not shown) therebetween. The second spur portion 866b is preferably biased toward the first spur portion 866a by a spring (unnumbered), so that, under normal conditions, the engagement surfaces prevent slippage between the first and second spur portions 866a, 866b to enable the third motor 87 to cause rotation of the threaded gear 98. However, if the vanes 20 become bound and percent rotation of the threaded gear 98 during driving of the transformation gear train 86 by the third motor 87, the engagement surfaces between the first and second spur portion 866a, 866b slip with the second spur portion 866b being forced against the spring and away from the first spur portion 866a, thereby allowing the first spur portion 866a to continue rotating while also allowing the second spur portion 866b to not rotate. Although it is preferred that the slip clutch be included within the third compound gear 866, it is within the spirit and scope of the present invention for the slip clutch to be disposed in a different portion of the transformation gear train 86 or to be a different form of clutch. Such alternate clutches are generally well known in the art and need not be specifically described herein.
Referring now to
The threaded gear 98 is essentially sandwiched between innermost first and second covers 102, 104 through which the threaded tube 92 is disposed when the gear housing 80 is assembled. The innermost first and second covers 102, 104 are engaged with the first and second portions 80a, 80b, respectively, of the gear housing 80. At least the ends of the drive gear supports 97 extend through the innermost first and second covers 102, 104 so that the drive gears 96 can be slidably disposed thereon in assembly so as to abut outer surfaces of the innermost first and second covers 102, 104.
Preferably, the drive gears 96 rotate with the drive gear supports 97, while at the same time being axially slidable with respect thereto. Preferably, this is accomplished by slidably keying the drive gears 96 with the drive gear supports 97, for example, by forming the ends of the drive gear supports 97 with a hexagonal cross-section and forming the drive gears 96 with a mating hexagonal bore, thereby allowing axial sliding movement of the drive gear supports 97 with respect to the drive gears 96 while rotationally fixing the drive gears 96 with the drive gear supports 97.
Engaged with the ends of the drive gear supports 97 and extending axially outwardly therefrom are rack gears 100. The central shaft assembly 90 further includes limit switches 94, preferably engaged with each of the innermost first and second covers 102, 104, which function to cut power to the third motor 87 when sliding limits of the central shaft assembly 90 are reached.
Generally speaking, the central shaft assembly 90 allows the rack gears 100, the drive gear supports 97, the rod 91, and the threaded tube 92 and collar 92a to move axially with respect to the drive gears 96, the threaded gear 98, and the innermost first and second covers 102, 104, as well as the gear housing 80 and the central housing 12. At the same time, the central shaft assembly 90 allows the drive gears 96 and the drive gear supports 97 to rotate separately and independently of each other without affecting the above-described axial motion. This is accomplished by retaining one drive gear 96 between the first portion 80a of the gear housing 80 and the innermost first cover 102, the other drive gear 96 between the second portion 80b of the gear housing 80 and the innermost second cover 104, and, as described above, the threaded gear 98 between the innermost first and second covers 102, 104, such that each can be rotated but cannot be moved axially with respect to the gear housing 80. The threaded tube 92, however, is able to move axially along the first axis 50′ during rotation of the threaded gear 98, which causes the threads 98a of the threaded gear 98 to travel along the threads 92b of the threaded tube 92 during rotation of the threaded gear 98 by the transformation gear train 86. Because the threaded gear 98 is unable to move axially, it forces the threaded tube 92 to move axially along the first axis 50′. Doing so further causes the drive gear supports 97, the rod 91, and the rack gears 100 to move axially along the first axis 50′. However, regardless of the axial position of the above-listed components, the drive gears 96 are still capable of being rotated by the respective first and second drive gear trains 82, 84 in order to drive the first and second wheels 30, 40. In this way, the first and second wheels 30, 40 can be independently driven with the vanes 20 fixed in any vane position, e.g., any of the first, second, and intermediate positions 22, 24, 26 (as well as any other intermediate position), as well as during rotation of the vanes 20 between positions.
Referring now to
Referring still to
Preferably, each vane 20 is rotatably mounted on a post 28a (disposed along the second axis 20′) of a wheel floret 28, also captured with the hub 50, such that rotation of the second crown portion 52b causes rotation of each of the vane gears 21 and, in turn, rotation of each vane 20 about its respective post 28a. In this way, when the rack gear 100 is moved axially along the first axis 50′, each of the vanes 20 of the first wheel 30 is rotated in unison. Because the rack gear 100 associated with the second wheel 40 is also operatively coupled with the transformation gear train 86, it also slides axially along the first axis 50′ to cause the vanes 20 of the second wheel 40 to rotate in unison with each other and with the vanes 20 of the first wheel 30. In this way, the toy vehicle 10 is capable of being transformed between a generally spherical shape with the vanes 20 in the first position 22 (
Referring to
In use, the toy vehicle 10 is driven on a surface by rotation of the first and/or second wheels 30, 40. The toy vehicle 10 can be transformed by causing the vanes 20 of the first and second wheels 30, 40 to rotate about the second axes 20′ between the first position 22 in which the toy vehicle 10 is generally spherical in shape and the second position 24 in which the entire central housing 12 is exposed. Further, the tail 70 is able to be positioned in the extended position 74 or wrapped partially around the central housing 14 in the retracted position 72 with rotation of the central housing 12 caused by driving of the first and second wheels 30, 40. Although this is preferred, it is within the spirit and scope of the present invention that the tail 70 be powered so that it can be caused to move to the extended position 74 and back to the retracted position 72 independently from the driving of the first and second wheels 30, 40. The vanes 20 of the toy vehicle 10 can also be configured in the intermediate position 26 (
Although the manner described above for driving and transforming the toy vehicle 10 is preferred, it is not intended to be limiting. As such, it is within the spirit and scope of the present invention that alternate methods of driving and transforming the toy vehicle 10 are also contemplated, such as, but not limited to, those disclosed in previously incorporated U.S. Provisional Patent Application Nos. 60/622,037 and 60/642,060.
It will be appreciated by those skilled in the art that changes could be made to the embodiment described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiment disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.
This patent application is a continuation of U.S. application Ser. No. 11/223,132 filed Sep. 9, 2005, entitled “Transformable Toy Vehicle”, which claims priority to U.S. Provisional Patent Application Nos. 60/622,037, filed Oct. 26, 2004, and 60/642,060, filed Jan. 7, 2005, each entitled “FLIPOUT RC—Generally Spherical Transforming Toy Vehicle”, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2104636 | Burcham | Jan 1938 | A |
2372043 | Aghnides | Mar 1945 | A |
2949697 | Licitis et al. | Aug 1960 | A |
3226878 | Glass et al. | Jan 1966 | A |
3312013 | Graves | Apr 1967 | A |
3327796 | Hanmer | Jun 1967 | A |
3500579 | Bryer | Mar 1970 | A |
3555725 | Orfei et al. | Jan 1971 | A |
3667156 | Tomiyama et al. | Jun 1972 | A |
3722134 | Merrill et al. | Mar 1973 | A |
3733739 | Terzian | May 1973 | A |
3746117 | Alred | Jul 1973 | A |
3798835 | McKeehan | Mar 1974 | A |
3893707 | Samsel | Jul 1975 | A |
4057929 | Ogawa | Nov 1977 | A |
4143484 | Yonezawa | Mar 1979 | A |
4300308 | Ikeda | Nov 1981 | A |
D262224 | Aoki | Dec 1981 | S |
4310987 | Chieffo | Jan 1982 | A |
4386787 | Maplethorpe et al. | Jun 1983 | A |
4391224 | Adler | Jul 1983 | A |
4438588 | Martin | Mar 1984 | A |
4471567 | Martin | Sep 1984 | A |
4501569 | Clark, Jr. et al. | Feb 1985 | A |
4505346 | Mueller | Mar 1985 | A |
4541814 | Martin | Sep 1985 | A |
4568306 | Martin | Feb 1986 | A |
4599077 | Vuillard | Jul 1986 | A |
4601675 | Robinson | Jul 1986 | A |
4609196 | Bozinovic | Sep 1986 | A |
4666420 | Nagano | May 1987 | A |
4671779 | Kurosawa | Jun 1987 | A |
4674585 | Barlow et al. | Jun 1987 | A |
4680022 | Hoshino et al. | Jul 1987 | A |
4693696 | Buck | Sep 1987 | A |
4726800 | Kobayashi | Feb 1988 | A |
4773889 | Rosenwinkel et al. | Sep 1988 | A |
4892503 | Kumazawa | Jan 1990 | A |
4897070 | Wagstaff | Jan 1990 | A |
4927401 | Sonesson | May 1990 | A |
5041051 | Sonesson | Aug 1991 | A |
5131882 | Kiyokane | Jul 1992 | A |
5439408 | Wilkinson | Aug 1995 | A |
5487692 | Mowrer et al. | Jan 1996 | A |
5533921 | Wilkinson | Jul 1996 | A |
5618219 | Simone et al. | Apr 1997 | A |
5667420 | Menow et al. | Sep 1997 | A |
5692946 | Ku | Dec 1997 | A |
5769441 | Namngani | Jun 1998 | A |
5797815 | Goldman et al. | Aug 1998 | A |
5871386 | Bart et al. | Feb 1999 | A |
5919075 | George et al. | Jul 1999 | A |
6024627 | Tilbor et al. | Feb 2000 | A |
6066026 | Bart et al. | May 2000 | A |
6086026 | Pearce | Jul 2000 | A |
6095890 | George et al. | Aug 2000 | A |
6129607 | Hoeting et al. | Oct 2000 | A |
6227934 | Isaksson et al. | May 2001 | B1 |
6439948 | Ostendorff et al. | Aug 2002 | B1 |
6458008 | Hyneman | Oct 2002 | B1 |
6461218 | Mullaney et al. | Oct 2002 | B1 |
6475059 | Lee | Nov 2002 | B1 |
6481513 | Buehler et al. | Nov 2002 | B2 |
6502657 | Kerrebrock et al. | Jan 2003 | B2 |
6540583 | Hoeting et al. | Apr 2003 | B1 |
6648722 | Lynders et al. | Nov 2003 | B2 |
6681150 | Haga et al. | Jan 2004 | B1 |
6752684 | Lee | Jun 2004 | B1 |
6764374 | Tilbor et al. | Jul 2004 | B2 |
6860346 | Burt et al. | Mar 2005 | B2 |
6902464 | Lee | Jun 2005 | B1 |
6964309 | Quinn et al. | Nov 2005 | B2 |
7017687 | Jacobsen et al. | Mar 2006 | B1 |
7217170 | Moll et al. | May 2007 | B2 |
20050133280 | Horchler et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
88 03 308.2 | Jun 1988 | DE |
2 539 904 | Jul 1984 | FR |
1 292 441 | Oct 1972 | GB |
2 194 457 | Mar 1988 | GB |
58 167263 | Oct 1983 | JP |
59-167584 | Nov 1984 | JP |
61-139288 | Aug 1986 | JP |
20040000439 | Jan 2004 | USA |
WO 200224417 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20070210540 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
60642060 | Jan 2005 | US | |
60622037 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11223132 | Sep 2005 | US |
Child | 11748264 | US |