Transformation between time domain and frequency domain based on nearly orthogonal filter banks

Information

  • Patent Grant
  • 9871685
  • Patent Number
    9,871,685
  • Date Filed
    Thursday, May 2, 2013
    11 years ago
  • Date Issued
    Tuesday, January 16, 2018
    6 years ago
Abstract
A filter bank for signal decomposition is provided. The filter bank comprises a plurality of filter units each of which has one input and two outputs forming two paths whose transfer functions are complementary to each other, where the plurality of filter units are connected to form a tree structure.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS





    • The present application is a national stage application of international patent application PCT/CN2013/075082 titled, “TRANSFORMATION BETWEEN TIME DOMAIN AND FREQUENCY DOMAIN BASED ON NEARLY ORTHOGONAL FILTER BANKS,” filed on May 2, 2013. The subject matter of this related application is hereby incorporated herein by reference.





TECHNICAL FIELD

The present application generally relates to a communication system based on nearly orthogonal filter banks.


BACKGROUND

Signal decomposition and composition are usually carried out based on Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT), respectively. However, these methods based on FFT and IFFT is sensitive to channel noise, carrier frequency offset, and Doppler effect. Therefore, new signal decomposition and composition methods are needed.


SUMMARY

In one embodiment, a filter bank for signal decomposition is provided. The filter bank includes a plurality of filter units having one input and two outputs which forms two paths whose transfer functions are complementary to each other, where the plurality of filter units are connected to form a tree structure.


In some embodiments, the filter bank is for decomposing signals containing Nc sub-carrier signals. The filter bank includes Ns stages and stage s includes 2s levels, where Ns=log2Nc, s stands for stage number, and sε[0, 1 . . . Ns−1].


In some embodiments, two outputs of sth stage lth level filter unit are respectively connected to inputs of (s+1)th stage (2l)th level filter unit and (s+1)th stage (2l+1)th level filter unit, where lε[0, 1 . . . 2s−1].


In some embodiments, nth order impulse response coefficient of sth stage qth level filter unit hs,q(n) can be calculated by multiplying nth order impulse response coefficient of sth stage pth level filter unit hs,p(n) and a rotation factor, where pε[0, 1 . . . 2s−1], and qε[0, 1 . . . 2s−1], where the rotation factor is a complex exponential factor.


In some embodiments, impulse response coefficients of sth stage qth level filter unit can be calculated according to below equation:

hs,q(n)=hs,p(nWNc−n({tilde over (p)}−{tilde over (q)})

where hs,q(n) represents nth order impulse response coefficient of sth stage qth level filter unit, hs,p(n) represents nth order impulse response coefficient of sth stage pth level filter unit,







W

N
c


-

n


(


p
~

-

q
~


)




=

e

j



2





π


N
c




(


p
~

-

q
~


)








where {tilde over (p)} is the value of bit reversed version of Ns−1 bits binary encode of p, {tilde over (q)} is the value of bit reversed version of Ns−1 bits binary encode of q.


In one embodiment, a filter bank for signal composition is provided. The filter bank includes a plurality of filter units having two inputs and one output which forms two paths whose transfer functions are complementary to each other, where the plurality of filter units are connected to form a tree structure.


In some embodiments, the filter bank is for composing signals containing Nc sub-carrier signals. The filter bank includes Ns stages and stage s includes 2s levels, where Ns=log2Nc, s stands for stage number, and sε[0, 1 . . . Ns−1].


In some embodiments, two inputs of sth stage lth level filter unit are respectively connected to output of (s+1)th stage (2l)th level filter unit and output of (s+1)th stage (2l+1)th level filter unit, where lε[0, 1 . . . 2s−1].


In some embodiments, nth order impulse response coefficient of sth stage qth level filter unit hs,q(n) can be calculated by multiplying nth order impulse response coefficient of sth stage pth level filter unit hs,p(n) and a rotation factor, where pε[0, 1 . . . 2s−1], and qε[0, 1 . . . 2s−1], where the rotation factor is a complex exponential factor.


In some embodiments, impulse response coefficients of sth stage qth level filter unit can be calculated according to below equation:








h

s
,
q




(
n
)


=




h

s
,
p




(
n
)


·

W

N
c


-

n


(


p
~

-

q
~


)





=



h

s
,
p




(
n
)


·

e

j



2





π


N
c




n


(


p
~

-

q
~


)











where hs,q(n) represents nth order impulse response coefficient of sth stage qth level filter unit, hs,p(n) represents nth order impulse response coefficient of sth stage pth level filter unit, {tilde over (p)} stands for the value of bit reversed version of Ns−1 bits binary encode of p, {tilde over (q)} stands for the value of bit reversed version of Ns−1 bits binary encode of q.


In one embodiment, a receiver is provided. The receiver includes a first filter bank for decomposing signals composed by a second filter bank of a transmitter which signals contain Nc sub-carrier signals. The first filter bank includes Nc channels corresponding to the Nc sub-carriers. The second filter bank also includes Nc channels corresponding to the Nc sub-carriers. Vector form transfer function of channel p of the first filter bank is nearly orthogonal to vector form transfer function of channel q of the second filter bank.


In some embodiments, when p=q, the result of [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p substantially equals to 1; when |p−q|=1, the result of [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p is less than a predetermined threshold; otherwise [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p=0, where [ ]H stands for conjugate transpose operation, where the predetermined threshold is small enough such that a signal composed by the transmitter can be decomposed by the receiver correctly, where the result of [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p is normalized. When p=q, the result of [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p is not required to be exactly equal to 1, instead it is required to be close enough to 1 such that the Nc sub-carrier signals can be decomposed correctly.


In some embodiments, the threshold may be determined based on modulation method used by the transmitter.


In one embodiment, a signal composing method is provided. The method may include: feeding Nc sub-carrier signals into Nc inputs of a tree structured filter bank, respectively, where the filter bank has a plurality of filter units having two inputs and one output which forms two paths whose transfer functions are complementary to each other; and obtain a composed signal containing the Nc sub-carrier signals from an output of the filter bank.


In one embodiment, a signal decomposing method is provided. The method may include: feeding a signal containing Nc sub-carrier signals into a tree structured filter bank having one input and Nc outputs, where the filter bank has a plurality of filter units having one input and two outputs which forms two paths whose transfer functions are complementary to each other; and obtain the Nc sub-carrier signals from the Nc outputs of the filter bank, respectively.


In one embodiment, a communication method is provided. The method may include: composing Nc sub-carrier signals using a first tree structured filter bank having Nc channels to obtain a composed signal containing the Nc sub-carrier signals; and decomposing the composed signal using a second tree structured filter bank having Nc channels to obtain the Nc sub-carrier signals, where vector form transfer function of channel q of the first filter bank is nearly orthogonal to vector form transfer function of channel p of the second filter bank.


In some embodiments, when p=q, the result of [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p substantially equals to 1; when |p−q|=1, the result of [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p is less than a predetermined threshold; otherwise [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p=0, where {right arrow over (H)}t,q is vector form transfer function of channel q of the first filter bank and {right arrow over (H)}r,p is vector form transfer function of channel p of the second filter bank, where [ ]H stands for conjugate transpose operation, where the predetermined threshold is small enough such that the Nc sub-carrier signals composed by the first filter bank can be decomposed by the second filter bank correctly, where the result of [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p is normalized.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings.



FIG. 1 illustrates a schematic block diagram of a filter bank for signal decomposition in one embodiment.



FIG. 2 illustrates a schematic block diagram of a filter unit of the filter bank in FIG. 1.



FIG. 3 illustrates a schematic block diagram of a filter bank for signal composition in one embodiment.



FIG. 4 illustrates a spectrum obtained in one experiment using a communication system of one embodiment.



FIG. 5 illustrates an enlarged view of the spectrum in FIG. 4 and a spectrum of a conventional communication system based on FFT/IFFT.



FIG. 6 illustrates a comparison between original signals and decoded signals, according to various embodiments of the present disclosure.





DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and make part of this disclosure.


Referring to FIG. 1, a three stage filter bank 100 for decomposing signals containing eight sub-carrier signals is illustrated. The filter bank 100 includes three stages. The 0th stage includes one filter unit 101, the 1st stage includes two filter units 103 and 105, and the 2nd stage includes four filter units 107, 109, 111, and 113. Each of the filter units includes one input and two outputs which form two paths. The filter bank 100 as a whole includes one input and eight outputs, in other words, the filter bank 100 includes eight channels.


A filter bank for decomposing signals having Nc sub-carrier signals includes Ns=log2Nc stages, stage s includes 2s filter units/levels, where s stands for stage number.


Referring to FIG. 2, the sth stage lth level filter unit 200 has an input 201 and two outputs 203 and 205, which form an upper path and a lower path. Given the frequency domain transfer function of the upper path is {tilde over (H)}s,l(z), then the frequency domain transfer function of the lower path shall be A−{tilde over (H)}s,l(z), these two transfer functions are complementary to each other, where A represents a magnitude, z stands for z-transform i.e. z=e, where j=√{square root over (−1)}.


Channel number c may be binary encoded, [c]10=[BNs−1BNs−2 . . . B0]2, where BNs−1 is the most significant bit (MSB), and B0 is the least significant bit (LSB). For example, referring to FIG. 1, the channel number of “channel 4” is four.


Given the frequency domain transfer function of the sth stage 0th level filter unit is written as Equation (1),












H
~


s
,
0




(
z
)


=



h
s



(
0
)


+




n
=
1



M
s

-
1






h
s



(
n
)




z

-
n









Equation






(
1
)









where Ms−1 represents order of transfer functions in sth stage, and hs(0), hs(1) . . . hs(n) are impulse response coefficients of the transfer function of sth stage 0th level filter unit, then the frequency domain transfer function of channel c in sth stage may be written as Equation (2),











H
~

c
s

=



h
s



(
0
)


+




n
=
1



M
s

-
1






(

-
1

)


B
s





h
s



(
n
)




W

N
c

nk



z


-
n

·

2


N
s

-
s
-
1











Equation






(
2
)









where Bs stands for the sth element/bit of the binary encode of the channel number c, Nc stands for the sum of channels in the communication system, Ns stands for the sum of stages in the signal decomposition system, for example, assuming Nc=8, s=2, and c=6, the binary encode of c is 110, then Bs is the 2nd element of 110 which is 1, where 0th element of a binary encode e2e1e0 is e0, 1st element of e2e1e0 is e1, and 2nd element of e2e1e0 is e2,








W

N
c

nk

=

e


-
j




2





π


N
c



nk



,




where







k
=


k
0

·

2


N
s

-
s
-
1




,





where k0 stands for the value of the least s bits of the binary encode of c. For example, assuming Ns=3, s=2 and c=6, the binary encode of c is 110, the least s=2 bits of the binary encode of c is 10, and k0=2 in this example. When s=0, k0=0.


For channel c, when its frequency domain transfer function in each stage is obtained, the channel transfer function {tilde over (H)}zc in the frequency domain may be written as:

{tilde over (H)}zc=H1·{tilde over (H)}c0·{tilde over (H)}c1. . . ·HcNs−1  Equation (3),

where H1 may be defined as:










H
1

=


H
0

=

1







h
c



(
0
)




2

+






h
c



(
1
)




2

















h
c



(


M
c

-
1

)




2










Equation






(
4
)









where hc(n) is a coefficient of transfer function, nε[0, 1 . . . Mc−1], where Mc−1 is order of the transfer function of channel c.


Referring to FIG. 3, a three stage filter bank 300 for composing signals having eight sub-carrier signals is illustrated. A signal composed using the filter bank 300 can be decomposed using the filter bank 100. The filter bank 300 also includes three stages. The 0th stage includes one filter unit 301, the 1st stage includes two filter units 303 and 305, and the 2nd stage includes four filter units 307, 309, 311, and 313. Each of the filter units includes one output and two inputs which form two paths. The filter bank 300 as a whole includes one output and eight inputs, in other words, the filter bank 300 also includes eight channels.


A filter bank for composing Nc sub-carrier signals into one signal containing the Nc sub-carrier signals includes Ns=log2Nc stages, stage s includes 2s filter units/levels, and each filter unit includes two inputs which form two paths whose transfer functions are complementary to each other. Its structure is substantially inverse to that of a filter bank for decomposing signals composed by it.


Assuming the frequency domain transfer function of channel c in the filter bank 100 may be written as:

{tilde over (H)}zc=α·[hc(0)+Σn=1Mc−1hc(n)z−n]  Equation (5),

where α may be defined as:









α
=


1







h
c



(
0
)




2

+






h
c



(
1
)




2

















h
c



(


M
c

-
1

)




2





.





Equation






(
6
)








For simplicity, the transfer function of channel c in the filter bank 100 may be re-written in vector form as:

{right arrow over (H)}r,c=α·[hc(0),hc(1) . . . hc(Mc−1)]T  Equation (7)

where [ ]T stands for transpose operation.


The transfer function of channel c in the filter bank 300 may be re-written in vector form as:

{right arrow over (H)}t,c={right arrow over (H)}*r,c=α·[hc(0),hc(1) . . . hc(Mc−1)]H  Equation (8),

where [ ]* stands for conjugate operation, and [ ]H stands for conjugate transpose operation. As a result, the following Equation (9) may be obtained:

{right arrow over (H)}Ht,c·{right arrow over (H)}r,c=1  Equation (9).


In a signal composition system of a transmitter, if a symbol Xc is fed to a channel c having a transfer function of {right arrow over (H)}t,c, then a symbol Xc·{right arrow over (H)}t,c may be generated by the channel c. Since the transmitted symbol X is constituted by symbols generated by all channels, the transmitted symbol X may be written as:

X=X1·{right arrow over (H)}t,1+X2·{right arrow over (H)}t,2. . . XNc−1·{right arrow over (H)}t,Nc−1  Equation (10).


In a signal decomposition system of a receiver, for a received symbol X, a channel c having a transfer function of {right arrow over (H)}r,c may generate a symbol {tilde over (X)}c according to Equation (11):

{tilde over (X)}c=XT·{right arrow over (H)}r,c  Equation (11).


According to Equations (9) and (10), Equation (12) may be obtained:














X
~

c

=




X
T

·


H



r
,
c









=





[







X
1

·


H



t
,
1



+

+


X
c

·


H



t
,
c



+













X


N
c

-
1


·


H



t
,


N
c

-
1







]

T

·


H



r
,
c










=





X
1

·


H



t
,
1

T

·


H



r
,
c



+

+


X
c

·


H



t
,
c

T

·


H



r
,
c



+

















X


N
c

-
1


·


H



t
,


N
c

-
1


T

·


H



r
,
c









=





X
1

·


H



t
,
1

T

·


H



r
,
c



+

+

X
c

+









X


N
c

-
1


·














H



t
,


N
c

-
1


T

·



H



r
,
c


.









Equation






(
12
)








Then Equation (13) may be obtained:

{tilde over (X)}c−Xc=X1·{right arrow over (H)}t,1T·{right arrow over (H)}r,c+ . . . +Xc−1·{right arrow over (H)}t,c−1T·{right arrow over (H)}r,c+Xc+1·{right arrow over (H)}t,c+1T·{right arrow over (H)}r,c+ . . . +XNc−1·{right arrow over (H)}t,Nc−1T·{right arrow over (H)}r,c  Equation (13),

where the items on the right of the equation may be called interference items.


To guarantee that {tilde over (X)}c−Xc is equal to zero, vector {right arrow over (H)}r,p of the receiver shall be orthogonal to vector {right arrow over (H)}t,q of the transmitter. However, in practice, perfect orthogonality is very difficult to achieve. If nearly orthogonality is achieved, symbols can also be decomposed correctly.


EXAMPLE

A communication system having 64 sub-carriers based on filter banks of the present application was designed, and FIG. 4 illustrates a spectrum of the communication system.


Referring to FIG. 5, an enlarged view of the spectrum of the communication system based on filter banks and a spectrum of conventional FFT/IFFT method is shown. It can be seen that the communication system has the following characteristics: flat-pass band, narrow transition band, small interference between adjacent sub-carriers and large attenuation in the stop-band etc.


Given that {right arrow over (H)}r,p is the vector of the pth channel of the receiver and {right arrow over (H)}t,q is the vector of the qth channel of the transmitter. In this example, results of multiplication of the two arbitrary vectors are listed below:









[


H



t
,
q


]

H

·


H



r
,
p



=


{




1
,

p
=
q







0.0362
,




p
-
q



=
1







0
,
others




}

.





Since when p=q, the result of [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p is substantially equal to 1; when |p−q|=1, the result of [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p is less than 0.0362 which is small enough to be negligible; otherwise the result of [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p equals to zero, then {right arrow over (H)}t,q and {right arrow over (H)}r,p may be regarded as nearly orthogonal. In this example, 1 and 0.0362 is the result of normalization.


In other words, as long as the above conditions are met, the receiver can decode symbols correctly. To decompose sub-carrier signals correctly, when |p−q|=1, the result of [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p shall be less than a certain threshold, and the threshold may be determined based on how the signal containing the sub-carrier signals is modulated in the transmitter.


Referring to FIG. 6, differences between original symbols and decoded symbols are shown, where original symbols are represented using symbol “o”, and decoded symbols are represented using symbol “*”. It can be seen that the symbols were correctly decoded.


There is little distinction left between hardware and software implementations of aspects of systems; the use of hardware or software is generally a design choice representing cost vs. efficiency tradeoffs. For example, if an implementer determines that speed and accuracy are paramount, the implementer may opt for a mainly hardware and/or firmware vehicle; if flexibility is paramount, the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware.


While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims
  • 1. A filter bank for signal decomposition, comprising: a plurality of filter units having one input and two outputs, wherein the two outputs comprise two paths that have complementary transfer functions, and wherein the plurality of filter units are connected to one another to form a tree structure,wherein the filter bank decomposes signals having Nc sub-carrier signals, the filter bank having Ns stages, stage s having 2s levels, wherein Ns=log2Nc, s is a stage number, and sε[0, 1 . . . Ns−1],wherein an nth order impulse response coefficient of an sth stage, qth level filter unit, hs,q(n), is calculated by multiplying an nth order impulse response coefficient of sth stage, pth level filter unit, hs,p(n), and a rotation factor, wherein the rotation factor is a complex exponential factor, andwherein the rotation factor is
  • 2. The filter bank of claim 1, wherein two outputs of an sth stage, lth level filter unit are respectively connected to inputs of an (s+1)th stage, (2l)th level filter unit and an (s+1)th stage, (2l+1)th level filter unit, where lε[0, 1 . . . 2s−1].
  • 3. A filter bank for signal composition, comprising: a plurality of filter units having one output and two inputs, wherein the two inputs comprise two paths that have complementary transfer functions, and wherein the plurality of filter units are connected to one another to form a tree structure,wherein the filter bank composes signals having Nc sub-carrier signals, the filter bank having Ns stages, stage s having 2s levels, wherein Ns=log2Nc, s is a stage number, and sε[0, 1 . . . Ns−1],wherein an nth order impulse response coefficient of an sth stage, qth level filter unit, hs,q(n), is calculated by multiplying an nth order impulse response coefficient of sth stage, pth level filter unit, hs,p(n), and a rotation factor, where the rotation factor is a complex exponential factor, andwherein the rotation factor is
  • 4. The filter bank of claim 3, wherein two outputs of an sth stage, lth level filter unit are respectively connected to inputs of an (s+1)th stage, (2l)th level filter unit and an (s+1)th stage, (2l+1)th level filter unit, where lε[0, 1 . . . 2s−1].
  • 5. A receiver, comprising: a first filter bank for decomposing signals, the signals containing Nc sub-carrier signals and composed by a second filter bank of a transmitter, where both the first filter bank and the second filter bank have Ns stages, and stage s of both the first filter bank and the second filter bank comprises 2s levels to form Nc channels, where Ns=log2Nc, s is a stage number, and sε[0, 1 . . . Ns−1], and where vector form transfer function {right arrow over (H)}r,p of channel p of the first filter bank is orthogonal to vector form transfer function {right arrow over (H)}t,q of channel q of the second filter bank.
  • 6. The receiver of claim 5, wherein: when p=q, the result of [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p equals to 1;when |p−q|=1, the result of [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p is less than a predetermined threshold; and
  • 7. A signal composing method, comprising: feeding Nc sub-carrier signals into Nc inputs of a tree-structured filter bank, respectively, wherein the filter bank has a plurality of filter units, each filter unit having one output and two inputs, wherein the two inputs comprise two paths that have complementary transfer functions; andobtaining a composed signal containing the Nc sub-carrier signals from an output of the filter bank,wherein the filter bank composes signals having Nc sub-carrier signals, the filter bank having Ns stages, stage s having 2s levels, wherein Ns=log2Nc, s is a stage number, and sε[0, 1 . . . Ns−1],wherein an nth order impulse response coefficient of an sth stage, qth level filter unit, hs,q(n), is calculated by multiplying an nth order impulse response coefficient of sth stage, pth level filter unit, hs,p(n), and a rotation factor, where the rotation factor is a complex exponential factor, andwherein the rotation factor is
  • 8. A signal decomposing method comprising: feeding a signal containing Nc sub-carrier signals into a tree structured filter bank having one input and Nc outputs, where the filter bank has a plurality of filter units having one input and two outputs, where the two outputs comprise two paths that have complementary transfer functions; andobtaining the Nc sub-carrier signals from the Nc outputs of the filter bank, respectively,wherein the filter bank decomposes signals having Nc sub-carrier signals, the filter bank having Ns stages, stage s having 2s levels, wherein Ns=log2Nc, s is a stage number, and sε[0, 1 . . . Ns−1],wherein an nth order impulse response coefficient of an sth stage, qth level filter unit, hs,q(n), is calculated by multiplying an nth order impulse response coefficient of sth stage, pth level filter unit, hs,p(n), and a rotation factor, wherein the rotation factor is a complex exponential factor, andwherein the rotation factor is
  • 9. A communication method, comprising: composing Nc sub-carrier signals using a first tree structured filter bank having Nc channels to obtain a composed signal containing the Nc sub-carrier signals; anddecomposing the composed signal using a second tree structured filter bank having Nc channels to obtain the Nc sub-carrier signals,where vector form transfer function {right arrow over (H)}r,p of channel p of the second filter bank is orthogonal to vector form transfer function {right arrow over (H)}t,q of channel q of the first filter bank.
  • 10. The communication method of claim 9, wherein: when p=q, the result of [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p equals to 1;when |p−q|=1, the result of [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p is less than a predetermined threshold; and otherwise, the result of [{right arrow over (H)}t,q]H·{right arrow over (H)}r,p, equals to 0, where [ ]H is a conjugate transpose operation.
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2013/075082 5/2/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/176774 11/6/2014 WO A
US Referenced Citations (3)
Number Name Date Kind
6091704 Butash Jul 2000 A
8659820 Giallorenzi Feb 2014 B1
20030231714 Kjeldsen Dec 2003 A1
Foreign Referenced Citations (3)
Number Date Country
101102296 Jan 2008 CN
101222468 Jul 2008 CN
2010137231 Feb 2010 WO
Non-Patent Literature Citations (8)
Entry
Extended European Search Report Application No. 138834489.0, dated Oct. 27, 2016, 9 pages.
Lim Y C et al: “Fast Filter Bank (FFB)”, IEEE Transactions on Circuits and Systems: Analog and Digitalsignal Processing, Institute of Electrical and Electronics Engineers Inc, 345 East 47 Street, New York, N.Y. 10017. USA, vol. 39, No. 5, May 1, 1992 (May 1, 1992), pp. 316-318, XP080305261, ISSN: 1057-7138, DOI: 18.1189/82.142033 * Sections I-IV; figures 3-4 *.
Yong Ching Lim et al: “Analysis and optimum design of the FFB”,Circuits and Systems, 1994. ISCAS ‘94.’ 1994 IEEE International Sympos IUM on London, UK 38 May-2 Jun. 1994, New York, NY, USA, IEEE, us, vol. 2, 38 May 1994 (1994-05-38), pp. 589-512, XP810143088, ISBN: 978-8-7803-1915-8 * p. 510-p. 511; figure 4 *.
Lee Jun Wei et al: “A Multiplierless Filter Bank with Deep Stopband Suppression and Narrow Transition Width”, Conference Proceedings / IEEE International Symposium on Circuits and Systems (ISCAS) : May 23-26, 2005, International Conference Center, Kobe, Japan, IEEE Service Center, Piscataway, NJ, May 23, 2005 (May 23, 2005), pp. 4305-4308, XP010816613, ISBN: 978-0-7803-8834-5 * Section 11-IV; figures 2-3 *.
Yong Ching Lim et al: “Matrix, formulation: fast filter bank”, Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP ' 04). IEEE International Conference on Montreal, Quebec, Canada May 17-21, 2004, Piscataway, NJ, USA,IEEE, Piscataway, NJ, USA, vol. 5, May 17, 2004 (May 17, 2004), pp. 133-136, XP010718880, ISBN: 978-0-7803-8484-2 * Sections 2-4; figures 1-3 *.
International Search Report Application No. PCT/CN2013/075082, dated Feb. 6, 2013.
Budiarjo, et al., “Cognitive Radio Modulation Techniques”, IEEE Signal Processing Magazine, IEEE Service Center, Piscataway, NJ, US, vol. 25, No. 6, Nov. 2008, pp. 24-34.
Extended European Search Report for Application No. 13883489.0 dated Feb. 10, 2017.
Related Publications (1)
Number Date Country
20160043886 A1 Feb 2016 US