Embodiments of the invention relate to a transformer having passive cooling technology, and more particularly to a small size and light weight transformer that is optimized for use in a power flow control system.
Power flow control devices that are constructed for optional attachment to power transmission lines are preferably light in weight and of minimum size. Accordingly, for power flow devices that incorporate a power transformer, it is desirable to use a passive cooling topology that eliminates cooling liquids and pumping equipment and fans.
In a transformer implementation, eddy current losses are preferably minimized since they decrease both electrical and thermal efficiency. High voltage operation of a transformer may include features (such as air pockets) that may arc unless mitigating strategies are employed. Such arcing can quickly lead to failure of the transformer. Insulating materials may be chosen that withstand high dielectric stress while also providing good thermal conductivity.
Accordingly, there is a need in the art for a transformer of small size and light weight optimized for use in a power flow control system.
Embodiments of the disclosure are illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements.
Various embodiments and aspects of the disclosures will be described with reference to details discussed below, and the accompanying drawings will illustrate the various embodiments. The following description and drawings are illustrative of the disclosure and are not to be construed as limiting the disclosure. Numerous specific details are described to provide a thorough understanding of various embodiments of the present disclosure. However, in certain instances, well-known or conventional details are not described in order to provide a concise discussion of embodiments of the present disclosures.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in conjunction with the embodiment can be included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification do not necessarily all refer to the same embodiment.
A passive cooling topology and a manufacturing method are described for a transformer to achieve improved power density at a light weight. No fans or cooling liquids are required.
Vertical planar faces are used for the central core element, primary and secondary windings, an outer core element, and a heat sink. The primary flow for thermal cooling is radial, through the vertical planar faces. The transformer is floating at the potential of a high voltage transmission line, leading to improved thermal characteristics. Eddy currents are reduced using repeating air gaps in the central core, and a continuously transposed cable comprising multiple strands per turn in the secondary winding. Air pockets in the windings are eliminated using a potting resin and vacuum pressure impregnation (VPI).
According to some embodiments, a transformer is described. The transformer includes a central core having a vertical planar face, a primary winding having a vertical planar face, at least one secondary winding having a vertical planar face, an outer core having a vertical planar face, a heat sink, and a clamping plate to compress the central core, the primary winding, the at least one secondary winding, and the outer core together to minimize air pockets in the primary winding and the at least one secondary winding and to maximize conductive cooling of the transformer. In some embodiments, primary heat flows through the vertical faces of the central core, the primary winding, the at least one secondary winding, and the outer core in a radial direction extending from the central core to the heat sink.
According to another embodiment, a method for constructing a transformer is described. In one aspect, a primary and a secondary winding are provided, where each of the primary and secondary windings has a planar vertical face. A central core and an outer core are provided, where each of the central core and the outer core has a planar vertical face. In one embodiment, the planar vertical face of the central core is matched to the planar vertical face of the secondary winding and the planar vertical face of the outer core is matched to the planar vertical face of the primary winding. A heat sink having a planar vertical face and a clamping plate are provided. Air pockets within the primary and secondary windings are filled with resin using, for example, vacuum pressure impregnation (VPI). Any air gaps at an interface between the clamping plate and the heat sink are filled with electrically conductive filler. The central core, the primary and secondary windings, and the outer core are clamped together, by the clamping plate, to form an integrated block having low thermal impedance in a heat flow path extending from the central core to the heat sink.
Still referring to
It is an object of the present disclosure to minimize thermal resistance between the central core 21 and heat sink 27. This is achieved at some interfaces by using polyimide layers, such as Kapton having both a high breakdown voltage and good thermal conductivity. The breakdown voltage of Kapton can be as high as 250 volts per micrometer for example. Since transformer 20 is used for power flow control devices that may be attached to a high voltage (HV) transmission line, and since the HV transmission line is generally carried at a sufficient height above ground to maintain safety for humans on the ground, it is both safe and greatly beneficial to float transformer 20 at the potential of the HV transmission line. In one embodiment, the topology of transformer 20 may include a shorting conductor (e.g., shorting strap 16) disposed between a primary or secondary winding terminal and the HV transmission line 17 to connect the terminal to the HV transmission line. When this is done, the requirement for insulation resistance between the secondary winding 22b and primary winding 23 is greatly reduced. For example, a transmission line carrying 290 kV may normally require a thickness of at least 1,200 micrometers if Kapton is used to insulate between the windings. However, in transformer 20, the voltage breakdown requirement is determined by the voltage injection level used, which is typically of the order of 1,000 volts. Accordingly, if Kapton 32a is used at the interface between primary winding 23 and secondary winding 22b, the required thickness may be reduced from around 1,200 micrometers to around 5 micrometers, thereby reducing the thermal resistance of this element in radial heat flow 29 by a factor of around 240. This lowered thermal resistance will result in transformer 20 having an improved power density, thereby resulting in lighter weight and smaller size.
Despite best efforts to compress the overall assembly indicated by the topology of transformer 20 into a unitary body to minimize air pockets and maximize conductive cooling, typically some air pockets will remain. As high transformer voltages are applied in the windings, arcs can be produced in the air pockets if they are not filled with an insulating material. Accordingly, the air pockets are filled with an insulating resin using vacuum pressure impregnation (VPI). A preferred resin will have both high insulation resistance and high thermal conductivity.
Power density may also be improved by reducing thermal losses in a transformer assembly represented by the topology of transformer 20. For example, eddy current losses create heat that must be removed, as it negatively impacts the achievable power density. In
Various materials and combinations of materials may be used as insulating wraps, including polyimide (e.g. Kapton), Nomex, Nomex/Kapton/Nomex, and Thermavolt® available from 3M™ Company, thus allowing optimization of both insulation and thermal conduction properties for each location where a wrap is used.
Referring to
While the disclosure has been described in terms of several embodiments, those of ordinary skill in the art will recognize that the invention is not limited to the embodiments described, but can be practiced with modification and alteration known to practitioners of the art. These modifications and alternate practices, though not explicitly described, are covered under the current application. The practice of the invention is further covered within the spirit and scope of the appended claims. The description is thus to be regarded as illustrative instead of limiting. There are numerous other variations to different aspects of the invention described above, which in the interest of conciseness have not been provided in detail. Accordingly, other embodiments are within the scope of the claims.
This application claims the benefit of U.S. Provisional Application No. 62/781,494 filed on Dec. 18, 2018, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1807441 | Schurig | May 1931 | A |
3524126 | Hans | Aug 1970 | A |
4829207 | Hovorka | May 1989 | A |
4874916 | Burke | Oct 1989 | A |
4897626 | Fitter | Jan 1990 | A |
5210513 | Khan et al. | May 1993 | A |
5395210 | Yamazaki | Mar 1995 | A |
5396210 | Purohit | Mar 1995 | A |
5726858 | Smith et al. | Mar 1998 | A |
5920249 | Huss | Jul 1999 | A |
5926944 | Smith et al. | Jul 1999 | A |
6081082 | Kim et al. | Jun 2000 | A |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6185811 | Perry | Feb 2001 | B1 |
6259347 | Sines | Jul 2001 | B1 |
6489551 | Chu et al. | Dec 2002 | B2 |
6492890 | Woznlczka | Dec 2002 | B1 |
6563410 | Marton | May 2003 | B1 |
6777835 | Sines | Aug 2004 | B1 |
6822404 | Matsumoto et al. | Nov 2004 | B2 |
7019996 | Zhu et al. | Mar 2006 | B2 |
7088211 | Moncada et al. | Aug 2006 | B2 |
7468648 | Springett | Dec 2008 | B2 |
7911308 | Rippel | Mar 2011 | B2 |
8072305 | Nakahor | Dec 2011 | B2 |
8358506 | Cooper et al. | Jan 2013 | B2 |
8402636 | Park et al. | Mar 2013 | B2 |
20020062855 | Chu et al. | May 2002 | A1 |
20030168988 | Matsumoto et al. | Sep 2003 | A1 |
20050012585 | Moncada et al. | Jan 2005 | A1 |
20050083714 | Zhu et al. | Apr 2005 | A1 |
20060181837 | Sun et al. | Aug 2006 | A1 |
20070296533 | Springett | Dec 2007 | A1 |
20080239759 | Nakahor | Oct 2008 | A1 |
20090302986 | Bedea | Dec 2009 | A1 |
20100127810 | Rippel | May 2010 | A1 |
20110304255 | Miller et al. | Dec 2011 | A1 |
20120050999 | Cooper et al. | Mar 2012 | A1 |
20120301172 | Odate | Nov 2012 | A1 |
20160066414 | Jow et al. | Mar 2016 | A1 |
20200059136 | Yang | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
3528266 | Aug 2019 | EP |
3576106 | Dec 2019 | EP |
Number | Date | Country | |
---|---|---|---|
62781494 | Dec 2018 | US |