Transformer with improved insulation

Information

  • Patent Grant
  • 6734777
  • Patent Number
    6,734,777
  • Date Filed
    Friday, March 15, 2002
    22 years ago
  • Date Issued
    Tuesday, May 11, 2004
    20 years ago
Abstract
A transformer with good insulation is disclosed. The transformer includes a bobbin, an insulating shell and a core structure. The bobbin is wound with a secondary winding. The insulating shell encloses the bobbin and the insulating shell is wound with a primary winding. Further, the core structure is magnetically coupled to the primary winding and the secondary winding.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a transformer, and more particularly to a transformer with good insulation.




2. Description of the Related Art




Generally, because the secondary side of a transformer has a high voltage, it is generally necessary to insulate the secondary winding to prevent the electric elements or users from being harmed by high voltage. However, there are many shortcomings to several conventional method of insulating the secondary winding.




A conventional transformer, as shown in

FIG. 1



a


, is composed of a bobbin


10




a


, a core structure and an insulating shell


30


. The core structure comprises two E type cores


50


which are coupled together by being inserted into the two ends of the bobbin


10




a


respectively. The bobbin has a primary side


20




a


and a secondary side


20




b


. The primary side


20




a


is provided with a primary winding (not shown) and the secondary side


20




b


is provided with a secondary winding (not shown). The primary side


20




a


is separated from the secondary side


20




b


by a first separating flange


25


. In addition, the primary winding is electrically coupled to at least one of the primary pins


21


, and the second winding is electrically coupled to at least one of the secondary pins


22


. The secondary side


20




b


further comprises a plurality of secondary flanges


27


for producing several dividing voltages. Namely, the primary winding and the secondary winding are formed along the same axis of one bobbin. Moreover, the transformer further comprises an insulating shell


30


to insulate the secondary winding from outside. The insulating shell


30


encloses the whole bobbin


10




a.






However, in the conventional transformer shown in

FIG. 1



a


, because only the first flange


25


is used to insulate the secondary winding from the primary winding, the primary winding is not completely insulated from the secondary winding. The creepage distance between the primary winding and the secondary winding may be not enough when the primary winding and the secondary winding are formed at the primary side


20




a


and the secondary side respectively, due to poor design or error in the production process, for example, the first flange


25


is too low or the secondary winding is wound too thick. In this case, the high voltage at the secondary winding may be short-circuited to the primary winding, thereby decreasing the efficiency of the transformer.




Another conventional method is to insulate the secondary winding by using an insulating glue. In

FIG. 1



b


, a conventional transformer with an insulating glue is comprised of a bobbin


10




b


, a core structure and a container


60


. The core structure comprises two E type cores


50


which are coupled together by being inserted into the two ends of the bobbin


10




a


respectively. The bobbin


100


has a primary side


20




a


and a secondary side


20




b


. The primary side


20




a


is provided with a primary winding (not shown) and the secondary side


20




b


is provided with a secondary winding (not shown). The primary side


20




a


is separated from the secondary side


20




b


by a first separating flange


25


. In addition, the primary winding is electrically coupled to a least one of the primary pins


21


, and the second winding is electrically coupled to a least one of the secondary pins


22


. The secondary side


20




b


further comprises a plurality of second flanges


27


to produce several dividing voltages. Namely, the primary winding and the secondary winding are along the same axis direction of one bobbin. The transformer further comprises a container


60


to hold the secondary winding from the environment. The container


60


is used to include the bobbin


10




b


and the core structure. The insulating glue is added into the container


60


to insulate the secondary winding from environment.




However, the transformer shown in

FIG. 1



b


not only has the problem about creepage distance, but it is also difficult to implement the transformer in the Surface Mount Device (SMD) type. Instead, the transformer must be implemented in stitch type because the bobbin


10




b


must be placed in the container


60


. However, it is very difficult to control the potting height to cover the bobbin


10




b


but still expose the pins


21


and


22


because the pins


21


and


22


in the transformer of the SMD type and the lower surface of the bobbin


100


are almost in the same plane. Furthermore, the insulating glue must be added in a vacuum environment to prevent bubbles from being formed when the insulating glue is added into the container


60


.




In view of this, it is desirable to develop a novel transformer to solve the problems mentioned above.




SUMMARY OF THE INVENTION




An object of the present invention is to provide a transformer wherein the high voltage side (secondary side) is insulated completely. The transformer of the present invention comprises a bobbin, an insulating shell and a core structure. The surface of the bobbin is provided with a plurality of flanges, a plurality of secondary side pins and secondary winding. The flanges are formed on the surface of the bobbin to form a plurality of slots on the surface of the bobbin. A conductive wire is wound on those slots to form the secondary winding. The secondary winding is electrically coupled to the pins.




The insulating shell is comprised of an upper insulating cover and a lower insulating cover, wherein the upper insulating cover covers the top surface of the bobbin and the lower insulating cover covers the bottom surface of the bobbin. Namely, the secondary winding and surface thereof are enclosed by the upper insulating cover and the lower insulating cover. Consequently, the secondary winding of the bobbin is completely electrical insulated from the environment. Moreover, another conductive wire is wound on the insulating shell to server as the primary winding and electrically coupled to the primary pins.




The upper insulating cover further comprises a top extending board, and the lower insulating cover further comprises a bottom extending board. The top extending board and the bottom extending board extend beyond the secondary pins. Alternatively, the top extending board and the bottom extending board enclose the secondary pins exactly.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention can be more fully understood by reading the subsequent detailed description in conjunction with the examples and references made to the accompanying drawings, wherein:





FIG. 1



a


depicts a conventional transformer;





FIG. 1



b


depicts another conventional transformer;





FIG. 2



a


is an exploded view illustrating the transformer according to the present invention; and





FIG. 2



b


illustrates the insulating shell of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




The present invention provides a transformer wherein the high voltage side (secondary side) is completely insulated.




In

FIG. 2



a


and

FIG. 2



b


, the transformer of the present invention is comprised of a bobbin


100


, an insulating shell


300


and a core structure. The core structure is comprised of two E type cores


500


which are coupled together by being inserted into the two ends of the bobbin


100


, respectively. The surface of the bobbin


100


is provided with a plurality of flanges


200


, a plurality of primary pins


210


, a plurality of secondary pins


220


and a secondary winding (not shown). The plurality of flanges


200


is formed on the surface of the bobbin


100


to form a plurality of winding slots on the surface of the bobbin


100


. A conductive wire or coil is wound around winding slots to form the secondary winding. Further, the secondary winding is electrically coupled to the secondary pins


220


.




The insulating shell


300


is comprised of an upper insulating cover


310


and a lower cover


320


. The upper insulating cover


310


encloses the top surface of the bobbin


100


and the lower insulating cover


320


encloses the bottom surface of the bobbin


100


. Namely, the upper insulating cover


310


and lower insulating cover


320


enclose the bobbin


100


and the surface thereof. Accordingly, the secondary winding on the bobbin


100


is electrically insulated from environment completely. Furthermore, another conductive wire or coil is wound over the surface of the insulating shell


300


to serve as the primary winding. The primary winding is electrically coupled to the primary pins


210


of the bobbin


100


. That is, in the transformer of the present invention, the insulating shell


300


which the conductive wire is wound around serves as a bobbin of the primary winding. Accordingly, the primary winding can be insulated from the secondary winding completely. Moreover, the core structure is magnetically coupled to the primary winding and the secondary winding.




The upper insulating cover


310


further comprises a top extending board


315


, while the lower insulating cover


320


further comprises a bottom extending board


325


. The top extending board


315


and the bottom extending board


325


may extend beyond the secondary pins


220


. Alternatively, the top extending board


315


and the bottom extending board


325


may enclose the secondary pins


220


exactly. The primary winding and the secondary winding are wound around the bobbin and the insulating shell, respectively.




The present invention can separate the primary winding and the secondary winding completely, regardless of the creepage distance. Further, the manufacturing cost and process time of the present invention is greatly decreased because the present invention doesn't rely on the complex process like the use of insulating glue to insulate the primary winding from the secondary winding in the prior art.




Finally, while the invention has been described by way of example and in terms of the preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.



Claims
  • 1. A transformer, comprising:a bobbin having a secondary winding; an insulating shell enclosing the bobbin, a surface of the insulating shell being wound with a primary winding; and a core structure magnetically coupled to the primary winding and the secondary winding.
  • 2. The transformer as claimed in claim 1, wherein the insulating shell comprises:an upper insulating cover and a lower insulating cover.
  • 3. The transformer as claimed in claim 1, wherein the bobbin further has a plurality of primary pins and a plurality of secondary pins and the primary winding is electrically coupled to at least one of the primary pins and the secondary winding is electrically coupled to at least one of the secondary pins.
  • 4. The transformer as claimed in claim 1, wherein the upper insulating cover further comprises an upper extending board.
  • 5. The transformer as claimed in claim 1, wherein the lower insulating cover further comprises a bottom extending board.
  • 6. The transformer as claimed in claim 1, wherein the bobbin further has a plurality of winding slots.
  • 7. A transformer, comprising:a bobbin; a secondary winding wound around the bobbin; an insulating shell having an upper insulating cover and a bottom insulating cover, the insulating shell enclosing the bobbin, wherein a surface of the insulating shell is wound with a primary winding; and a core structure magnetically coupled to the primary winding and the secondary winding.
  • 8. The transformer as claimed in claim 7, wherein the bobbin further has a plurality of primary pins and a plurality of secondary pins and the primary winding is electrically coupled to at least one of the primary pins and the secondary winding is electrically couple to at least one of the secondary pins.
  • 9. The transformer as claimed in claim 7, wherein the lower insulating cover further comprises a bottom extending board.
  • 10. The transformer as claimed in claim 7, wherein the upper insulating cover further comprises an upper extending board.
  • 11. The transformer as claimed in claim 7, wherein the bobbin further comprises a plurality of flanges.
  • 12. The transformer as claimed in claim 7, wherein the core structure is comprised of two E type cores.
Priority Claims (1)
Number Date Country Kind
90205207 U Apr 2001 TW
US Referenced Citations (4)
Number Name Date Kind
4510478 Finkbeiner Apr 1985 A
4916424 Kijima Apr 1990 A
6078240 Huang Jun 2000 A
6344786 Chin Feb 2002 B1