Transformer with integrated cooling

Information

  • Patent Grant
  • 12125629
  • Patent Number
    12,125,629
  • Date Filed
    Wednesday, June 2, 2021
    3 years ago
  • Date Issued
    Tuesday, October 22, 2024
    2 months ago
Abstract
A transformer with integrated cooling is disclosed. The transformer comprises a primary winding and a secondary winding, and a coolant line partly or completely embedded in at least one of the primary or secondary windings. The coolant line is supplied with coolant from a supply device. The coolant line has a plurality of exit holes that are arranged to lead in a direction of at least one of the primary or secondary winding, so as to supply it with coolant.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to electrical transfer devices, and more particularly to a transformer with integrated cooling.


BACKGROUND OF THE DISCLOSURE

Transformers having water-cooled electric coils are well known in the art. Such transformers comprise laminated cores and multilayer windings applied thereon. A coolant line made as a flexible hose is wound around the outer surface of the winding and coolant flows through the coolant line to cool the coil or winding. According to a variant design of the coil, an inner arrangement of the coolant line between the layers of the winding is also proposed.


Drawbacks to such transformer designs include the inability to optimize the transformer at the start with regard to its power density through a further improvement of the cooling performance. As such, there is a need in the art for an improved transformer that overcomes the limitations of the conventional systems.


SUMMARY OF THE DISCLOSURE

According to an aspect of the present disclosure, a transformer with integrated cooling is provided. The transformer comprises a primary winding and a secondary winding. A coolant line is partly or completely embedded in at least one of the primary winding or the secondary winding. The coolant line is supplied with coolant from a supply device. The coolant line comprises a plurality of exit holes that are arranged to lead in a direction of at least one of the primary winding or the secondary winding, so as to supply it with coolant.


A particularly good heat dissipation is ensured by the immediate flushing of the windings that are to be cooled with coolant, which leads to a corresponding improvement of the power density of the transformer. The heated coolant in this case can flow away between the windings of the at least one winding in the direction of a collecting receiver and from there can be sent, by means of a coolant pump, which is a part of the supply device, to a heat exchanger for dissipation of the collected waste heat. An automatic distribution of the coolant within the relevant winding of the transformer is guaranteed because of the capillary action of adjacent turns.


In laboratory tests a power density of more than 5 kw/kg was achieved using a transformer fitted with the integrated cooling described above.


The transformer can, for example, be a mid-frequency transformer for frequencies in the range of a few 100 hz up to a few 1000 hz, which is a component of a power transmission line between a power supply station and an electrically operated agricultural vehicle, for example an agricultural tractor. To reduce power losses the transmission of the electric power typically takes place at the medium voltage level, which necessitates a vehicle-side adjustment (reduction) to the onboard voltage level. For this purpose the transformer can be designed as a two- or three-phase transformer.


Other features and aspects will become apparent by consideration of the detailed description and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description of the drawings refers to the accompanying figures in which:



FIG. 1 is a schematic cross-sectional view of a transformer according to an embodiment; and



FIG. 2 is a perspective external view of the transformer shown in FIG. 1.





DETAILED DESCRIPTION OF THE DRAWINGS

Referring to FIG. 1, a transformer 10 is shown according an embodiment. In embodiments, the transformer 10 can comprise a laminated stack 12 and a winding body 14 of plastic arranged on the laminated stack 12. The winding body 14 carries an inner primary winding 16 and an outer secondary winding 18. Each of the windings 16, 18 has a plurality of winding layers 20, 22. The individual turns 24, 26 of the winding layers 20, 22 consist of enameled copper wire or enamel-insulated stranded wire (e.g., litz wire). An insulation layer 28 consisting of plastic film runs between the two windings 16, 18.


In some embodiments, the transformer 10 can comprise a voltage reducer, in which the turns 24 of the primary winding 16 have a smaller diameter than the turns 26 of the secondary winding 18. In addition, a first coolant line 30 and a second coolant line 32 can be provided, where the first coolant line 30 is wound in the form of an intermediate layer 34 around an inner (first) winding layer 20 of the secondary winding 16 and the second coolant line 32 in the form of an outer layer 36 is wound around an outer (last) winding layer 22 of the secondary winding 18. As can be seen from FIG. 1, the coolant lines 30, 32 each run along the interstices 38, 40 formed by adjacent turns 24, 26, so that they are partly or completely embedded in the relevant winding 16, 18. The secondary winding 18 in this case is surrounded together with the second coolant line 32 by an additional shielding insulation layer 42.


Additionally, in some embodiments, the two coolant lines 30, 32 are a component of a coolant loop 44, which consists of a collecting receiver 46, a coolant pump 50 comprised of a supply device 48, a heat exchanger 52 for dissipation of collected waste heat, and associated lines 54, 56, and 58. The collecting receiver 46 is formed by a base trough of an outer housing (not shown) of the transformer 10.


Each of the coolant lines 30, 32 has a plurality of exit holes 60, 62, which lead in the direction of the relevant winding 16, 18, so as to supply or to flush it directly with coolant. More precisely, the first coolant line 30 has exit holes 60 that are unidirectionally distributed along its wall, whereas the second coolant line 32 has exit holes 62 that are exclusively directed inwardly along its wall.


The heated coolant then exits at the rear sides 64, 66 of the primary and secondary windings 16, 18, so as to flow from there back into the collecting receiver 46 under the effect of gravity. In embodiments, the coolant lines 30, 32 can each be formed as flexible hose lines which comprise heat-resistant plastic such as, for example, PTFE, silicone, or Viton. The number and/or distribution of the exit holes 60, 62 along the walls of the coolant lines 30, 32 is determined in this case on the basis of experiments and/or computer-supported simulations.


For example, the first coolant line 30 has an inside diameter of about 2 to 4 mm and the second coolant line 32 has an inside diameter of about 5 to 7 mm. The exact inside diameter, like the diameters of the exit holes 60, 62, is dependent on various factors, in particular the viscosity of the coolant that is used, the volume output of the coolant pump 50, the resistance of the windings 16, 18 to flow, the power loss to be dissipated, and the like. The coolant flowing through the coolant lines 30, 32 is a nonconductive coolant liquid with noncorrosive properties, for example a heat-resistant oil such as silicone oil.


Referring to FIG. 2, a perspective outside view of the transformer 10 as discussed with reference to FIG. 1 is shown. In FIG. 2, the additional insulation layer 42 is omitted, so that the course of the second coolant line 32 along the interstices 40 formed by the adjacent turns 26 of the secondary winding 18 can be seen.


In some embodiments, the transformer 10 can comprise a mid-frequency transformer for frequencies in the range of a few 100 hz to a few 1000 hz, which is a component of a power transmission line (not shown) between a power supply station and an electrically operated agricultural vehicle, for example an agricultural tractor. To reduce power losses the transmission of electric power takes place at the medium voltage level, which necessitates a vehicle-side adjustment (reduction) to the onboard voltage level. For this the transformer 10 is designed as a two- or three-phase transformer.


Without in any way limiting the scope, interpretation, or application of the claims appearing below, a technical effect of one or more of the example embodiments disclosed herein a transformer with integrated cooling. Advantageous embodiments of the transformer according to the invention follow from the dependent claims. Preferably, the coolant line is made as a flexible hose line and consists of heat-resistant plastic such as PTFE, silicone, or Viton. The number and/or distribution of the exit holes along the wall of the coolant line is determined on the basis of experiments and/or computer supported simulations.


In addition, the coolant line can be wound in the same direction as the at least one winding, so that interstices within the affected winding, which lead to possible field inhomogeneities and thus power losses, can be reduced. The coolant line in this case can run between adjacent turns of one and the same winding layer or can form a separate (intermediate) layer.


In particular, a first and/or second coolant line can be provided, where the first coolant line is wound around an inner winding layer of the primary winding and/or the second coolant line is wound around an outer winding layer of the secondary winding. Such a configuration is particularly advantageous when an insulation layer and/or an hf shield (consisting of copper foil) is provided between the primary and secondary winding of the transformer and so the use of a common coolant line is not possible because of the spatial separation. In other words, the two coolant lines each run as far as possible in the edge region of the winding packet formed by the primary and secondary windings, so that undesirable field inhomogeneities within the winding packet, including the power losses that are produced by that, can largely be avoided.


In this case there is the possibility that the first coolant line has exit holes unidirectionally distributed and arranged along its wall, so that coolant flows over the primary winding from the inside outward.


Correspondingly, it is possible that the second coolant line has exit holes directed only inwardly along its wall, which allows the coolant to be employed only to cool the secondary winding. The heated coolant arrives at the rear sides of the primary and secondary windings so as to flow back from there into the collecting receiver under the effect of gravity.


For the case where the transformer is made as a voltage reducer, thus the power losses occurring on the secondary are greater than the primary losses, it turned out to be advantageous if the first coolant line has an inside diameter of 2 to 4 mm and/or the second coolant line has an inside diameter of 5 to 7 mm. The exact inside diameter is dependent-like the diameters of the exit holes-on various factors, in particular the viscosity of the coolant that is used, the coolant pump output, the flow resistance of the windings, the power loss that is to be dissipated, and the like. The coolant flowing through the coolant line is preferably a nonconductive coolant liquid with noncorrosive properties, for example a heat-resistant oil such as silicone oil.


While the above describes example embodiments of the present disclosure, these descriptions should not be viewed in a limiting sense. Rather, other variations and modifications may be made without departing from the scope and spirit of the present disclosure as defined in the appended claims.

Claims
  • 1. A transformer with integrated cooling, comprising: a primary winding;a secondary winding;a first coolant line wound around an inner winding layer of the primary winding, the first coolant line defining first exit holes unidirectionally distributed and arranged along a wall of the first coolant line, so that coolant flows over the primary winding from an inside of the primary winding outward; anda second coolant line wound around an outer winding layer of the secondary winding, the second coolant lines defining second exit holes directed inwardly along a wall of the second coolant line.
  • 2. The transformer of claim 1, further comprising a collecting tray receiver, and wherein the coolant that has been delivered by the first coolant line and the second coolant line arrives at rear sides of the primary and secondary windings respectively so as to flow back from there into the collecting receiver under the effect of gravity.
  • 3. The transformer of claim 1, further comprising an insulation layer separating the primary winding and the secondary winding.
  • 4. The transformer of claim 1, further comprising a high-frequency shield separating the primary winding and the secondary winding.
  • 5. The transformer of claim 1, wherein the second coolant line is wound around the secondary winding between an outermost winding layer and an outer barrier of the transformer.
  • 6. The transformer of claim 1, wherein the first coolant line is wound around the primary winding between two adjacent winding layers of the primary winding.
  • 7. The transformer of claim 1, wherein the primary winding is comprised of a first winding layer, a second winding layer, and a third winding layer.
  • 8. The transformer of claim 5, wherein the second coolant line is wound around the secondary winding, and wherein the second exit holes are directed to interstices formed by adjacent turns of the secondary winding.
  • 9. The transformer of claim 1, wherein the first coolant line has a smaller inside diameter than the second coolant line.
  • 10. The transformer of claim 9, where the first coolant line has an inside diameter of 2 to 4 millimeters and the second coolant line has an inside diameter of 5 to 7 millimeters.
  • 11. The transformer of claim 1, wherein the first coolant line runs along and is partially embedded within interstices formed by adjacent turns of the primary winding.
  • 12. The transformer of claim 1, wherein second coolant line runs along and is partially embedded within interstices formed by adjacent turns of the secondary winding.
  • 13. The transformer of claim 1, wherein the second exit holes are directed only inwardly along the wall of the second coolant line such that the coolant employed though second coolant line only cools the secondary winding.
  • 14. The transformer of claim 13, wherein the coolant directed by the second exit holes cools the secondary winding and does not cool the primary winding.
  • 15. The transformer of claim 13, wherein the second exit holes are configured to provide the coolant to the secondary winding based on a capillary action of adjacent turns of the secondary winding.
  • 16. A transformer with integrated cooling, comprising: a primary winding;a secondary winding;a first coolant line, the first coolant line running along an interstice formed by adjacent turns of the primary winding and is embedded partly or completely in the primary winding, the first coolant line defining exit holes unidirectionally distributed in the direction of the primary winding to supply the primary winding with coolant; anda second coolant line, the second coolant line running along an interstice formed by adjacent turns of the secondary winding and is embedded partly or completely in the secondary winding, the second coolant line defining exit holes unidirectionally distributed in the direction of the second winding to supply the secondary winding with the coolant.
  • 17. The transformer of claim 16, wherein the first and second coolant lines each comprise a flexible hose line, and wherein the flexible hose line comprises a heat-resistant plastic.
  • 18. The transformer of claim 16, wherein the first coolant line is wound around an inner winding layer of the primary winding and the second coolant line is wound around an outer winding layer of the secondary winding.
  • 19. The transformer of claim 16, wherein the exit holes of the second coolant line are directed exclusively inwardly towards the secondary winding.
  • 20. The transformer of claim 16, wherein the exit holes of the first coolant line are directed exclusively outwardly toward inner winding layers of the primary winding.
Priority Claims (1)
Number Date Country Kind
102017202124.1 Feb 2017 DE national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/889,860 entitled, “Transformer With Integrated Cooling” filed on Feb. 6, 2018, which claims priority to patent commonly owned DE patent application no. 102017202124.1, filed Feb. 10, 2017, the entire disclosure of which is hereby incorporated herein by reference.

US Referenced Citations (10)
Number Name Date Kind
2985707 Ahearn May 1961 A
3261905 Allen Jul 1966 A
3444307 Kafka May 1969 A
6157282 Hopkinson Dec 2000 A
7830237 Chen Nov 2010 B1
20100248968 Stautner Sep 2010 A1
20100315161 Morozov et al. Dec 2010 A1
20130207763 Wagoner et al. Aug 2013 A1
20150061807 Chu Mar 2015 A1
20150123756 Hyde May 2015 A1
Foreign Referenced Citations (11)
Number Date Country
104240917 Dec 2014 CN
102012208545 Nov 2013 DE
S56107536 Aug 1981 JP
S5878406 May 1983 JP
S6065503 Apr 1985 JP
6071124 May 1985 JP
6073210 May 1985 JP
S6071124 May 1985 JP
S6073210 May 1985 JP
S6280314 May 1987 JP
WO-2015144177 Oct 2015 WO
Non-Patent Literature Citations (2)
Entry
German Search Report issued in counterpart application No. 102017202124.1 dated Oct. 25, 2017. (12 pages).
European Search Report issued in counterpart application No. EP18154040.2, dated Jul. 9, 2018. (20 pages).
Related Publications (1)
Number Date Country
20210287844 A1 Sep 2021 US
Continuations (1)
Number Date Country
Parent 15889860 Feb 2018 US
Child 17336430 US