The present invention relates to a transformer, and particularly to a transformer having magnetic shields in a tank.
In a transformer configured using an iron core including an iron core leg part and an iron core yoke part and a winding wound around the iron core leg part, magnetic flux leaked from the winding enters a tank or an iron core fastening metal fitting for fixing the iron core, and eddy current loss is generated.
Recently, the transformer is downsized to reduce the manufacturing cost, and the density of leaked magnetic flux tends to be increased. In order to reduce the loss by the leaked magnetic flux, it is desirable to reduce the loss in the tank or the iron core fastening metal fitting.
Japanese Unexamined Patent Application Publication No. Hei10 (1998) -116741 is one of the background techniques of the technical field. The publication describes a structure in which in a magnetic shield that is arranged on the surface of a tank and obtained by laminating silicon steel sheets, a magnetic shield part obtained by laminating silicon steel sheets is provided in the rear of the surface opposite to a winding.
Further, Japanese Unexamined Patent Application Publication No. Hei9(1997)-293622 is also one of the background techniques. The publication describes a structure in which a two-layer magnetic shield formed using a magnetic shield obtained by laminating silicon steel sheets and a magnetic shield surrounded by sound absorbing materials is attached to a tank.
In the structure described in Japanese Unexamined Patent Application Publication No. Hei10(1998) -116741, the magnetic flux leaked from the iron core is absorbed by the magnetic shield in which the magnetic shield part is provided in the rear of the surface opposite to the winding, and can return to the iron core side without being leaked on the tank side. Thus, the eddy current loss in the tank can be reduced considerably. On the other hand, in order to allow the all magnetic flux to flow without magnetic saturation of the magnetic shield, the magnetic shield part needs to be considerably thickened. Accordingly, the weight of the magnetic shield is increased. Thus, there are problems that the cost of the material of the silicon steel sheet is increased, that the fixing structure of the magnetic shield is complicated, and that the workability of manufacturing the magnetic shield is deteriorated.
In the structure described in Japanese Unexamined Patent Application Publication No. Hei9(1997) -293622, the eddy current loss in the tank can be reduced considerably because the two-layer magnetic shield is used. On the other hand, the weight of the magnetic shield is increased because two layers of magnetic shields are laminated. As a result, the same problems as in Japanese Unexamined Patent Application Publication No. Hei10(1998)-116741 occur.
The present invention has been made in view of the foregoing problems, and an object thereof is to reduce eddy current loss by magnetic flux leaked from a winding while reducing the whole weight of magnetic shields provided in a tank of a transformer.
In order to solve the above-described problems, for example, configurations described in claims are adopted.
The application includes plural means for solving the above-described problems. As an example, the present invention provides a transformer in which an iron core having an iron core leg and an iron core yoke, windings wound around the iron core leg, and magnetic shields formed by laminating silicon steel sheets are arranged in a tank. A first magnetic shield fixed by a support structure provided in the tank is arranged opposite to the windings, and second magnetic shields fixed by a different support structure are arranged between the first magnetic shield and the tank.
The whole weight of magnetic shields necessary to reduce eddy current loss in a tank can be reduced, and the eddy current loss by magnetic flux leaked from a winding can be reduced.
Hereinafter, embodiments will be described using the drawings.
In the present embodiment, an example of a single-phase transformer having a voltage switching winding (a tap winding) that is arranged at a position nearest to a tank will be described.
The above-described iron core 1 and windings are arranged in a tank 10. First magnetic shield support structures 20 are provided on the inner wall of the tank 10, and thereby a first magnetic shield 28 is fixed. Further, a second magnetic shield lower support member 31 and second magnetic shield support members 33 are provided on the inner wall of the tank, and a second magnetic shield 38 is fixed between the first magnetic shield and the tank. The tank 10 is filled with insulating oil 15.
The magnetic shields 28 and 38 are formed by laminating plural silicon steel sheets in which holes for attachment at predetermined positions are provided.
Next, a fixing method of the first magnetic shield will be described using
It should be noted that the weight of the first magnetic shield 28 is equalized with that of the second magnetic shield 38, and thus fixing members for fixing the same can be commonly used. As a result, the workability can be improved.
Next, a fixing method of the second magnetic shield will be described using
The second magnetic shield 38 is arranged on the magnetic shield lower support base 311 to be covered with a second magnetic shield lower cover 312, and the second magnetic shield lower cover 312 is fixed to the magnetic shield lower support base 311 by second magnetic shield lower cover fixing members 313 such as bolts. Accordingly, the second magnetic shield 38 can be prevented from falling from the second magnetic shield lower support base 311.
The second magnetic shield 38 is further fixed while being sandwiched between second magnetic shield fixing bases 331 and second magnetic shield covers 333. Specifically, cylindrical fixed base protruding parts 332 are provided to the second magnetic shield fixing bases 331, and are inserted into the holes provided in the magnetic shield 38. Then, second magnetic shield covers 333 formed in an inverse C-shape are arranged at the tip ends of the protruding parts, and the both ends of the covers are fixed to the second magnetic shield fixing bases 331 through second magnetic shield cover fixing members 334 such as bolts.
Next, effects of the present embodiment will be described with reference to
In this case, there is a problem that the loss is increased as the whole transformer and the temperature is locally raised. However, in the configuration of the present invention in
The required area of the second magnetic shield 38 is narrow as compared to that of the first magnetic shield 28, and the whole weight of the magnetic shields can be minimized. Thus, the magnetic shields can be fixed using the simple attachment structures as shown in
In the present embodiment, an example of a single-phase transformer for which low noise is particularly required will be described.
In the present embodiment, the first magnetic shield support structures 20 are provided opposite to the reinforced structures 11 of the tank 10. The oscillation can be reduced by reducing the weights of the magnetic shields 28 and 38 of the present invention. However, the first magnetic shield 28 occupying most of the magnetic shield is fixed to the inner wall of the tank opposite to the reinforced structures 11 that are hardly oscillated. Accordingly, the propagation of oscillation to the atmosphere hardly occurs, and the noise can be suppressed.
In the present embodiment, an example of a single-phase transformer having a voltage switching winding (a tap winding) in which the voltage switching winding is arranged at a position nearer to the iron core 1 than the high-voltage side winding 2 and the low-voltage side winding 3 will be described.
The second magnetic shields 48 are arranged on the magnetic shield lower support bases 411 to be covered with second magnetic shield lower covers 412, and then are fixed by second magnetic shield lower cover fixing members 413 such as bolts. Accordingly, the second magnetic shields 48 can be prevented from falling from the second magnetic shield lower support bases 411.
The second magnetic shields 48 are fixed while sandwiched between the second magnetic shield fixing bases 431 and second magnetic shield covers 433. Specifically, cylindrical fixed base protruding parts 432 are provided to the second magnetic shield fixing bases 431, and are inserted into the holes provided in the magnetic shields 48. Then, the second magnetic shield covers 433 formed in an inverse C-shape are arranged at the tip ends of the protruding parts, and the both ends of the covers are fixed to the second magnetic shield fixing bases 431 through second magnetic shield cover fixing members 434 such as bolts.
The second magnetic shields 48 do not fall down because the second magnetic shields 48 are pressed by the second magnetic shield covers 433. In addition, even when a force is applied to the second magnetic shields 48, the second magnetic shields 48 are not vertically moved.
Next, effects of the present embodiment will be described with reference to
For example, the magnetic flux generated from a lower end of the winding is taken into the first magnetic shield 28, and flows in the first magnetic shield 28. However, the amount of magnetic flux is large, and thus the magnetic flux is leaked on the side of the tank 10. A certain amount of magnetic flux flowing in the first magnetic shield 28 is reduced around the middle portion in the height direction. Thus, the magnetic flux is hardly leaked on the side of the tank 10. Further, the amount of magnetic flux flowing in the first magnetic shield 28 is increased as closer to an upper end of the winding, and the magnetic flux is leaked to the tank 10, resulting in the loss distribution having two peaks in the height direction as shown in
In this case, there is a problem that the loss is increased as the whole transformer and the temperature is locally raised. However, in the configuration of the present invention in
Two large mountains represented by solid lines in the loss distribution of
The required areas of the second magnetic shields 48 are narrow as compared to that of the first magnetic shield 28, and the whole weight of the magnetic shields can be minimized. Thus, the magnetic shields can be fixed using the simple attachment structures. Further, the weight of the first magnetic shield 28 is equalized with that of each second magnetic shield 48, and thus fixing members for fixing the same can be commonly used. As a result, the workability is considerably improved as compared to a case in which one magnetic shield having a heavy weight is used. Further, the oscillation can be advantageously suppressed by reducing the weight.
It should be noted that although the single-phase transformer has been described above, the present invention can be applied to a three-phase transformer, and the same effects can be obtained as well as that the present invention can be applied to a reactor.
Number | Date | Country | Kind |
---|---|---|---|
2014-190672 | Sep 2014 | JP | national |