The present invention relates to a transformer and to an electric power distribution system comprising such a transformer. Primarily, but not limited to, the present invention relates to a high voltage transformer for an electric power distribution system in the form of an offshore system for electric power transmission from a power supply to a consumer means over a power transmission line comprising an offshore cable section.
Offshore systems may be used to pump oil and/or gas from wells below the sea floor. Such systems may include pumps driven by electric pump motors for the pumping of the oil and/or gas. Such pumps may be situated hundreds of kilometres from the shoreline and may be supplied with electric power from a power supply arranged onshore. When power is supplied over cables of such length different problems may arise such as, e.g., charging of the cable feeding electricity to the pump. The charging of the cable may give rise to an over-voltage at the pump motor, which ultimately may damage the pump motor, connection system, cable and/or topside electrical equipment. Furthermore, during operation of a pump connected to the power supply system, the load on the electric motor driving the pump may vary over time. Reduction of the load further enhances the problem with charging of the cable feeding the pump.
In order to resolve this problem it is desirable to provide a control means for control of the voltage to the pump motor. The control means may be in the form of a transformer with a controllable voltage output. Traditionally a controllable voltage output from a transformer has been provided by arranging tappings on the windings, which tappings are brought out to terminals so that the number of turns on one winding can be changed. The voltage between each tapping is dependent on the number of turns between each tap. The taps are connected to a type of power switch called a tap changer. Tap changers are, however, mechanically complicated and require frequent maintenance making them unsuitable for placement on the sea floor.
U.S. Pat. No. 6,933,822 to Haugs et al. describes a magnetically influenced current or voltage regulator and a magnetically influenced transformer. The problem of controlling a pump motor on the sea floor is also described. However, Haugs et al. describes only a one-phase transformer design. For many reasons it is desirable to use three-phase voltage to drive high power applications such as pump motors for pumping oil from the sea floor. In the patent it is suggested to use three identical, essentially independent single phase structures for providing a three-phase output.
U.S. Pat. No. 6,137,391 to Mitamura et al. describes a three phase flux-controlled type variable transformer. The transformer comprises a first and a second magnetic circuit and two separate magnetic cores. A control winding is arranged to induce a magnetic field that is orthogonal to a primary magnetic field which is applied by a primary winding. The voltage from a secondary winding may be continuously changed by adjusting the exciting current flowing in the control winding. The transformer described in Mitamura is, however, too complicated to make it suitable for an offshore power distribution system, in particular for placement of the transformer on the sea floor.
It is an object of the present invention to provide a device for controlling the voltage to power consumers placed on the sea floor, which device solves the problems with the prior art.
It is an object of the present invention to provide a polyphase transformer which is suitable for placement on the sea floor and from which it is possible to control the output voltage.
Another object of the present invention is to provide a polyphase transformer which is robust and uncomplicated while still providing the possibility of controlling the voltage output from the transformer.
A further object of the present invention is to provide a polyphase transformer comprising at least three primary windings, three secondary windings and at least one control winding with which it is possible to control the voltage output on the secondary winding, wherein the transformer is robust, compact and suitable for placement on the sea floor.
At least one of the above objects is fulfilled with a transformer according to the independent claim 1.
Further advantages with the invention are provided with the features of the dependent claims.
According to a first aspect of the present invention a polyphase transformer is provided comprising at least a first leg and a second leg of a magnetic material, each leg comprising a length axis, an upper end and a lower end. The transformer also comprises an upper yoke being in contact with the upper end of each leg and having a length axis extending between the legs essentially orthogonal to the length axes of the legs and a lower yoke being in contact with the lower ends of each leg and having a length axis extending between the legs essentially parallel to the length axis of the upper yoke. The transformer further comprises a primary winding arranged on each one of the legs arranged to produce primary magnetic fields in the legs and a secondary winding arranged on each one of the legs, wherein the winding axis of the primary winding and the winding axis of the secondary winding are essentially parallel to each other on each one of the legs. The transformer is characterized in that it also comprises at least one control winding arranged to produce magnetic fields in each one of the legs being essentially orthogonal to the primary magnetic fields in the legs.
Polyphase transformers are almost exclusively three phase transformers. Thus, the transformer according to the invention is primarily a three phase transformer.
As the magnetic field (and flux) from the control winding is perpendicular to that of the primary and secondary windings, there is no mutual inductance. The total flux in the transformer core will however depend on all flux density contributions. As a result the magnetizing inductance of the transformer core can be controlled by adjusting the control current.
The transformer magnetizing inductance could be varied in such a way as to compensate the line capacitance, i.e. reactive power compensation. Compensating the reactive power produced in the cable will reduce the voltage rise over the cable. As the voltage rise is the main limiting factor in very long transmission systems, this function will increase maximum step-out distance for a power transmission system.
The yokes and the legs may together form a single core constituting a single magnetic circuit. Thus, the transformer may be a single core transformer.
Transformers according to preferred embodiments of the invention having three parallel legs between two parallel yokes are often called E-I transformers due to their resemblance in geometry with the letters E and I put together.
The winding axis of the primary winding and the winding axis of the secondary winding may be essentially parallel to length axis of the corresponding leg on each one of the legs. This corresponds to the geometry in a more conventional transformer.
A control winding may be arranged on at least one of the upper yoke and the lower yoke having a winding axis being essentially orthogonal to the winding axis of the primary winding.
A control winding may be arranged on the lower yoke as well as on the upper yoke, which control windings have parallel winding axes. Such an arrangement of the control windings is advantageous in that it produces an even magnetic field in the yokes as well as in the legs compared to a case with a control winding on only one of the yokes. The control windings may be connected in series or alternatively in parallel depending on which is most suitable for the specific application.
The winding axes of said at least one control winding may be orthogonal to the length axes of the legs, and wherein the control winding is arranged in a groove between each leg and the corresponding yoke. The groove may be arranged in the legs or in the yokes. In the finished transformer an opening is created for the control winding between each leg and each yoke.
As an alternative to having the control windings arranged only around the yokes a control winding may be arranged around at least parts of each one of the leg as well as at least parts of the adjacent yoke, wherein the winding axis of each control winding is essentially parallel to the yokes. With such an arrangement the provision of openings between the yokes and the legs may be avoided. Thus, the efficiency of the transformer may be optimized. Furthermore the control windings may be controlled individually to control each phase of the transformer.
In case that it is not important to control each phase individually the control windings may be connected in series or in parallel.
The polyphase transformer may have legs that are essentially tubular around their length axes and the upper and lower yokes are provided with holes corresponding to the holes of the tubes. The primary winding and the secondary winding of each leg are wound through the hole in the corresponding leg to produce a primary magnetic field in the leg orthogonal to the length axis of the corresponding leg. Such a transformer is compact and provides a favourable geometry for the magnetic flux.
In a transformer in which the legs are tubular a control winding may be arranged on each leg to produce a control magnetic field along the length axis of each leg. Alternatively a control winding may be arranged on only some of the legs in the transformer.
Each tubular leg may have a concentric groove between the inner surface and the outer surface of the tubular leg, which groove in the direction of the length axis of the leg extends along the main part of the leg, in which groove the control winding is arranged. With such grooves for the control windings the control windings are well protected. Alternatively the control windings may be arranged on the outside of each leg.
The polyphase transformer may be arranged so that, wherein the legs, the yokes and the windings are enclosed by a cover, which is filled with oil. The oil insulates the windings in order to avoid electrical discharges in the transformer.
Almost all polyphase transformers in use are three-phase transformers. A three-phase transformer according to a preferred embodiment of the invention has three legs. It is however possible within the scope of the invention to have more than three phases and three legs and to have only two phases and two legs. It is also possible within the scope of the invention to have e.g. three phases and five legs.
The primary windings may be arranged for a voltage of at least 400 V, preferably at least 1000 V. It is primarily for such high-voltage applications that the invention is intended to be used.
According to a second aspect of the present invention a polyphase transformer according to the invention is used placed on the sea floor connected to power consumers on the sea floor. It is primarily for such use the transformer according to the invention is intended.
In the following preferred embodiments of the invention will be described with reference to the drawings.
In the following description of preferred embodiments of the invention similar elements or features in different figures will be denoted with the same reference numeral. It is to be noted that the drawings are not drawn to scale.
The transformer 1 also comprises a first control winding 33, a second control winding 34, and a third control winding 35, which are arranged around the first leg 2, as well as the adjacent yokes 27, 28, the second leg 3 as well as the adjacent yokes 27, 28, and the third leg 4, as well as the adjacent yokes 27, 28, wherein the winding axes of the control windings 33, 34, 35, are parallel to the yokes 27, 28. The control windings 33-35 are arranged to produce magnetic fields in the legs 2-4, being orthogonal to the magnetic fields produced by the primary windings 9, 15, 21. The legs 2-4, and the yokes 27, 28, are provided with grooves 36, 37, 38 for each one of the control windings 33-35, so that the control windings may be recessed below the main surfaces of the legs 2-4, and the yokes 27, 28. In this way the primary windings 9, 15, 16, and the secondary windings 12, 18, 24, may be wound around the legs 2-4 and the control windings 33-35 without interfering with the control windings 33-35.
With reference to
The described embodiments may be modified in many ways without departing from the spirit and scope of the present invention which is limited only by the appended claims.
In the described embodiment the windings are shown as being separated along the legs. It is however possible to have the windings arranged integrated with each other.
Even though polyphase transformers almost exclusively are arranged with three phases it is possible within the scope of the invention to arrange the transformer with two phases or more than three phases.
In each one of the embodiments described above the control windings may be connected in series or in parallel. Alternatively, the control windings may be controlled individually.
The control windings are connected to a voltage, which most often would be a direct current voltage, but an alternating voltage is also conceivable, and this voltage gives rise to a current in the control windings.
It is possible to orient the plates of the yokes perpendicular to the orientation shown in the figures as long as the normal to the planes defined by the plates is essentially perpendicular to the direction of the magnetic flux.
Number | Date | Country | Kind |
---|---|---|---|
20093561 | Dec 2009 | NO | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2010/003248 | 12/15/2010 | WO | 00 | 9/27/2012 |