This application claims priority to Taiwan Application Serial Number 100116423, filed on May 11, 2011, which is herein incorporated by reference.
1. Technical Field
The present disclosure relates to a transformer.
2. Description of Related Art
As technologies advance, the types of household electrical appliances become more and more, but each electrical appliance requires different voltage and power. So, various kinds of transformers that provide different voltages and powers are needed. Currently, the industries often use two kinds of transformers. A kind of the transformers is high-frequency transformer, which generally is a switching mode power supply transformer. Another kind of the transformers is low-frequency transformer, which is a common silicon steel transformer.
A known transformer includes a bobbin and an iron core assembly. The bobbin of the transformer can be wired by the primary winding coils and the secondary winding coils. The iron core assembly is partially accommodated in the bobbin, thus the electromagnetic induction coupling generated among the iron core assembly and the primary winding coils and the secondary winding coils that wire the bobbin can achieve the purpose of voltage conversion.
However, for the known transformer, its bobbin will produce model errors in the manufacturing process, which led to a larger fitting clearance in follow-up assembly processes. This phenomenon is not conducive for production controlling of factories, and the crooked situation generated in assembly processes is not conducive for mass production. Furthermore, because the model errors of the bobbin and the assembly differences of manpower cannot be the same, not only the assembled iron core assemblies have crooked appearances, but also the gaps in the iron core assemblies cannot be the same, which makes the data of inductances of transformers distributed.
In order to solve the problems of prior arts, a transformer according to an embodiment of the disclosure is provided. Sleeves can be disposed between the iron core assembly and the isolation cover and/or between the iron core assembly and the bobbin, so as to decrease the model errors and the assembly differences of manpower. Not only the sleeves can solve the problem of bad electrical characteristics caused by crooked iron core assembly, the thickness of the split boards in the sleeves can also control the gap in the iron core assembly, so as to maintain constant inductances and stable electrical characteristics. Besides, the transformer of the disclosure can omit the dispensing process by adding the engagement structures between the bobbin and the isolation cover and thus massively increase the speed and convenience of assembling and production.
According to an embodiment of the disclosure, the transformer includes a bobbin, an iron core assembly, and a first sleeve. The bobbin includes a main body and a channel passing through the main body. The iron core assembly is accommodated in the channel and surrounds the periphery of the bobbin. The iron core assembly includes a first iron core and a second iron core. The first iron core includes a first end. The first end is disposed at the periphery of the bobbin. The second iron core includes a second end. The second end is disposed at the periphery of the bobbin. A first gap is formed between the first end and the second end. The first sleeve is disposed at the first gap, so as to make the first end and the second end to be accommodated within the first sleeve. The first end is aligned opposite to the second end.
According to another embodiment of the disclosure, the transformer includes a bobbin, an iron core assembly, and an isolation cover. The bobbin includes a main body, a channel passing through the main body, and a winding portion disposed around the main body. The iron core assembly is accommodated in the channel and surrounds the periphery of the bobbin. The iron core assembly includes a first iron core and a second iron core. The first iron core includes a first end. The first end is disposed at the periphery of the bobbin. The second iron core includes a second end. The second end is disposed at the periphery of the bobbin. Wherein, the first end is aligned opposite to the second end across a first gap between the first end and the second end. The isolation cover is disposed between the winding portion and the iron core assembly. The isolation cover further includes a retaining wall located at the first gap.
It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the disclosure as claimed.
The disclosure can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:
Reference will now be made in detail to the present embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
A transformer according to an embodiment of the disclosure is provided. Specifically, sleeves can be disposed between the iron core assembly and the isolation cover and/or between the iron core assembly and the bobbin, so as to decrease the model errors and the assembly differences of manpower. Not only the sleeves can solve the problem of bad electrical characteristics caused by crooked iron core assembly, the thickness of the split boards in the sleeves can also control the gap in the iron core assembly, so as to maintain constant inductances and stable electrical characteristics. Besides, the transformer of the disclosure can omit the dispensing process by adding the engagement structures between the bobbin and the isolation cover and thus massively increase the speed and convenience of assembling and production.
Please refer to
As shown in
As shown in
As shown in
In the transformer 3 of the embodiment, the iron core assembly 32 can further include a first iron core 320 and a second iron core 322. The first iron core 320 can include a first end 320a and a third end 320b. The first end 320a of the first iron core 320 is disposed at the periphery of the bobbin 30. The third end 320b of the first iron core 320 is accommodated within the channel 300b of the bobbin 30. The second iron core 322 can include a second end 322a and a fourth end 322b. The second end 322a of the second iron core 322 is disposed at the periphery of the bobbin 30. The fourth end 322b of the second iron core 322 is accommodated within the channel 300b of the bobbin 30. Wherein, a first gap 321a is formed between the first end 320a of the first iron core 320 and the second end 322a of the second iron core 322 (as shown in
As shown in
As shown in
In order to make the first end 320a of the first iron core 320 to be accurately aligned opposite to the second end 322a of the second iron core 322, the structure and shape of the first accommodating fillister 342 of the first sleeve 34 can be in accordance with the structure and shape of the first end 320a of the first iron core 320, and the structure and shape of the second accommodating fillister 344 of the first sleeve 34 can be in accordance with the structure and shape of the second end 322a of the second iron core 322. Moreover, because both the first end 320a of the first iron core 320 and the second end 322a of the second iron core 322 abut against the split board 340 of the first sleeve 34, the distance between the first end 320a of the first iron core 320 and the second end 322a of the second iron core 322 can be controlled by the thickness of the split board 340 of the first sleeve 34. In other words, in order to make the iron core assembly 32 to match different electrical characteristics, a desired distance between the first end 320a of the first iron core 320 and the second end 322a of the second iron core 322 can be obtained by adjusting the thickness of the split board 340 of the first sleeve 34 while manufacturing the first sleeve 34. It can be seen that the first sleeve 34 can solve the problem of bad inductance due to the crooked situation between the first end 320a of the first iron core 320 and the second end 322a of the second iron core 322, and the distance between the first end 320a of the first iron core 320 and the second end 322a of the second iron core 322 can be controlled by the thickness of the split board 340 of the first sleeve 34, so as to maintain constant inductance and stable electrical characteristics. Furthermore, different electrical characteristics can be matched by simply adjusting the position of the split board 340 of the first sleeve 34 without reproducing other molds of the bobbin 30 and the isolation cover 38, so that the costs of the transformer 3 of the disclosure will not increase.
As shown in
In order to make the third end 320b of the first iron core 320 to be accurately aligned opposite to the fourth end 322b of the second iron core 322, the structure and shape of the third accommodating fillister 362 of the second sleeve 36 can be in accordance with the structure and shape of the third end 320b of the first iron core 320, and the structure and shape of the fourth accommodating fillister 364 of the second sleeve 36 can be in accordance with the structure and shape of the fourth end 322b of the second iron core 322. Moreover, because both the third end 320b of the first iron core 320 and the fourth end 322b of the second iron core 322 abut against the split board 360 of the second sleeve 36, the distance between the third end 320b of the first iron core 320 and the fourth end 322b of the second iron core 322 can be controlled by the thickness of the split board 360 of the second sleeve 36. In other words, in order to make the iron core assembly 32 to match different electrical characteristics, a desired distance between the third end 320b of the first iron core 320 and the fourth end 322b of the second iron core 322 can be obtained by adjusting the thickness of the split board 360 of the second sleeve 36 while manufacturing the second sleeve 36. It can be seen that the second sleeve 36 can solve the problem of bad inductance due to the crooked situation between the third end 320b of the first iron core 320 and the fourth end 322b of the second iron core 322, and the distance between the third end 320b of the first iron core 320 and the fourth end 322b of the second iron core 322 can be controlled by the thickness of the split board 360 of the second sleeve 36, so as to maintain constant inductance and stable electrical characteristics. Furthermore, different electrical characteristics can be matched by simply adjusting the position of the split board 360 of the second sleeve 36.
Please refer to
As shown in
The difference between the first iron core 520 and the first iron core 320 is that the length of the first iron core 520 is different from the length of the first iron core 320, and the difference between the second iron core 522 and the second iron core 322 is that the length of the second iron core 522 is different from the length of the second iron core 322. Practically, in order to match different electrical characteristics, the first iron core 520 and the second iron core 522 that have different lengths can be adopted to change the positions of the first gap 521a and the second gap 521b. Therefore, the molds of the bobbin 30, the first sleeve 34, and the second sleeve 36 can be repeatedly used and the costs will not increase.
As shown in
As shown in
Besides, in order to prevent the second sleeve 36 arbitrarily rotates in the channel 300b of the bobbin 30 that is disadvantageous to sleeve the third end 320b of the first iron core 320 and the fourth end 322b of the second iron core 322 when the second sleeve 36 is accommodated within the channel 300b of the bobbin 30, the main body 300a of the bobbin 30 can further include a rib 300c corresponding to the guiding recessed wall 366 in the channel 300b. The structure and shape of the rib 300c of the bobbin 30 is slidably engaged with the guiding recessed wall 366 of the second sleeve 36, so the second sleeve 36 can be guided by the rib 300c of the bobbin 30 while being sleeved in the channel 300b of the bobbin 30.
In an embodiment, the transformer 3 of the disclosure can also omit the foregoing second sleeve 36, as long as the structure and shape of the channel 300b of the bobbin 30 is in accordance with the third end 320b of the first iron core 320 and the fourth end 322b of the second iron core 322, and as long as the structure and shape of the rib 300c of the bobbin 30 can be slidably engaged with the third end 320b of the first iron core 320 and the fourth end 322b of the second iron core 322 respectively.
As shown in
Please refer to
As shown in
According to the foregoing recitations of the embodiments of the disclosure, the transformer of the disclosure mainly includes following advantages. Sleeves can be disposed between the iron core assembly and the isolation cover and/or between the iron core assembly and the bobbin, so as to decrease the model errors and the assembly differences of manpower. Not only the sleeves can solve the problem of bad electrical characteristics caused by crooked iron core assembly, the thickness of the split boards in the sleeves can also control the gap in the iron core assembly, so as to maintain constant inductances and stable electrical characteristics. Besides, the transformer of the disclosure can omit the dispensing process by adding the engagement structures between the bobbin and the isolation cover, and thus massively increase the speed and convenience of assembling and production.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present disclosure without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the present disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
100116423 | May 2011 | TW | national |