1. Field of the Invention
The present invention relates to a transformer having at least one high voltage winding and one low voltage winding. The invention is applicable to power transformers having rated outputs from a few hundred kVA to more than 1000 MVA and rated voltages from 3-4 kV to very high transmission voltages, e.g. from 400-800 kV or higher.
2. Discussion of the Background
Conventional power transformers are described in, e.g., A. C. Franklin and D. P. Franklin, “The & Transformer Book, A Practical Technology of the Power Transformer”, published by Butterworths, 11th edition, 1990. Problems related to internal electric insulation and related topics are discussed in, e.g., H. P. Moser, “Transformerboard, Die Verwendung von Transformerboard in Grossleistungstransformatoren”, published by H. Weidman AG, Rapperswil mit Gesamtherstellung: Birkhäuser AG, Basle, Switzerland.
In transmission and distribution of electric energy transformers are exclusively used for enabling exchange of electric energy between two or more electric systems. Transformers are available for powers from the 1 VA region to the 1000 MVA region and for voltages up to the highest transmission voltages used today.
Conventional power transformers include a transformer core, often formed of laminated commonly oriented sheet, normally of silicon iron. The core is formed of a number of legs connected by yokes which together form one or more core windows. Transformers having such a core are usually called core transformers. A number of windings are provided around the core legs. In power transformers, these windings are almost always arranged in a concentric configuration and distributed along the length of the core leg.
Other types of core structures are, however, known, e.g. so-called shell transformer structures, which normally have rectangular windings and rectangular leg sections disposed outside the windings.
Air-cooled conventional power transformers for lower power ranges are known. To render these transformers screen-protected an outer casing is often provided, which also reduces the external magnetic fields from the transformers.
Most power transformers are, however, oil-cooled the oil also serving as an insulating medium. An oil-cooled and oil-insulated conventional transformer is enclosed in an outer case which has to fulfil heavy demands. The construction of such a transformer with its associated circuit couplers, breaker elements and bushings is therefore complicated. The use of oil for cooling and insulation also complicates service of the transformer and constitutes an environmental hazard.
A so called “dry” transformer without oil insulation and oil cooling and adapted for rated powers up to 1000 MVA with rated voltages from 3-4 kV and up to very high transmission voltages has windings formed from conductors such as shown in FIG. 1. The conductor has a central conductor composed of a number of non-insulated (and optionally some insulated) wire strands 5 and 6000 respectively. Around the conductor there is an inner semiconducting casing 6 which is in contact with at least some of the non-insulated strands 5. This semiconducting casing 6 is in turn surrounded by the main insulation of the cable in the form of an extruded solid insulating layer 7. This insulating layer 7 is surrounded by an external semiconducting casing 8. The conductor area of the cable can vary between 80 and 3000 mm2 and the external diameter of the cable between 20 and 250 mm. A metal shield 500 and sheath 5000 surround the external semiconducting casing 8, as shown.
Whilst the casings 6 and 8 are described as “semiconducting” they are in practice formed from a base polymer mixed with carbon black or metallic particles and have a resistivity of between 1 and 105 Ωcm, preferably between 10 and 500 Ωcm. Suitable base polymers for the casings 6 and 8 (and for the insulating layer 7) include ethylene vinyl acetate copolymer/nitrile rubber, butyl grafted polythene, ethylene butyl acrylate copolymer, ethylene ethyl acrylate copolymer, ethylene propene rubber, polyethylenes of low density, poly butylene, poly methyl pentene, and ethylene acrylate copolymer.
The inner semiconducting casing 6 is rigidly connected to the insulating layer 7 over the entire interface therebetween. Similarly, the outer semiconducting casing 8 is rigidly connected to the insulating layer 7 over the entire interface therebetween. The casings 6 and 8 and the layer 7 form a solid insulation system and are conveniently extruded together around the wire strands 5.
Whilst the conductivity of the inner semiconducting casing 6 is lower than that of the electrically conductive wire strands 5, it is still sufficient to equalise the potential over its surface. Accordingly, the electric field is distributed uniformly around the circumference of the insulating layer 7 and the risk of localised field enhancement and partial discharge is minimised.
The potential at the outer semiconducting casing 8, which is conveniently at zero or ground or some other controlled potential, is equalised at this value by the conductivity of the casing. At the same time, the semiconducting casing 8 has sufficient resistivity to enclose the electric field. In view of this resistivity, it is desirable to connect the conductive polymeric casing to ground, or some other controlled potential, at intervals therealong.
The transformer according to the invention can be a one-, three- or multi-phase transformer and the core can be of any design.
The windings are concentrically wound around the core legs. In the transformer of
The mechanical design of the individual coils of a transformer must be such that they can withstand forces resulting from short circuit currents. As these forces can be very high in a power transformer, the coils must be distributed and proportioned to give a generous margin of error and for that reason the coils cannot be designed so as to optimize performance in normal operation.
The main aim of the present invention is to alleviate the above mentioned problems relating to short circuit forces in a dry transformer.
This aim is achieved by a transformer having at least one high voltage winding and one low voltage winding. Each of the windings has a flexible conductor and is capable of containing an electric field. Each winding is magnetically permeable and the windings are intermixed such that turns of the high voltage winding are mixed with turns of the low voltage winding.
By manufacturing the transformer windings from a conductor having practically no electric fields outside an outer semiconducting casing thereof, the high and low voltage windings can be easily mixed in an arbitrary way for minimizing the short circuit forces. Such mixing would be unfeasible in the absence of the semiconductor casing or other mechanism for containing the electric field, and therefore would be considered impossible in a conventional oil-filled power transformer, because the insulation of the windings would not withstand the electrioc field existing between the high and low voltage windings.
It is also possible to reduce the distributed inductance and design the transformer core for the optimum match between window size and core.
According to an embodiment of the invention at least some of the turns of the low voltage winding are each split into a number of subturns connected in parallel for reducing the difference between the number of high voltage winding turns and the total number of low voltage winding turns to make the mixing of high voltage winding turns and low voltage winding turns as uniform as possible. Preferably, each turn of the low voltage winding is split into such a number of subturns, connected in parallel, such that the total number of low voltage winding turns is equal to the number of high voltage winding turns. High voltage and low voltage winding turns can then be mixed in a uniform manner such that the magnetic field generated by the low voltage winding turns substantially cancels the magnetic field from high voltage winding turns.
According to another advantageous embodiment, the turns of the high voltage winding and the turns of the low voltage winding are arranged symmetrically in a chessboard pattern, as seen in cross-section through the windings. This is an optimum arrangement for obtaining an efficient mutual cancellation of magnetic fields from the low and high voltage windings and thus an optimum arrangement for reducing the short circuit forces of the coils.
According to still another advantageous embodiment, at least two adjacent layers have substantially equal thermal expansion coefficients. In this way thermal damages to the winding is avoided.
Another aspect of the invention provides a method of winding a transformer that includes simultaneously winding high voltage and low voltage flexible conductors capable of containing an electric field but which are magnetically permeable, such that turns of the high voltage winding are intermixed with turns of the low voltage winding.
To explain the invention in more detail, embodiments of the transformer according to the invention will now be described by way of example only with reference to the drawings in which:
The direction of the current in the low voltage winding 26 is opposite to the direction of the current in the high voltage winding 28 and the resulting forces from the currents in the low and high voltage winding consequently partially cancel each other. This possibility of reducing the effect of current induced forces is of great importance, especially in case of a short circuit.
Struts 27 of laminated magnetic material, including spacers 29 providing air gaps, are located between the windings 26, 28 for improving transformer efficiency.
Cancellation of short circuit forces can be improved even further by splitting the turns of the low voltage winding into a number of subturns connected in parallel, preferably such that the total number of low voltage turns becomes equal to the number of high voltage winding turns. Thus, if the transformation ratio amounts to e.g. 1:3 each turn of the low voltage winding is split into three subturns. It is then possible to mix the low and high voltage windings in a more uniform pattern. An optimum arrangement of the windings is shown in
When splitting a winding turn into a number of subturns the conducting area of each subturn can be reduced correspondingly since the sum of the current intensities in the subturns remains equal to the current intensity in the original winding turn. Thus, no more conducting material (normally copper) is needed when splitting the winding turns, provided that other conditions are unchanged.
In the transformer of the invention the magnetic energy and hence the stray magnetic field in the windings is reduced. A wide range of impedances can be chosen.
The electrical insulation systems of the windings of a transformer according to the invention are intended to be able to handle very high voltages and the consequent electric and thermal loads which may arise at these voltages. By way of example, power transformers according to the invention may have rated powers from a few hundred kVA up to more than 1000 MVA and have rated voltages from 3-4 kV up to very high transmission voltages of from 400-800 kV or more. At high operating voltages, partial discharges, or PD, constitute a serious problem for known insulation systems. If cavities or pores are present in the insulation, internal corona discharge may arise whereby the insulating material is gradually degraded eventually leading to breakdown of the insulation. The electric load on the electrical insulation in use of a transformer according to the present invention is reduced by ensuring that the inner first layer of the insulation system which has semiconducting properties is at substantially the same electric potential as conductors of the central electrically conductor which it surrounds and the outer second layer of the insulation system which has semiconducting properties is at a controlled, e.g. earth, potential. Thus the electric field in the solid electrically insulating layer between these inner and outer layers is distributed substantially uniformly over the thickness of the intermediate layer. By having materials with similar thermal properties and with few defects in these layers of the insulation system, the possibility of PD is reduced at given operating voltages. The windings of the transformer can thus be designed to withstand very high operating voltages, typically up to 800 kV or higher.
Although it is preferred that the electrical insulation should be extruded in position, it is possible to build up an electrical insulation system from tightly wound, overlapping layers of film or sheet-like material. Both the semiconducting layers and the electrically insulating layer can be formed in this manner. An insulation system can be made of an all-synthetic film with inner and outer semiconducting layers or portions made of polymeric thin film of, for example, PP, PET, LDPE, or HDPE with embedded conducting particles, such as carbon black or metallic particles and with an insulating layer or portion between the semiconducting layers or portions.
For the lapped concept a sufficiently thin film will have butt gaps smaller than the so-called Paschen minima, thus rendering liquid impregnation unnecessary. A dry, wound multilayer thin film insulation has also good thermal properties.
Another example of an electrical insulation system is similar to a conventional cellulose based cable, where a thin cellulose based or synthetic paper or non-woven material is lap wound around a conductor. In this case the semiconducting layers, on either side of an insulating layer, can be made of cellulose paper or non-woven material made from fibers of insulating material and with conducting particles embedded. The insulating layer can be made from the same base material or another material can be used.
Another example of an insulation system is obtained by combining film and fibrous insulating material, either as a laminate or as co-lapped. An example of this insulation system is the commercially available so-called paper polypropylene laminate, PPLP, but several other combinations of film and fibrous parts are possible. In these systems various impregnations such as mineral oil can be used.
Number | Date | Country | Kind |
---|---|---|---|
9725331 | Nov 1997 | GB | national |
The present document is based on published international patent application No. WO 99/28923, the entire contents of which being incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTEP98/07729 | 11/30/1998 | WO | 00 | 8/28/2000 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO9928923 | 6/10/1999 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
681800 | Lasche | Sep 1901 | A |
1304451 | Burnham | May 1919 | A |
1418856 | Williamson | Jun 1922 | A |
1481585 | Beard | Jan 1924 | A |
1728915 | Blankenship et al. | Sep 1929 | A |
1742985 | Burnham | Jan 1930 | A |
1747507 | George | Feb 1930 | A |
1756672 | Barr | Apr 1930 | A |
1762775 | Ganz | Jun 1930 | A |
1781308 | Mauritz Vos | Nov 1930 | A |
1861182 | Hendey et al. | May 1932 | A |
1974406 | Apple et al. | Sep 1934 | A |
2006170 | Juhlin | Jun 1935 | A |
2206856 | Shearer | Jul 1940 | A |
2217430 | Baudry | Oct 1940 | A |
2241832 | Wahlquist | May 1941 | A |
2251291 | Reichelt | Aug 1941 | A |
2256897 | Davidson et al. | Sep 1941 | A |
2295415 | Monroe | Sep 1942 | A |
2415652 | Norton | Feb 1947 | A |
2424443 | Evans | Jul 1947 | A |
2436306 | Johnson | Feb 1948 | A |
2446999 | Camilli | Aug 1948 | A |
2459322 | Johnston | Jan 1949 | A |
2462651 | Lord | Feb 1949 | A |
2498238 | Berberich et al. | Feb 1950 | A |
2721905 | Monroe | Oct 1955 | A |
2780771 | Lee | Feb 1957 | A |
2846599 | McAdam | Aug 1958 | A |
2885581 | Pileggi | May 1959 | A |
2943242 | Schaschl et al. | Jun 1960 | A |
2947957 | Spindler | Aug 1960 | A |
2959699 | Smith et al. | Nov 1960 | A |
2962679 | Stratton | Nov 1960 | A |
2975309 | Seidner | Mar 1961 | A |
3098893 | Pringle et al. | Jul 1963 | A |
3130335 | Rejda | Apr 1964 | A |
3143269 | Van Eldik | Aug 1964 | A |
3157806 | Wiedemann | Nov 1964 | A |
3158770 | Coggeshall et al. | Nov 1964 | A |
3268766 | Amos | Aug 1966 | A |
3304599 | Nordin | Feb 1967 | A |
3354331 | Broeker et al. | Nov 1967 | A |
3365657 | Webb | Jan 1968 | A |
3372283 | Jaecklin | Mar 1968 | A |
3418530 | Cheever | Dec 1968 | A |
3435262 | Bennett et al. | Mar 1969 | A |
3437858 | White | Apr 1969 | A |
3444407 | Yates | May 1969 | A |
3447002 | Ronnevig | May 1969 | A |
3484690 | Wald | Dec 1969 | A |
3560777 | Moeller | Feb 1971 | A |
3593123 | Williamson | Jul 1971 | A |
3631519 | Salahshourian | Dec 1971 | A |
3644662 | Salahshourian | Feb 1972 | A |
3651402 | Leffmann | Mar 1972 | A |
3670192 | Andersson et al. | Jun 1972 | A |
3675056 | Lenz | Jul 1972 | A |
3684821 | Miyauchi et al. | Aug 1972 | A |
3716652 | Lusk et al. | Feb 1973 | A |
3716719 | Angelery et al. | Feb 1973 | A |
3727085 | Goetz et al. | Apr 1973 | A |
3740600 | Turley | Jun 1973 | A |
3746954 | Myles et al. | Jul 1973 | A |
3758699 | Lusk et al. | Sep 1973 | A |
3778891 | Arnasino et al. | Dec 1973 | A |
3781739 | Meyer | Dec 1973 | A |
3792399 | McLyman | Feb 1974 | A |
3801843 | Corman et al. | Apr 1974 | A |
3809933 | Sugawara et al. | May 1974 | A |
3820048 | Ohta et al. | Jun 1974 | A |
3881647 | Wolfe | May 1975 | A |
3884154 | Marten | May 1975 | A |
3891880 | Britsch | Jun 1975 | A |
3902000 | Forsyth et al. | Aug 1975 | A |
3932779 | Madsen | Jan 1976 | A |
3932791 | Oswald | Jan 1976 | A |
3943392 | Keuper et al. | Mar 1976 | A |
3947278 | Youtsey | Mar 1976 | A |
3965408 | Higuchi et al. | Jun 1976 | A |
3968388 | Lambrecht et al. | Jul 1976 | A |
3971543 | Shanahan | Jul 1976 | A |
3974314 | Fuchs | Aug 1976 | A |
3995785 | Arick et al. | Dec 1976 | A |
4001616 | Lonseth et al. | Jan 1977 | A |
4008409 | Rhudy et al. | Feb 1977 | A |
4031310 | Jachimowicz | Jun 1977 | A |
4039740 | Iwata | Aug 1977 | A |
4041431 | Enoksen | Aug 1977 | A |
4047138 | Steigerwald | Sep 1977 | A |
4064419 | Peterson | Dec 1977 | A |
4084307 | Schultz et al. | Apr 1978 | A |
4085347 | Lichius | Apr 1978 | A |
4088953 | Sarian | May 1978 | A |
4091138 | Takagi et al. | May 1978 | A |
4091139 | Quirk | May 1978 | A |
4099227 | Liptak | Jul 1978 | A |
4103075 | Adam | Jul 1978 | A |
4106069 | Trautner et al. | Aug 1978 | A |
4107092 | Carnahan et al. | Aug 1978 | A |
4109098 | Olsson et al. | Aug 1978 | A |
4121148 | Platzer | Oct 1978 | A |
4134036 | Curtiss | Jan 1979 | A |
4134055 | Akamatsu | Jan 1979 | A |
4134146 | Stetson | Jan 1979 | A |
4149101 | Lesokhin et al. | Apr 1979 | A |
4152615 | Calfo et al. | May 1979 | A |
4160193 | Richmond | Jul 1979 | A |
4164672 | Flick | Aug 1979 | A |
4164772 | Hingorani | Aug 1979 | A |
4177397 | Lill | Dec 1979 | A |
4177418 | Brueckner et al. | Dec 1979 | A |
4184186 | Barkan | Jan 1980 | A |
4200817 | Bratoljic | Apr 1980 | A |
4200818 | Ruffing et al. | Apr 1980 | A |
4206434 | Hase | Jun 1980 | A |
4207427 | Beretta et al. | Jun 1980 | A |
4207482 | Neumeyer et al. | Jun 1980 | A |
4208597 | Mulach et al. | Jun 1980 | A |
4229721 | Koloczek et al. | Oct 1980 | A |
4238339 | Khutoretsky et al. | Dec 1980 | A |
4239999 | Vinokurov et al. | Dec 1980 | A |
4245182 | Aotsu et al. | Jan 1981 | A |
4246694 | Raschbichler et al. | Jan 1981 | A |
4255684 | Mischler et al. | Mar 1981 | A |
4258280 | Starcevic | Mar 1981 | A |
4262209 | Berner | Apr 1981 | A |
4274027 | Higuchi et al. | Jun 1981 | A |
4281264 | Keim et al. | Jul 1981 | A |
4292558 | Flick et al. | Sep 1981 | A |
4307311 | Grozinger | Dec 1981 | A |
4308476 | Schuler | Dec 1981 | A |
4308575 | Mase | Dec 1981 | A |
4310966 | Breitenbach | Jan 1982 | A |
4317001 | Silver et al. | Feb 1982 | A |
4320645 | Stanley | Mar 1982 | A |
4321518 | Akamatsu | Mar 1982 | A |
4326181 | Allen | Apr 1982 | A |
4330726 | Albright et al. | May 1982 | A |
4337922 | Streiff et al. | Jul 1982 | A |
4341989 | Sandberg et al. | Jul 1982 | A |
4347449 | Beau | Aug 1982 | A |
4347454 | Gellert et al. | Aug 1982 | A |
4353612 | Meyers | Oct 1982 | A |
4357542 | Kirschbaum | Nov 1982 | A |
4360748 | Raschbichler et al. | Nov 1982 | A |
4367425 | Mendelsohn et al. | Jan 1983 | A |
4368418 | Demello et al. | Jan 1983 | A |
4369389 | Lambrecht | Jan 1983 | A |
4371745 | Sakashita | Feb 1983 | A |
4387316 | Katsekas | Jun 1983 | A |
4400675 | Thomas | Aug 1983 | A |
4403163 | Rarmerding et al. | Sep 1983 | A |
4403205 | Leibinger et al. | Sep 1983 | A |
4404486 | Keim et al. | Sep 1983 | A |
4411710 | Mochizuki et al. | Oct 1983 | A |
4421284 | Pan | Dec 1983 | A |
4425521 | Rosenberry, Jr. et al. | Jan 1984 | A |
4426771 | Wang et al. | Jan 1984 | A |
4429244 | Nikitin et al. | Jan 1984 | A |
4431960 | Zucker | Feb 1984 | A |
4443725 | Derderian et al. | Apr 1984 | A |
4470884 | Carr | Sep 1984 | A |
4473765 | Butman, Jr. et al. | Sep 1984 | A |
4475075 | Munn | Oct 1984 | A |
4477690 | Nikitin et al. | Oct 1984 | A |
4481438 | Keim | Nov 1984 | A |
4488079 | Dailey et al. | Dec 1984 | A |
4503284 | Minnick et al. | Mar 1985 | A |
4510077 | Elton | Apr 1985 | A |
4517471 | Sachs | May 1985 | A |
4523249 | Arimoto | Jun 1985 | A |
4538131 | Baier et al. | Aug 1985 | A |
4546210 | Akiba et al. | Oct 1985 | A |
4551780 | Canay | Nov 1985 | A |
4552990 | Persson et al. | Nov 1985 | A |
4557038 | Wcislo et al. | Dec 1985 | A |
4560896 | Vogt et al. | Dec 1985 | A |
4565929 | Baskin et al. | Jan 1986 | A |
4588916 | Lis | May 1986 | A |
4590416 | Porche et al. | May 1986 | A |
4594630 | Rabinowitz et al. | Jun 1986 | A |
4607183 | Rieber et al. | Aug 1986 | A |
4615109 | Wcislo et al. | Oct 1986 | A |
4618795 | Cooper et al. | Oct 1986 | A |
4619040 | Wang et al. | Oct 1986 | A |
4633109 | Feigel | Dec 1986 | A |
4650924 | Kauffman et al. | Mar 1987 | A |
4656316 | Meltsch | Apr 1987 | A |
4656379 | McCarty | Apr 1987 | A |
4663603 | van Riemsdijk et al. | May 1987 | A |
4677328 | Kumakura | Jun 1987 | A |
4687882 | Stone et al. | Aug 1987 | A |
4692731 | Osinga | Sep 1987 | A |
4723104 | Rohatyn | Feb 1988 | A |
4737704 | Kalinnikov et al. | Apr 1988 | A |
4745314 | Nakano | May 1988 | A |
4766365 | Bolduc et al. | Aug 1988 | A |
4785138 | Breitenbach et al. | Nov 1988 | A |
4795933 | Sakai | Jan 1989 | A |
4827172 | Kobayashi | May 1989 | A |
4845308 | Womack, Jr. et al. | Jul 1989 | A |
4847747 | Abbondanti | Jul 1989 | A |
4853565 | Elton et al. | Aug 1989 | A |
4859810 | Cloetens et al. | Aug 1989 | A |
4860430 | Raschbichler et al. | Aug 1989 | A |
4864266 | Feather et al. | Sep 1989 | A |
4883230 | Lindstrom | Nov 1989 | A |
4894284 | Yamanouchi et al. | Jan 1990 | A |
4914386 | Zocholl | Apr 1990 | A |
4918347 | Takaba | Apr 1990 | A |
4918835 | Wcislo et al. | Apr 1990 | A |
4924342 | Lee | May 1990 | A |
4926079 | Niemela et al. | May 1990 | A |
4942326 | Butler, III et al. | Jul 1990 | A |
4949001 | Campbell | Aug 1990 | A |
4994952 | Silva et al. | Feb 1991 | A |
4997995 | Simmons et al. | Mar 1991 | A |
5012125 | Conway | Apr 1991 | A |
5036165 | Elton et al. | Jul 1991 | A |
5036238 | Tajima | Jul 1991 | A |
5066881 | Elton et al. | Nov 1991 | A |
5067046 | Elton et al. | Nov 1991 | A |
5083360 | Valencic et al. | Jan 1992 | A |
5086246 | Dymond et al. | Feb 1992 | A |
5094703 | Takaoka et al. | Mar 1992 | A |
5097241 | Smith et al. | Mar 1992 | A |
5097591 | Wcislo et al. | Mar 1992 | A |
5111095 | Hendershot | May 1992 | A |
5124607 | Rieber et al. | Jun 1992 | A |
5136459 | Fararooy | Aug 1992 | A |
5140290 | Dersch | Aug 1992 | A |
5153460 | Bovino et al. | Oct 1992 | A |
5168662 | Nakamura et al. | Dec 1992 | A |
5175396 | Emery et al. | Dec 1992 | A |
5187428 | Hutchison et al. | Feb 1993 | A |
5235488 | Koch | Aug 1993 | A |
5246783 | Spenadel et al. | Sep 1993 | A |
5264778 | Kimmel et al. | Nov 1993 | A |
5293146 | Aosaki et al. | Mar 1994 | A |
5304883 | Denk | Apr 1994 | A |
5305961 | Errard et al. | Apr 1994 | A |
5321308 | Johncock | Jun 1994 | A |
5323330 | Asplund et al. | Jun 1994 | A |
5325008 | Grant | Jun 1994 | A |
5327637 | Britenbach et al. | Jul 1994 | A |
5341281 | Skibinski | Aug 1994 | A |
5343139 | Gyugyi et al. | Aug 1994 | A |
5355046 | Weigelt | Oct 1994 | A |
5365132 | Hann et al. | Nov 1994 | A |
5387890 | Estop et al. | Feb 1995 | A |
5397513 | Steketee, Jr. | Mar 1995 | A |
5400005 | Bobry | Mar 1995 | A |
5452170 | Ohde et al. | Sep 1995 | A |
5468916 | Litenas et al. | Nov 1995 | A |
5500632 | Halser, III | Mar 1996 | A |
5510942 | Bock et al. | Apr 1996 | A |
5530307 | Horst | Jun 1996 | A |
5545853 | Hildreth | Aug 1996 | A |
5550410 | Titus | Aug 1996 | A |
5583387 | Takeuchi et al. | Dec 1996 | A |
5587126 | Steketee, Jr. | Dec 1996 | A |
5598137 | Alber et al. | Jan 1997 | A |
5607320 | Wright | Mar 1997 | A |
5612510 | Hildreth | Mar 1997 | A |
5663605 | Evans et al. | Sep 1997 | A |
5672926 | Brandes et al. | Sep 1997 | A |
5689223 | Demarmels et al. | Nov 1997 | A |
5807447 | Forrest | Sep 1998 | A |
Number | Date | Country |
---|---|---|
399790 | Jul 1995 | AT |
565063 | Feb 1957 | BE |
391071 | Apr 1965 | CH |
534448 | Feb 1973 | CH |
539328 | Apr 1973 | CH |
657482 | Aug 1986 | CH |
40414 | Aug 1887 | DE |
277012 | Jul 1914 | DE |
336418 | Jun 1920 | DE |
372390 | Mar 1923 | DE |
387973 | Jan 1924 | DE |
425551 | Feb 1926 | DE |
426793 | Mar 1926 | DE |
432169 | Jul 1926 | DE |
433749 | Sep 1926 | DE |
435608 | Oct 1926 | DE |
435609 | Oct 1926 | DE |
441717 | Mar 1927 | DE |
443011 | Apr 1927 | DE |
460124 | May 1928 | DE |
482506 | Sep 1929 | DE |
501181 | Jul 1930 | DE |
523047 | Apr 1931 | DE |
568508 | Jan 1933 | DE |
572030 | Mar 1933 | DE |
584639 | Sep 1933 | DE |
586121 | Oct 1933 | DE |
604972 | Nov 1934 | DE |
629301 | Apr 1936 | DE |
673545 | Mar 1939 | DE |
719009 | Mar 1942 | DE |
846583 | Aug 1952 | DE |
875227 | Apr 1953 | DE |
1807391 | May 1970 | DE |
2050674 | May 1971 | DE |
1638176 | Jun 1971 | DE |
2155371 | May 1973 | DE |
2400698 | Jul 1975 | DE |
2520511 | Nov 1976 | DE |
2656389 | Jun 1978 | DE |
2721905 | Nov 1978 | DE |
137164 | Aug 1979 | DE |
138840 | Nov 1979 | DE |
2824951 | Dec 1979 | DE |
2835386 | Feb 1980 | DE |
2839517 | Mar 1980 | DE |
2854520 | Jun 1980 | DE |
3009102 | Sep 1980 | DE |
2913697 | Oct 1980 | DE |
2920478 | Dec 1980 | DE |
3028777 | Mar 1981 | DE |
2939004 | Apr 1981 | DE |
3006382 | Aug 1981 | DE |
3008818 | Sep 1981 | DE |
3305225 | Aug 1984 | DE |
3309051 | Sep 1984 | DE |
3441311 | May 1986 | DE |
3543106 | Jun 1987 | DE |
2917717 | Aug 1987 | DE |
3612112 | Oct 1987 | DE |
3726346 | Feb 1989 | DE |
4023903 | Nov 1991 | DE |
4022476 | Jan 1992 | DE |
4233558 | Mar 1994 | DE |
4409794 | Aug 1995 | DE |
4412761 | Oct 1995 | DE |
4420322 | Dec 1995 | DE |
19547229 | Jun 1997 | DE |
049104 | Apr 1982 | EP |
0493704 | Apr 1982 | EP |
0056580 | Jul 1982 | EP |
078908 | May 1983 | EP |
0120154 | Oct 1984 | EP |
0130124 | Jan 1985 | EP |
0142813 | May 1985 | EP |
0155405 | Sep 1985 | EP |
0174783 | Mar 1986 | EP |
0234521 | Sep 1987 | EP |
0244069 | Nov 1987 | EP |
0246377 | Nov 1987 | EP |
0265868 | May 1988 | EP |
0274691 | Jul 1988 | EP |
0280759 | Sep 1988 | EP |
0282876 | Sep 1988 | EP |
0309096 | Mar 1989 | EP |
0314860 | May 1989 | EP |
0316911 | May 1989 | EP |
0317248 | May 1989 | EP |
0335430 | Oct 1989 | EP |
0342554 | Nov 1989 | EP |
0406437 | Jan 1991 | EP |
0439410 | Jul 1991 | EP |
0440865 | Aug 1991 | EP |
0490705 | Jun 1992 | EP |
0571155 | Nov 1993 | EP |
0620570 | Oct 1994 | EP |
0642027 | Mar 1995 | EP |
0671632 | Sep 1995 | EP |
0676777 | Oct 1995 | EP |
0677915 | Oct 1995 | EP |
0684679 | Nov 1995 | EP |
0684682 | Nov 1995 | EP |
0695019 | Jan 1996 | EP |
0732787 | Sep 1996 | EP |
0738034 | Oct 1996 | EP |
0740315 | Oct 1996 | EP |
0751605 | Jan 1997 | EP |
0780926 | Jun 1997 | EP |
0802542 | Oct 1997 | EP |
0375101 | Jun 1999 | EP |
805544 | Apr 1936 | FR |
841351 | Jan 1938 | FR |
847899 | Dec 1938 | FR |
1011924 | Apr 1949 | FR |
1126975 | Mar 1955 | FR |
1238795 | Jul 1959 | FR |
2108171 | May 1972 | FR |
2251938 | Jun 1975 | FR |
2305879 | Oct 1976 | FR |
2376542 | Jul 1978 | FR |
2467502 | Apr 1981 | FR |
2556146 | Jun 1985 | FR |
2594271 | Aug 1987 | FR |
2708157 | Jan 1995 | FR |
123906 | Mar 1919 | GB |
268271 | Mar 1927 | GB |
293861 | Nov 1928 | GB |
292999 | Apr 1929 | GB |
319313 | Jul 1929 | GB |
518993 | Mar 1940 | GB |
537609 | Jun 1941 | GB |
540456 | Oct 1941 | GB |
589071 | Jun 1947 | GB |
685416 | Jan 1953 | GB |
702892 | Jan 1954 | GB |
715226 | Sep 1954 | GB |
723457 | Feb 1955 | GB |
763761 | Dec 1956 | GB |
805721 | Dec 1958 | GB |
827600 | Feb 1960 | GB |
854728 | Nov 1960 | GB |
870583 | Jun 1961 | GB |
913386 | Dec 1962 | GB |
965741 | Aug 1964 | GB |
992249 | May 1965 | GB |
1024583 | Mar 1966 | GB |
1053337 | Dec 1966 | GB |
1059123 | Feb 1967 | GB |
1103098 | Feb 1968 | GB |
1103099 | Feb 1968 | GB |
1117401 | Jun 1968 | GB |
1135242 | Dec 1968 | GB |
1147049 | Apr 1969 | GB |
1157885 | Jul 1969 | GB |
1174659 | Dec 1969 | GB |
1236082 | Jun 1971 | GB |
1268770 | Mar 1972 | GB |
1319257 | Jun 1973 | GB |
1322433 | Jul 1973 | GB |
1340983 | Dec 1973 | GB |
1341050 | Dec 1973 | GB |
1365191 | Aug 1974 | GB |
1395152 | May 1975 | GB |
1424982 | Feb 1976 | GB |
1426594 | Mar 1976 | GB |
1438610 | Jun 1976 | GB |
1445284 | Aug 1976 | GB |
1479904 | Jul 1977 | GB |
1493163 | Nov 1977 | GB |
1502938 | Mar 1978 | GB |
1525745 | Sep 1978 | GB |
2000625 | Jan 1979 | GB |
1548633 | Jul 1979 | GB |
2046142 | Nov 1979 | GB |
2022327 | Dec 1979 | GB |
2025150 | Jan 1980 | GB |
2034101 | May 1980 | GB |
1574796 | Sep 1980 | GB |
2070341 | Sep 1981 | GB |
2070470 | Sep 1981 | GB |
2071433 | Sep 1981 | GB |
2081523 | Feb 1982 | GB |
2099635 | Dec 1982 | GB |
2105925 | Mar 1983 | GB |
2106306 | Apr 1983 | GB |
2106721 | Apr 1983 | GB |
2136214 | Sep 1984 | GB |
2140195 | Nov 1984 | GB |
2268337 | Jan 1994 | GB |
2273819 | Jun 1994 | GB |
2283133 | Apr 1995 | GB |
2289992 | Dec 1995 | GB |
2308490 | Jun 1997 | GB |
60206121 | Mar 1959 | JP |
57043529 | Aug 1980 | JP |
59076156 | Oct 1982 | JP |
59159642 | Feb 1983 | JP |
6264964 | Sep 1985 | JP |
1129737 | May 1989 | JP |
3245748 | Feb 1990 | JP |
4179107 | Nov 1990 | JP |
318253 | Jan 1991 | JP |
424909 | Jan 1992 | JP |
5290947 | Apr 1992 | JP |
6196343 | Dec 1992 | JP |
6233442 | Feb 1993 | JP |
6325629 | May 1993 | JP |
7057951 | Aug 1993 | JP |
7264789 | Mar 1994 | JP |
8167332 | Dec 1994 | JP |
8264039 | Nov 1995 | JP |
9200989 | Jan 1996 | JP |
67199 | Mar 1972 | LU |
SU1019553 | Jan 1980 | RU |
SU1511810 | May 1987 | RU |
90308 | Sep 1937 | SE |
305899 | Nov 1968 | SE |
255156 | Feb 1969 | SE |
341428 | Dec 1971 | SE |
453236 | Jan 1982 | SE |
457792 | Jun 1987 | SE |
502417 | Dec 1993 | SE |
792302 | Jan 1971 | SU |
425268 | Sep 1974 | SU |
694939 | Jan 1982 | SU |
955369 | Aug 1983 | SU |
WO8202617 | Aug 1982 | WO |
WO8502302 | May 1985 | WO |
WO9011389 | Oct 1990 | WO |
WO9012409 | Oct 1990 | WO |
WO9101059 | Jan 1991 | WO |
WO9101585 | Feb 1991 | WO |
WO9107807 | Mar 1991 | WO |
WO9109442 | Jun 1991 | WO |
WO8115862 | Oct 1991 | WO |
WO9201328 | Jan 1992 | WO |
WO9203870 | Mar 1992 | WO |
WO9321681 | Oct 1993 | WO |
WO9406194 | Mar 1994 | WO |
WO9518058 | Jul 1995 | WO |
WO9522153 | Aug 1995 | WO |
WO9524049 | Sep 1995 | WO |
WO9622606 | Jul 1996 | WO |
WO9622607 | Jul 1996 | WO |
WO9630144 | Oct 1996 | WO |
WO9710640 | Mar 1997 | WO |
WO9711831 | Apr 1997 | WO |
WO9716881 | May 1997 | WO |
WO9745288 | Dec 1997 | WO |
WO9745847 | Dec 1997 | WO |
WO9745848 | Dec 1997 | WO |
WO9745906 | Dec 1997 | WO |
WO9745907 | Dec 1997 | WO |
WO 9745908 | Dec 1997 | WO |
WO9745912 | Dec 1997 | WO |
WO9745914 | Dec 1997 | WO |
WO9745915 | Dec 1997 | WO |
WO9745916 | Dec 1997 | WO |
WO9745918 | Dec 1997 | WO |
WO9745919 | Dec 1997 | WO |
WO9745920 | Dec 1997 | WO |
WO9745921 | Dec 1997 | WO |
WO9745922 | Dec 1997 | WO |
WO9745923 | Dec 1997 | WO |
WO9745924 | Dec 1997 | WO |
WO9745925 | Dec 1997 | WO |
WO9745926 | Dec 1997 | WO |
WO9745927 | Dec 1997 | WO |
WO9745928 | Dec 1997 | WO |
WO9745929 | Dec 1997 | WO |
WO9745930 | Dec 1997 | WO |
WO9745931 | Dec 1997 | WO |
WO9745932 | Dec 1997 | WO |
WO9745933 | Dec 1997 | WO |
WO9745934 | Dec 1997 | WO |
WO9745935 | Dec 1997 | WO |
WO9745936 | Dec 1997 | WO |
WO9745937 | Dec 1997 | WO |
WO9745938 | Dec 1997 | WO |
WO9745939 | Dec 1997 | WO |
WO9747067 | Dec 1997 | WO |
WO9820595 | May 1998 | WO |
WO9820596 | May 1998 | WO |
WO9820597 | May 1998 | WO |
WO 9820598 | May 1998 | WO |
WO9820600 | May 1998 | WO |
WO 9820602 | May 1998 | WO |
WO9821385 | May 1998 | WO |
WO9827634 | Jun 1998 | WO |
WO9827635 | Jun 1998 | WO |
WO9827636 | Jun 1998 | WO |
WO9829927 | Jul 1998 | WO |
WO9829928 | Jul 1998 | WO |
WO9829929 | Jul 1998 | WO |
WO9829930 | Jul 1998 | WO |
WO9829931 | Jul 1998 | WO |
WO9829932 | Jul 1998 | WO |
WO9824240 | Aug 1998 | WO |
WO9833731 | Aug 1998 | WO |
WO9833736 | Aug 1998 | WO |
WO9833737 | Aug 1998 | WO |
WO9834238 | Aug 1998 | WO |
WO 9834239 | Aug 1998 | WO |
WO9834241 | Aug 1998 | WO |
WO9834242 | Aug 1998 | WO |
WO9834243 | Aug 1998 | WO |
WO9834244 | Aug 1998 | WO |
WO9834245 | Aug 1998 | WO |
WO9834246 | Aug 1998 | WO |
WO9834247 | Aug 1998 | WO |
WO9834248 | Aug 1998 | WO |
WO9834249 | Aug 1998 | WO |
WO9834250 | Aug 1998 | WO |
WO9834309 | Aug 1998 | WO |
WO9834312 | Aug 1998 | WO |
WO9834315 | Aug 1998 | WO |
WO9834321 | Aug 1998 | WO |
WO9834322 | Aug 1998 | WO |
WO9834323 | Aug 1998 | WO |
WO9834325 | Aug 1998 | WO |
WO9834326 | Aug 1998 | WO |
WO9834327 | Aug 1998 | WO |
WO9834328 | Aug 1998 | WO |
WO9834329 | Aug 1998 | WO |
WO9834330 | Aug 1998 | WO |
WO9834331 | Aug 1998 | WO |
WO9917309 | Apr 1999 | WO |
WO9917311 | Apr 1999 | WO |
WO9917312 | Apr 1999 | WO |
WO9917313 | Apr 1999 | WO |
WO9917314 | Apr 1999 | WO |
WO9917315 | Apr 1999 | WO |
WO9917316 | Apr 1999 | WO |
WO9917422 | Apr 1999 | WO |
WO9917424 | Apr 1999 | WO |
WO9917425 | Apr 1999 | WO |
WO9917426 | Apr 1999 | WO |
WO9917427 | Apr 1999 | WO |
WO9917428 | Apr 1999 | WO |
WO9917429 | Apr 1999 | WO |
WO9917432 | Apr 1999 | WO |
WO9917433 | Apr 1999 | WO |
WO9919963 | Apr 1999 | WO |
WO9919969 | Apr 1999 | WO |
WO9919970 | Apr 1999 | WO |
WO9927546 | Jun 1999 | WO |
WO9928919 | Jun 1999 | WO |
WO9928921 | Jun 1999 | WO |
WO 9928922 | Jun 1999 | WO |
WO9928923 | Jun 1999 | WO |
WO9928924 | Jun 1999 | WO |
WO9928925 | Jun 1999 | WO |
WO9928926 | Jun 1999 | WO |
WO9928927 | Jun 1999 | WO |
WO9928928 | Jun 1999 | WO |
WO9928929 | Jun 1999 | WO |
WO9928930 | Jun 1999 | WO |
WO9928931 | Jun 1999 | WO |
WO9928934 | Jun 1999 | WO |
WO9928994 | Jun 1999 | WO |
WO9929005 | Jun 1999 | WO |
WO 9929005 | Jun 1999 | WO |
WO9929008 | Jun 1999 | WO |
WO9929011 | Jun 1999 | WO |
WO9929012 | Jun 1999 | WO |
WO9929013 | Jun 1999 | WO |
WO9929014 | Jun 1999 | WO |
WO9929015 | Jun 1999 | WO |
WO9929016 | Jun 1999 | WO |
WO9929017 | Jun 1999 | WO |
WO9929018 | Jun 1999 | WO |
WO9929019 | Jun 1999 | WO |
WO9929020 | Jun 1999 | WO |
WO9929021 | Jun 1999 | WO |
WO9929022 | Jun 1999 | WO |
WO 9929023 | Jun 1999 | WO |
WO9929024 | Jun 1999 | WO |
WO 9929025 | Jun 1999 | WO |
WO9929026 | Jun 1999 | WO |
WO9929029 | Jun 1999 | WO |
WO9929034 | Jun 1999 | WO |