Koziel, M. G. et al. “Optimizing expression of transgenes with an emphasis on post-transcriptional events.” 1996, Plant Molecular Biology, vol. 32, pp. 393-405.* |
Stam, M. et al. “The Silence of Genes in Transgenic Plants.” 1997, Annals of Botany, vol. 79, pp. 3-12.* |
Smith, C. J. S. et al. “Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes.” 1988, Nature, vol. 334, pp. 724-726.* |
Foyer et al., “Modulation of Carbon and Nitrogen Metabolism in Transgenic Plants with a View to Improved Biomass Production,” Biochem. Soc. Transactions: Transgen. Plants and Plant Biochem. 22:909-915 (1994). |
Worrell et al., “Expression of a Maize Sucrose Phosphate Synthase in Tomato Alters Leaf Carbohydrate Partitioning,” The Plant Cell, 3:1121-1130 (1991). |
Galtier et al., “Effects of Elevated Sucrose-Phosphate Synthase Activity on Photosynthesis, Assimilate Partitioning, and Growth in Tomato (Lycopersicon esculentum var UC82B),” Plant Physiol., 101:535-543 (1993). |
Galtier et al., “Effects of Light and Atmospheric Carbon Dioxide Enrichment on Photosynthesis and Carbon Partitioning in the Leaves of Tomato (Lycopersicon esculentum L.) Plants Over-Expressing Sucrose Phosphate Synthase,” J. Experimental Botany, 46:1335-1344 (1995). |
Micallef et al., “Altered Photosynthesis, Flowering, and Fruiting in Transgenic Tomato Plants That Have an Increased Capacity for Sucrose Synthesis,” Planta, 196:327-334 (1995). |
Laporte et al., “Sucrose-Phosphate Synthase Activity and Yield Analysis of Tomato Plants Transformed with Maize Sucrose-Phosphate Synthase,” Planta, 203:253-259 (1997). |
Signora et al., “Over-Expression of Sucrose Phosphate Synthase in Arabidopsis thaliana Results in Increased Foliar Sucrose/Starch Ratios and Favours Decreased Foliar Carbohydrate Accumulation in Plants After Prolonged Growth with CO2 Enrichment,” J. Experimental Botany, 49(321):669-680 (1998). |
Krause et al., “Sucrose Metabolism in Cold-Stored Potato Tubers with Decreased Expression of Sucrose Phosphate Synthase,” Plant, Cell and Environ., 21:285-299 (1998). |
Ferrario-Méry et al., “Manipulation of the Pathways of Sucrose Biosynthesis and Nitrogen Assimilation in Transformed Plants to Improve Photosynthesis and Productivity,” in Foyer and Quick, eds., A Molecular Approach to Primary Metabolism in Higher Plants, Taylor & Francis, pp. 125-153 (1997). |
Foyer et al., “Source-Sink Interaction and Communication in Leaves,” in Zamski and Schaffer, eds., Photoassimilate Distribution in Plants and Crops, New York, New York:Marcel Dekker, Inc., pp. 311-340 (1996). |
Sonnewald et al., “Manipulation of Sink-Source Relations in Transgenic Plants,” Plant, Cell and Environ., 17:649-658 (1994). |
Frommer et al., “Molecular Analysis of Carbon Partitioning in Solanaceous Species,” J. Experimental Botany, 46(287):587-607 (1995). |
Stitt, “The Use of Transgenic Plants to Study the Regulation of Plant Carbohydrate Metabolism,” Aust. J. Plant Physiol., 22:635-646 (1995). |
Stitt et al., “Regulation of Metabolism in Transgenic Plants,” Annu. Rev. Plant Physiol. Plant Mol. Biol., 46:341-368 (1995). |
Huber et al., “Role and Regulation of Sucrose-Phosphate Synthase in Higher Plants,” Annu. Rev. Plant Phisiol. Plant Mol. Biol., 47:431-444 (1996). |
Kossmann et al., “Potential for Modifying Source-Sink Interactions Through the Genetic Manipulation of Carbohydrate Metabolism,” in Zamski and Schaffer, eds., Photoassimilate Distribution in Plants and Crops, New York, New York: Marcel Dekker, Inc., pp. 369-387 (1996). |
Sonnewald, “Modulation of Sucrose Metabolism,” in Foyer and Quick, eds., A Molecular Approach to Primary Metabolism in Higher Plants, Taylor & Francis, pp. 63-79 (1997). |
Amor et al., “A Membrane-Associated Form of Sucrose Synthase and Its Potential Role in Synthesis of Cellulose and Callose in Plants,” Proc. Natl. Acad. Sci. USA 92(20):9353-9357 (1995). |