Transgenic plants with enhanced agronomic traits

Information

  • Patent Application
  • 20080301839
  • Publication Number
    20080301839
  • Date Filed
    August 30, 2006
    17 years ago
  • Date Published
    December 04, 2008
    15 years ago
Abstract
This invention provides recombinant DNA for expression of proteins that are useful for imparting enhanced agronomic trait(s) to transgenic crop plants. Also provided by this invention is transgenic seed for growing a transgenic plant having recombinant DNA in its genome and exhibiting an enhance agronomic trait, i.e. enhanced nitrogen use efficiency, increased yield, enhanced water use efficiency, enhanced tolerance to cold stress and/or improved seed compositions. Also disclosed are methods for identifying such transgenic plants by screening for nitrogen use efficiency, yield, water use efficiency, growth under cold stress, and seed composition changes. This invention also discloses a method of identifying the target genes of a transcription factor.
Description
INCORPORATION OF SEQUENCE LISTING

Two copies of the sequence listing (Copy 1 and Copy 2) and a computer readable form (CRF) of the sequence listing, all on CD-Rs, each containing the text file named 38-21(53948)C_seqListing.txt, which is 33,136,640 bytes (measured in MS-WINDOWS) and was created on Aug. 30, 2006 are incorporated herein by reference.


INCORPORATION OF COMPUTER PROGRAM LISTING

One copy of the Computer Program Listing (Copy 1) and a computer readable form (CRF) containing folders hmmer-2.3.2 and 124pfamDir, all on CD-Rs are incorporated herein by reference in their entirety. Folder hmmer-2.3.2 contains the source code and other associated file for implementing the HMMer software for Pfam analysis. Folder 124pfamDir contains 124 Pfam Hidden Markov Models. Both folders were created on CD-R on Aug. 30, 2006, having a total size of 12,042,240 bytes (measured in MS-WINDOWS).


FIELD OF THE INVENTION

Disclosed herein are inventions in the field of plant genetics and developmental biology. More specifically, the present inventions provide transgenic seeds for crops, wherein the genome of said seed comprises recombinant DNA, the expression of which results in the production of transgenic plants with enhanced agronomic traits.


BACKGROUND OF THE INVENTION

Transgenic plants with enhanced agronomic traits such as increased yield, enhanced environmental stress tolerance, enhanced pest resistance, enhanced herbicide tolerance, improved seed compositions, and the like are desired by both farmers and consumers. Although considerable efforts in plant breeding have provided significant gains in desired traits, the ability to introduce specific DNA into plant genomes provides further opportunities for generation of plants with enhanced and/or unique traits. Merely introducing recombinant DNA into a plant genome doesn't always produce a transgenic plant with an enhanced agronomic trait. Thorough screening is required to identify those transgenic events that are characterized by the enhanced agronomic trait.





BRIEF DESCRIPTION OF FIGURES


FIG. 1 is a map of plasmid pMON82060.



FIG. 2 is a map of plasmid pMON82053



FIG. 3 is a map of plasmid pMON99053



FIG. 4 is a map of plasmid pMON17730





SUMMARY OF THE INVENTION

This invention employs recombinant DNA for expression of proteins that are useful for imparting enhanced agronomic traits to the transgenic plants. Recombinant DNA in this invention is provided in a construct comprising a promoter that is functional in plant cells and that is operably linked to DNA that encodes a protein having at least one amino acid domain in a sequence that exceeds the Pfam gathering cutoff for amino acid sequence alignment with a protein domain family identified by a Pfam name in the group of Pfam domain names as identified in Table 11. In more specific embodiments of the invention the protein expressed in plant cells has an amino acid sequence with at least 90% identity to a consensus amino acid sequence in the group of consensus amino acid sequences consisting of the consensus amino acid sequence constructed for SEQ ID NO: 194 and homologs thereof listed in Table 7 through the consensus amino acid sequence constructed for SEQ ID NO: 386 and homologs thereof listed in Table 7. In even more specific embodiments of the invention the protein expressed in plant cells is a protein selected from the group of proteins identified in Table 1.


Other aspects of the invention are specifically directed to transgenic plant cells comprising the recombinant DNA of the invention, transgenic plants comprising a plurality of such plant cells, progeny transgenic seed, embryo and transgenic pollen from such plants. Such plant cells are selected from a population of transgenic plants regenerated from plant cells transformed with recombinant DNA and that express the protein by screening transgenic plants in the population for an enhanced trait as compared to control plants that do not have said recombinant DNA, where the enhanced trait is selected from group of enhanced traits consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil.


In yet another aspect of the invention the plant cells, plants, seeds, embryo and pollen further comprise DNA expressing a protein that provides tolerance from exposure to an herbicide applied at levels that are lethal to a wild type of said plant cell. Such tolerance is especially useful not only as an advantageous trait in such plants but is also useful in a selection step in the methods of the invention. In aspects of the invention the agent of such herbicide is a glyphosate, dicamba, or glufosinate compound.


Yet other aspects of the invention provide transgenic plants which are homozygous for the recombinant DNA and transgenic seed of the invention from corn, soybean, cotton, canola, alfalfa, wheat or rice plants.


In other important embodiments for practice of various aspects of the invention, the plants of this invention can be further enhanced with stacked traits, e.g., a crop having an enhanced agronomic trait resulting from expression of DNA disclosed herein, in combination with herbicide, disease, and/or pest resistance traits.


This invention also provides methods for manufacturing non-natural, transgenic seed that can be used to produce a crop of transgenic plants with an enhanced trait resulting from expression of stably-integrated, recombinant DNA for expressing a protein having at least one domain of amino acids in a sequence that exceeds the Pfam gathering cutoff for amino acid sequence alignment with a protein domain family identified by a Pfam name in the group of Pfam names identified in Table 11. More specifically the method comprises (a) screening a population of plants for an enhanced trait and a recombinant DNA, where individual plants in the population can exhibit the trait at a level less than, essentially the same as or greater than the level that the trait is exhibited in control plants which do not express the recombinant DNA, (b) selecting from the population one or more plants that exhibit the trait at a level greater than the level that said trait is exhibited in control plants, (c) verifying that the recombinant DNA is stably integrated in said selected plants, (d) analyzing tissue of a selected plant to determine the production of a protein having the function of a protein encoded by nucleotides in a sequence of one of SEQ ID NO:1-193; and (e) collecting seed from a selected plant. In one aspect of the invention the plants in the population further comprise DNA expressing a protein that provides tolerance to exposure to an herbicide applied at levels that are lethal to wild type plant cells and the selecting is effected by treating the population with the herbicide, e.g. a glyphosate, dicamba, or glufosinate compound. In another aspect of the invention the plants are selected by identifying plants with the enhanced trait. The methods are especially useful for manufacturing corn, soybean, cotton, alfalfa, wheat or rice seed.


Another aspect of the invention provides a method of producing hybrid corn seed comprising acquiring hybrid corn seed from a herbicide tolerant corn plant which also has stably-integrated, recombinant DNA comprising a promoter that is (a) functional in plant cells and (b) is operably linked to DNA that encodes a protein having at least one domain of amino acids in a sequence that exceeds the Pfam gathering cutoff for amino acid sequence alignment with a protein domain family identified by a Pfam name in the group of Pfam names identified in Table 11. The methods further comprise producing corn plants from said hybrid corn seed, wherein a fraction of the plants produced from said hybrid corn seed is homozygous for said recombinant DNA, a fraction of the plants produced from said hybrid corn seed is hemizygous for said recombinant DNA, and a fraction of the plants produced from said hybrid corn seed has none of said recombinant DNA; selecting corn plants which are homozygous and hemizygous for said recombinant DNA by treating with an herbicide; collecting seed from herbicide-treated-surviving corn plants and planting said seed to produce further progeny corn plants; repeating the selecting and collecting steps at least once to produce an inbred corn line; and crossing the inbred corn line with a second corn line to produce hybrid seed.


Another aspect of the invention provides a method of selecting a plant comprising plant cells of the invention by using an immunoreactive antibody to detect the presence of protein expressed by recombinant DNA in seed or plant tissue. Yet another aspect of the invention provides anti-counterfeit milled seed having, as an indication of origin, a plant cell of this invention.


Still other aspects of this invention relate to transgenic plants with enhanced water use efficiency or enhanced nitrogen use efficiency. For instance, this invention provides methods of growing a corn, cotton or soybean crop without irrigation water comprising planting seed having plant cells of the invention which are selected for enhanced water use efficiency. Alternatively methods comprise applying reduced irrigation water, e.g. providing up to 300 millimeters of ground water during the production of a corn crop. This invention also provides methods of growing a corn, cotton or soybean crop without added nitrogen fertilizer comprising planting seed having plant cells of the invention which are selected for enhanced nitrogen use efficiency.


DETAILED DESCRIPTION OF THE INVENTION

In the attached sequence listing:


SEQ ID NO:1-193 are nucleotide sequences of the coding strand of DNA for “genes” used in the recombinant DNA imparting an enhanced trait in plant cells, i.e. each represents a coding sequence for a protein;


SEQ ID NO:194-386 are amino acid sequences of the cognate protein of the “genes” with nucleotide coding sequence 1-193;


SEQ ID NO: 387-12580 are amino acid sequences of homologous proteins;


SEQ ID NO: 12581-12601 are nucleotide sequences of the elements in base plasmid vectors


SEQ ID NO: 12602 is a consensus amino acid sequence.


SEQ ID NO: 12603 is a nucleotide sequence of a base plasmid vector useful for corn transformation; and


SEQ ID NO: 12604 is a nucleotide sequence of a base plasmid vector useful for soybean transformation.


SEQ ID NO: 12605 is a nucleotide sequence of a base plasmid vector useful for cotton transformation.


SEQ ID NO: 12606 is the nucleotide sequence of plasmid PMON17730.


SEQ ID NO: 12607 is the nucleotide sequence of PHE0010424_PMON17730.


As used herein, a “transgenic plant” means a plant whose genome has been altered by the incorporation of exogenous DNA, e.g., by transformation as described herein. The term “transgenic plant” is used to refer to the plant produced from an original transformation event, or progeny from later generations or crosses of a plant so transformed, so long as the progeny contains the exogenous genetic material in its genome. “Exogenous DNA” means DNA, e.g., recombinant DNA, originating from or constructed outside of the plant including natural or artificial DNA derived from the host “transformed” organism of a different organism.


As used herein, “recombinant DNA” means DNA which has been a genetically engineered or constructed outside of a cell, including DNA containing naturally occurring DNA or cDNA, or synthetic DNA.


As used herein, a “functional portion” of DNA is that part which comprises an encoding region for a protein segment that is sufficient to provide the desired enhanced agronomic trait in plants transformed with the DNA activity. Where expression of protein is desired, a functional portion will generally comprise the entire coding region for the protein, although certain deletions, truncations, rearrangements and the like of the protein may also maintain, or in some cases improve, the desired activity. One skilled in the art is aware of methods to screen for such desired modifications and such functional portion of the protein is considered within the scope of the present invention.


As used herein, “consensus sequence” means an artificial, amino acid sequence of conserved parts of the proteins encoded by homologous genes, e.g., as determined by a CLUSTALW alignment of amino acid sequence of homolog proteins.


As used herein, “homolog” means a protein in a group of proteins that perform the same biological function, e.g., provide an enhanced agronomic trait in transgenic plants of this invention. Homologs are expressed by homologous genes which are genes that encode proteins with the same or similar biological function. Homologous genes may be generated by the event of speciation (see ortholog) or by the event of genetic duplication (see paralog). Orthologs refer to a set of homologous genes in different species that evolved from a common ancestral gene by specification. Normally, orthologs retain the same function in the course of evolution; and paralogs refer to a set of homologous genes in the same species that have diverged from each other as a consequence of genetic duplication. Thus, homologous genes can be from the same or a different organism. Homologous DNA includes naturally occurring and synthetic variants. For instance, degeneracy of the genetic code provides the possibility to substitute at least one base of the protein encoding sequence of a gene with a different base without causing the amino acid sequence of the polypeptide produced from the gene to be changed. Hence, a polynucleotide useful in the present invention may have any base sequence that has been changed from SEQ ID NO:1 through SEQ ID NO: 193 by substitution in accordance with degeneracy of the genetic code. Homologs are proteins which, when optimally aligned, has at least 60% identity (say at least 70% or 80% or 90% identity) over the full length of a protein identified herein, or a higher percent identity especially over a shorter functional part of the protein, e.g., 70% to 80 or 90% amino acid identity over a window of comparison comprising a functional part of the protein imparting the enhanced agronomic trait. Homologs include proteins with an amino acid sequence that has at least 90% identity to a consensus amino acid sequence of proteins and homologs disclosed herein.


Homologs can be identified by comparison of amino acid sequence, e.g., manually or by using known homology-based search algorithms such as those commonly known and referred to as BLAST, FASTA, and Smith-Waterman. A local sequence alignment program, e.g., BLAST, can be used to search a database of sequences to find similar sequences, and the summary Expectation value (E-value) used to measure the sequence base similarity. As a protein hit with the best E-value for a particular organism may not necessarily be an ortholog or the only ortholog, a reciprocal query is used in the present invention to filter hit sequences with significant E-values for ortholog identification. The reciprocal query entails search of the significant hits against a database of amino acid sequences from the base organism that are similar to the sequence of the query protein. A hit is a likely ortholog, when the reciprocal query's best hit is the query protein itself or a protein encoded by a duplicated gene after speciation. A further aspect of the invention comprises functional homolog proteins which differ in one or more amino acids from those of disclosed protein as the result of conservative amino acid substitutions, e.g., substitutions are among: acidic (negatively charged) amino acids such as aspartic acid and glutamic acid; basic (positively charged) amino acids such as arginine, histidine, and lysine; neutral polar amino acids such as glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; neutral nonpolar (hydrophobic) amino acids such as alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; amino acids having aliphatic side chains such as glycine, alanine, valine, leucine, and isoleucine; amino acids having aliphatic-hydroxyl side chains such as serine and threonine; amino acids having amide-containing side chains such as asparagine and glutamine; amino acids having aromatic side chains such as phenylalanine, tyrosine, and tryptophan; amino acids having basic side chains such as lysine, arginine, and histidine; amino acids having sulfur-containing side chains such as cysteine and methionine; naturally conservative amino acids such as valine-leucine, valine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, aspartic acid-glutamic acid, and asparagine-glutamine. A further aspect of the homologs encoded by DNA useful in the transgenic plants of the invention are those proteins which differ from a disclosed protein as the result of deletion or insertion of one or more amino acids in a native sequence.


As used herein, “transcription factor gene” refers to a gene that encodes a protein that binds to regulatory regions and is involved in control gene expression. Therefore, as used herein, a target gene refers to a gene whose expression is controlled by a transcription factor gene.


As used herein, “percent identity” means the extent to which two optimally aligned DNA or protein segments are invariant throughout a window of alignment of components, e.g., nucleotide sequence or amino acid sequence. An “identity fraction” for aligned segments of a test sequence and a reference sequence is the number of identical components which are shared by sequences of the two aligned segments divided by the total number of sequence components in the reference segment over a window of alignment which is the smaller of the full test sequence or the full reference sequence. “Percent identity” (“% identity”) is the identity fraction times 100.


As used herein “Pfam” refers to a large collection of multiple sequence alignments and hidden Markov models covering many common protein families, e.g. Pfam version 19.0 (December 2005) contains alignments and models for 8183 protein families and is based on the Swissprot 47.0 and SP-TrEMBL 30.0 protein sequence databases. See S. R. Eddy, “Profile Hidden Markov Models”, Bioinformatics 14:755-763, 1998. Pfam is currently maintained and updated by a Pfam Consortium. The alignments represent some evolutionary conserved structure that has implications for the protein's function. Profile hidden Markov models (profile HMMs) built from the Pfam alignments are useful for automatically recognizing that a new protein belongs to an existing protein family even if the homology by alignment appears to be low. Once one DNA is identified as encoding a protein which imparts an enhanced trait when expressed in transgenic plants, other DNA encoding proteins in the same protein family are identified by querying the amino acid sequence of protein encoded by candidate DNA against the Hidden Markov Model which characterizes the Pfam domain using HMMER software, a current version of which is provided in the appended computer listing. Candidate proteins meeting the gathering cutoff for the alignment of a particular Pfam are in the protein family and have cognate DNA that is useful in constructing recombinant DNA for the use in the plant cells of this invention. Hidden Markov Model databases for use with HMMER software in identifying DNA expressing protein in a common Pfam for recombinant DNA in the plant cells of this invention are also included in the appended computer listing. The HMMER software and Pfam databases are version 19.0 and were used to identify known domains in the proteins corresponding to amino acid sequence of SEQ ID NO: 194 through SEQ ID NO: 386. All DNA encoding proteins that have scores higher than the gathering cutoff disclosed in Table 11 by Pfam analysis disclosed herein can be used in recombinant DNA of the plant cells of this invention, e.g. for selecting transgenic plants having enhanced agronomic traits. The relevant Pfams for use in this invention, as more specifically disclosed below, are FAD_binding4, MtN3_slv, Homeobox, FAD_binding6, RWP-RK, PMEI, FAD_binding7, RRM1, Transaldolase, RNA_pol_L, WD40, U-box, Cyclin_N, Skp1, Redoxin, DZC, PBP, TPP_enzyme_M, CBFD_NFYB_HMF, TPP_enzyme_N, PFK, Caleosin, Iso_dh, Ribosomal_L18p, Metallophos, zf-A20, Ras, BBE, NAF, PLDc, DUF1242, Pkinase, C2, p450, Pyridoxal_deC, FBD, UPF0005, HEAT_PBS, GST_N, PEP-utilizers, Alpha-amylase, Amino_oxidase, SRF-TF, Phi1, Malic_M, Tryp_alpha_amyl, GSHPx, Miro, HSF_DNA-bind, DNA_photolyase, Sina, CTP_transf2, Abhydrolase3, Chal_sti_synt_C, ACP_syn_III_C, ADH_zinc_N, CSD, Globin, GATase2, Amidohydro1, HLH, HALZ, Amidohydro3, Lactamase_B, HSP20, DAO, DUF296, AT_hook, AWPM-19, Dimerisation, Suc_Fer-like, Methyltransf2, Aminotran3, PHD, MMR_HSR1, Aldo_ket_red, zf-AN1, malic, Fasciclin, UPF0057, DUF221, Pkinase_Tyr, DnaJ, Cofilin_ADF, Orn_Arg_deC_N, Skp1_POZ, Asn_synthase, K-box, LRR2, Ribosomal_L12, Ammonium_transp, Ribosomal_L14, KOW, DUF1336, DS, Aa_trans, CcmH, peroxidase, eIF-5a, Aldedh, PEP-utilizers_C, ADH_N, UIM, NAD_binding1, zf-C3HC4, Spermine_synth, AUX_IAA, LIM, Anti-silence, X8, Citrate_synt, 14-3-3, RMMBL, efhand, NPH3, CAF1, ICL, FAE1_CUT1_RppA, Orn_DAP_Arg_deC, PPDK_N, Myb_DNA-binding, AP2, F-box, and APS_kinase


As used herein, “promoter” means regulatory DNA for initializing transcription. A “plant promoter” is a promoter capable of initiating transcription in plant cells whether or not its origin is a plant cell, e.g., is it well known that viral promoters are functional in plants. Thus, plant promoters include promoter DNA obtained from plants, plant viruses, and bacteria such as Agrobacterium and Rhizobium bacteria. Examples of promoters under developmental control include promoters that preferentially initiate transcription in certain tissues, such as leaves, roots, or seeds. Such promoters are referred to as “tissue preferred”. Promoters which initiate transcription only in certain tissues are referred to as “tissue specific”. A “cell type” specific promoter primarily drives expression in certain cell types in one or more organs, for example, vascular cells in roots or leaves. An “inducible” or “repressible” promoter is a promoter which is under environmental control. Examples of environmental conditions that may effect transcription by inducible promoters include anaerobic conditions, or certain chemicals, or the presence of light. Tissue specific, tissue preferred, cell type specific, and inducible promoters constitute the class of “non-constitutive” promoters. A “constitutive” promoter is a promoter which is active under most conditions.


As used herein, “operably linked” means the association of two or more DNA fragments in a DNA construct so that the function of one, e.g., protein-encoding DNA, is affected by the other, e.g., a promoter.


As used herein, “expression” means the process that includes transcription of DNA to produce RNA and translation of the cognate protein encoded by the DNA and RNA.


As used herein, a “control plant” means a plant that does not contain the recombinant DNA that confers an enhanced agronomic trait. A control plant is used to compare against a transgenic plant, to identify an enhanced agronomic trait in the transgenic plant. A suitable control plant may be a non-transgenic plant of the parental line used to generate a transgenic plant. A control plant may in some cases be a transgenic plant line that comprises an empty vector or marker gene, but does not contain the recombinant DNA.


As used herein, an “agronomic trait” means a characteristic of a plant, which includes, but are not limited to, plant morphology, physiology, growth and development, yield, nutritional enhancement, disease or pest resistance, or environmental or chemical tolerance. In the plants of this invention the expression of identified recombinant DNA confers an agronomically important trait, e.g., increased yield. An “enhanced agronomic trait” refers to a measurable improvement in an agronomic trait including, but not limited to, yield increase, including increased yield under non-stress conditions and increased yield under environmental stress conditions. Stress conditions may include, for example, drought, shade, fungal disease, viral disease, bacterial disease, insect infestation, nematode infestation, cold temperature exposure, heat exposure, osmotic stress, reduced nitrogen nutrient availability, reduced phosphorus nutrient availability and high plant density. “Yield” can be affected by many properties including without limitation, plant height, pod number, pod position on the plant, number of internodes, incidence of pod shatter, grain size, efficiency of nodulation and nitrogen fixation, efficiency of nutrient assimilation, resistance to biotic and abiotic stress, carbon assimilation, plant architecture, resistance to lodging, percent seed germination, seedling vigor, and juvenile traits. Yield can also affected by efficiency of germination (including germination in stressed conditions), growth rate (including growth rate in stressed conditions), ear number, seed number per ear, seed size, composition of seed (starch, oil, protein) and characteristics of seed fill.


Increased yield of a transgenic plant of the present invention can be measured in a number of ways, including test weight, seed number per plant, seed weight, seed number per unit area (i.e. seeds, or weight of seeds, per acre), bushels per acre, tones per acre, tons per acre, kilo per hectare. For example, maize yield may be measured as production of shelled corn kernels per unit of production area, e.g., in bushels per acre or metric tons per hectare, often reported on a moisture adjusted basis, e.g., at 15.5% moisture. Increased yield may result from enhanced utilization of key biochemical compounds, such as nitrogen, phosphorous and carbohydrate, or from improved responses to environmental stresses, such as cold, heat, drought, salt, and attack by pests or pathogens. Recombinant DNA used in this invention can also be used to provide plants having enhanced growth and development, and ultimately increased yield, as the result of modified expression of plant growth regulators or modification of cell cycle or photosynthesis pathways.


Also of interest is the generation of transgenic plants that demonstrate enhanced yield with respect to a seed component that may or may not correspond to an increase in overall plant yield. Such properties include enhancements in seed oil, seed molecules such as tocopherol, protein and starch, or oil particular oil components as may be manifest by an alteration in the ratios of seed components.


A subset of the nucleic molecules of this invention includes fragments of the disclosed recombinant DNA consisting of oligonucleotides of at least 15, preferably at least 16 or 17, more preferably at least 18 or 19, and even more preferably at least 20 or more, consecutive nucleotides. Such oligonucleotides are fragments of the larger molecules having a sequence selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:193, and find use, for example as probes and primers for detection of the polynucleotides of the present invention.


In some embodiments of the invention a constitutively active mutant is constructed to achieve the desired effect. SEQ ID NO: 3-6 encodes only the kinase domain of a calcium dependent protein kinase (CDPK). CDPK1 has a domain structure similar to other calcium-dependant protein kinase in which the protein kinase domain is separated from four efhand domains by 42 amino acid “spacer” region. Calcium-dependent protein kinases are thought to be activated by a calcium-induced conformational change that results in movement of an autoinhibitory domain away form the protein kinase active site (Yokokura et al., 1995). Thus, constitutively active proteins can be made by over expressing the protein kinase domain alone.


In other embodiments of the invention a chimeric gene is constructed between homologous genes from different species to obtain a protein with certain characteristics superior to either native protein, e.g., enhanced stability and favorable enzymatic kinetics. Exemplary chimeric DNA molecules provided by the present invention are set forth as SEQ ID NO: 1 and 2 that encode a Arabidopsis-Corn chimeric pyruvate orthophosphate dikinase (PPDK).


In yet other embodiments of the invention, a codon optimized gene is synthesized to achieve a desirable expression level. Synthetic DNA molecules can be designed by a variety of methods, such as, methods known in the art that are based upon substituting the codon(s) of a first polynucleotide to create an equivalent, or even an improved, second-generation artificial polynucleotide, where this new artificial polynucleotide is useful for enhanced expression in transgenic plants. The design aspect often employs a codon usage table. The table is produced by compiling the frequency of occurrence of codons in a collection of coding sequences isolated from a plant, plant type, family or genus. Other design aspects include reducing the occurrence of polyadenylation signals, intron splice sites, or long AT or GC stretches of sequence (U.S. Pat. No. 5,500,365). Full length coding sequences or fragments thereof can be made of artificial DNA using methods known to those skilled in the art. Such exemplary synthetic DNA molecules provided by the present invention are set forth as SEQ ID NO: 38.


DNA constructs are assembled using methods well known to persons of ordinary skill in the art and typically comprise a promoter operably linked to DNA, the expression of which provides the enhanced agronomic trait. Other construct components may include additional regulatory elements, such as 5′ introns for enhancing transcription, 3′ untranslated regions (such as polyadenylation signals and sites), DNA for transit or signal peptides.


In accordance with the current invention, constitutive promoters are active under most environmental conditions and states of development or cell differentiation. These promoters are likely to provide expression of the polynucleotide sequence at many stages of plant development and in a majority of tissues. A variety of constitutive promoters are known in the art. Examples of constitutive promoters that are active in plant cells include but are not limited to the nopaline synthase (NOS) promoters; the cauliflower mosaic virus (CaMV) 19S and 35S promoters (U.S. Pat. No. 5,858,642); the figwort mosaic virus promoter (P-FMV, U.S. Pat. No. 6,051,753); actin promoters, such as the rice actin promoter (P-Os.Act1, U.S. Pat. No. 5,641,876).


Furthermore, the promoters may be altered to contain one or more “enhancer sequences” to assist in elevating gene expression. Such enhancers are known in the art. By including an enhancer sequence with such constructs, the expression of the selected protein may be enhanced. These enhancers often are found 5′ to the start of transcription in a promoter that functions in eukaryotic cells, but can often be inserted in the forward or reverse orientation 5′ or 3′ to the coding sequence. In some instances, these 5′ enhancing elements are introns. Deemed to be particularly useful as enhancers are the 5′ introns of the rice actin 1 (see U.S. Pat. No. 5,641,876), rice actin 2 genes and the maize heat shock protein 70 gene intron (U.S. Pat. No. 5,593,874). Examples of other enhancers that can be used in accordance with the invention include elements from the CaMV 35S promoter, octopine synthase genes, the maize alcohol dehydrogenase gene, the maize shrunken 1 gene and promoters from non-plant eukaryotes.


Tissue-specific promoters cause transcription or enhanced transcription of a polynucleotide sequence in specific cells or tissues at specific times during plant development, such as in vegetative or reproductive tissues. Examples of tissue-specific promoters under developmental control include promoters that initiate transcription primarily in certain tissues, such as vegetative tissues, e.g., roots, leaves or stems, or reproductive tissues, such as fruit, ovules, seeds, pollen, pistils, flowers, or any embryonic tissue, or any combination thereof. Reproductive tissue specific promoters may be, e.g., ovule-specific, embryo-specific, endosperm-specific, integument-specific, pollen-specific, petal-specific, sepal-specific, or some combination thereof. Tissue specific promoter(s) will also include promoters that can cause transcription, or enhanced transcription in a desired plant tissue at a desired plant developmental stage. An example of such a promoter includes, but is not limited to, a seedling or an early seedling specific promoter. One skilled in the art will recognize that a tissue-specific promoter may drive expression of operably linked polynucleotide molecules in tissues other than the target tissue. Thus, as used herein, a tissue-specific promoter is one that drives expression preferentially not only in the target tissue, but may also lead to some expression in other tissues as well.


In one embodiment of this invention, preferential expression in plant green tissues is desired. Promoters of interest for such uses include those from genes such as maize aldolase gene FDA (U.S. patent application publication No. 20040216189), aldolase and pyruvate orthophosphate dikinase (PPDK) (Taniguchi et al. (2000) Plant Cell Physiol. 41(1):42-48).


In another embodiment of this invention, preferential expression in plant root tissue is desired. An exemplary promoter of interest for such uses is derived from Corn Nicotianamine Synthase gene (U.S. patent application publication No. 20030131377).


In yet another embodiment of this invention, preferential expression in plant phloem tissue is desired. An exemplary promoter of interest for such use is the rice tungro bacilliform virus (RTBV) promoter (U.S. Pat. No. 5,824,857).


In practicing this invention, an inducible promoter may also be used to ectopically express the structural gene in the recombinant DNA construct. The inducible promoter may cause conditional expression of a polynucleotide sequence under the influence of changing environmental conditions or developmental conditions. For example, such promoters may cause expression of the polynucleotide sequence at certain temperatures or temperature ranges, or in specific stage(s) of plant development such as in early germination or late maturation stage(s) of a plant. Examples of inducible promoters include, but are not limited to, the light-inducible promoter from the small subunit of ribulose-1,5-bis-phosphate carboxylase (ssRUBISCO) (Fischhoff et al. (1992) Plant Mol. Biol. 20:81-93); the drought-inducible promoter of maize (Busk et al., Plant J. 11:1285-1295, 1997), the cold, drought, and high salt inducible promoter from potato (Kirch, Plant Mol. Biol. 33:897-909, 1997), and many cold inducible promoters known in the art; for example rd29a and cor15a promoters from Arabidopsis (Genbank ID: D13044 and U01377), blt101 and blt4.8 from barley (Genbank ID: AJ310994 and U63993), wcs120 from wheat (Genbank ID:AF031235), mlip15 from corn (Genbank ID: D26563) and bn115 from Brassica (Genbank ID: U01377).


In some aspects of the invention, sufficient expression in plant seed tissues is desired to effect improvements in seed composition. Exemplary promoters for use for seed composition modification include promoters from seed genes such as napin (U.S. Pat. No. 5,420,034), maize L3 oleosin (U.S. Pat. No. 6,433,252), zein Z27 (Russell et al. (1997) Transgenic Res. 6(2): 157-166), glutelin1 (Russell (1997) supra), peroxiredoxin antioxidant (Per1) (Stacy et al. (1996) Plant Mol. Biol. 31(6):1205-1216), and globulin 1 (Belanger et al (1991) Genetics 129:863-872).


Recombinant DNA constructs prepared in accordance with the invention will also generally include a 3′ element that typically contains a polyadenylation signal and site. Well-known 3′ elements include those from Agrobacterium tumefaciens genes such as nos 3′, tml 3′, tmr 3′, tms 3′, ocs 3′, tr7 3′, e.g., disclosed in U.S. Pat. No. 6,090,627, incorporated herein by reference; 3′ elements from plant genes such as wheat (Triticum aesevitum) heat shock protein 17 (Hsp173′), a wheat ubiquitin gene, a wheat fructose-1,6-biphosphatase gene, a rice glutelin gene a rice lactate dehydrogenase gene and a rice beta-tubulin gene, all of which are disclosed in U.S. published patent application 2002/0192813 A1, incorporated herein by reference; and the pea (Pisum sativum) ribulose biphosphate carboxylase gene (rbs 3′), and 3′ elements from the genes within the host plant.


Constructs and vectors may also include a transit peptide for targeting of a gene target to a plant organelle, particularly to a chloroplast, leucoplast or other plastid organelle. For descriptions of the use of chloroplast transit peptides see U.S. Pat. No. 5,188,642 and U.S. Pat. No. 5,728,925, incorporated herein by reference. For description of the transit peptide region of an Arabidopsis EPSPS gene useful in the present invention, see Klee, H. J. et al., (MGG (1987) 210:437-442).


The recombinant DNA construct may include other elements. For example, the construct may contain DNA segments that provide replication function and antibiotic selection in bacterial cells. For example, the construct may contain an E. coli origin of replication such as ori322 or a broad host range origin of replication such as oriV, oriRi or oriColE.


The construct may also comprise a selectable marker such as an Ec-ntpII-Tn5 that encodes a neomycin phosphotransferase II gene obtained from Tn5 conferring resistance to a neomycin and kanamysin, Spc/Str that encodes for Tn7 aminoglycoside adenyltransferase (aadA) conferring resistance to spectinomycin or streptomycin, or a gentamicin (Gm, Gent) or one of many known selectable marker gene.


The vector or construct may also include a screenable marker and other elements as appropriate for selection of plant or bacterial cells having DNA constructs of the invention. DNA constructs are designed with suitable selectable markers that can confer antibiotic or herbicide tolerance to the cell. The antibiotic tolerance polynucleotide sequences include, but are not limited to, polynucleotide sequences encoding for proteins involved in tolerance to kanamycin, neomycin, hygromycin, and other antibiotics known in the art. An antibiotic tolerance gene in such a vector may be replaced by herbicide tolerance gene encoding for 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, described in U.S. Pat. Nos. 5,627,061, and 5,633,435; Padgette et al., Herbicide Resistant Crops, Lewis Publishers, 53-85, 1996; and in Penaloza-Vazquez, et al., Plant Cell Reports 14:482-487, 1995) and aroA (U.S. Pat. No. 5,094,945) for glyphosate tolerance, bromoxynil nitrilase (Bxn) for Bromoxynil tolerance (U.S. Pat. No. 4,810,648), phytoene desaturase (crtI (Misawa et al., Plant J. 4:833-840, 1993; and Misawa et al., Plant J. 6:481-489, 1994) for tolerance to norflurazon, acetohydroxyacid synthase (AHAS, Sathasiivan et al., Nucl. Acids Res. 18:2188-2193, 1990). Herbicides for which transgenic plant tolerance has been demonstrated and for which the method of the present invention can be applied include, but are not limited to: glyphosate, sulfonylureas, imidazolinones, bromoxynil, delapon, cyclohezanedione, protoporphyrionogen oxidase inhibitors, and isoxaslutole herbicides.


Other examples of selectable markers, screenable markers and other elements are well known in the art and may be readily used in the present invention. Those skilled in the art should refer to the following for details (for selectable markers, see Potrykus et al., Mol. Gen. Genet. 199:183-188, 1985; Hinchee et al., Bio. Techno. 6:915-922, 1988; Stalker et al., J. Biol. Chem. 263:6310-6314, 1988; European Patent Application 154,204; Thillet et al., J. Biol. Chem. 263:12500-12508, 1988; for screenable markers see, Jefferson, Plant Mol. Biol, Rep. 5: 387-405, 1987; Jefferson et al., EMBO J. 6: 3901-3907, 1987; Sutcliffe et al., Proc. Natl. Acad. Sci. U.S.A. 75: 3737-3741, 1978; Ow et al., Science 234: 856-859, 1986; Ikatu et al., Bio. Technol. 8: 241-242, 1990; and for other elements see, European Patent Application Publication Number 0218571; Koziel et al., Plant Mol. Biol. 32: 393-405; 1996).


The plants of this invention can be further enhanced with stacked traits, e.g., a crop having an enhanced agronomic trait resulting from expression of DNA disclosed herein, in combination with herbicide, disease, and/or pest resistance traits. The recombinant DNA is provided in plant cells derived from corn lines that maintain resistance to a virus such as the Mal de Rio Cuarto virus or a fungus such as the Puccina sorghi fungus or both, which are common plant diseases in Argentina. For example, genes of the current invention can be stacked with other traits of agronomic interest, such as a trait providing herbicide resistance, or insect resistance, such as using a gene from Bacillus thuringiensis to provide resistance against lepidopteran, coleopteran, homopteran, hemiopteran, and other insects. Herbicides for which transgenic plant tolerance has been demonstrated and the method of the present invention can be applied include, but are not limited to, glyphosate, dicamba, glufosinate, sulfonylurea, bromoxynil and norflurazon herbicides. Polynucleotide molecules encoding proteins involved in herbicide tolerance are well-known in the art and include, but are not limited to, a polynucleotide molecule encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) disclosed in U.S. Pat. Nos. 5,094,945; 5,627,061; 5,633,435 and 6,040,497 for imparting glyphosate tolerance; polynucleotide molecules encoding a glyphosate oxidoreductase (GOX) disclosed in U.S. Pat. No. 5,463,175 and a glyphosate-N-acetyl transferase (GAT) disclosed in U.S. Patent Application publication 2003/0083480 A1 also for imparting glyphosate tolerance; dicamba monooxygenase disclosed in U.S. Patent Application publication 2003/0135879 A1 for imparting dicamba tolerance; a polynucleotide molecule encoding bromoxynil nitrilase (Bxn) disclosed in U.S. Pat. No. 4,810,648 for imparting bromoxynil tolerance; a polynucleotide molecule encoding phytoene desaturase (crtI) described in Misawa et al, (1993) Plant J. 4:833-840 and Misawa et al, (1994) Plant J. 6:481-489 for norflurazon tolerance; a polynucleotide molecule encoding acetohydroxyacid synthase (AHAS, aka ALS) described in Sathasiivan et al. (1990) Nucl. Acids Res. 18:2188-2193 for imparting tolerance to sulfonylurea herbicides; polynucleotide molecules known as bar genes disclosed in DeBlock, et al. (1987) EMBO J. 6:2513-2519 for imparting glufosinate and bialaphos tolerance; polynucleotide molecules disclosed in U.S. Patent Application Publication 2003/010609 A1 for imparting N-amino methyl phosphonic acid tolerance; polynucleotide molecules disclosed in U.S. Pat. No. 6,107,549 for imparting pyridine herbicide resistance; molecules and methods for imparting tolerance to multiple herbicides such as glyphosate, atrazine, ALS inhibitors, isoxoflutole and glufosinate herbicides are disclosed in U.S. Pat. No. 6,376,754 and U.S. Patent Application Publication 2002/0112260, all of said U.S. patents and patent application publications are incorporated herein by reference. Molecules and methods for imparting insect/nematode/virus resistance is disclosed in U.S. Pat. Nos. 5,250,515; 5,880,275; 6,506,599; 5,986,175 and U.S. Patent Application Publication 2003/0150017 A1, all of which are incorporated herein by reference.


In particular embodiments, the inventors contemplate the use of antibodies, either monoclonal or polyclonal which bind to the proteins disclosed herein. Means for preparing and characterizing antibodies are well known in the art (See, e.g., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; incorporated herein by reference). The methods for generating monoclonal antibodies (mAbs) generally begin along the same lines as those for preparing polyclonal antibodies. Briefly, a polyclonal antibody is prepared by immunizing an animal with an immunogenic composition in accordance with the present invention and collecting antisera from that immunized animal. A wide range of animal species can be used for the production of antisera. Typically the animal used for production of anti-antisera is a rabbit, a mouse, a rat, a hamster, a guinea pig or a goat. Because of the relatively large blood volume of rabbits, a rabbit is a preferred choice for production of polyclonal antibodies.


As is well known in the art, a given composition may vary in its immunogenicity. It is often necessary therefore to boost the host immune system, as may be achieved by coupling a peptide or polypeptide immunogen to a carrier. Exemplary and preferred carriers are keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA). Other albumins such as ovalbumin, mouse serum albumin or rabbit serum albumin can also be used as carriers. Means for conjugating a polypeptide to a carrier protein are well known in the art and include using glutaraldehyde, m-maleimidobencoyl-N-hydroxysuccinimide ester, carbodiimide and bis-biazotized benzidine.


As is also well known in the art, the immunogenicity of a particular immunogen composition can be enhanced by the use of non-specific stimulators of the immune response, known as adjuvants. Exemplary and preferred adjuvants include complete Freund's adjuvant (a non-specific stimulator of the immune response containing killed Mycobacterium tuberculosis), incomplete Freund's adjuvants and aluminum hydroxide adjuvant.


The amount of immunogen composition used in the production of polyclonal antibodies varies upon the nature of the immunogen as well as the animal used for immunization. A variety of routes can be used to administer the immunogen (subcutaneous, intramuscular, intradermal, intravenous and intraperitoneal). The production of polyclonal antibodies may be monitored by sampling blood of the immunized animal at various points following immunization. A second, booster, injection may also be given. The process of boosting and tittering is repeated until a suitable titer is achieved. When a desired level of immunogenicity is obtained, the immunized animal can be bled and the serum isolated and stored, and/or the animal can be used to generate mAbs.


mAbs may be readily prepared through use of well-known techniques, such as those exemplified in U.S. Pat. No. 4,196,265, incorporated herein by reference. Typically, this technique involves immunizing a suitable animal with a selected immunogen composition, e.g., a purified or partially purified antifungal protein, polypeptide or peptide. The immunizing composition is administered in a manner effective to stimulate antibody producing cells. Rodents such as mice and rats are preferred animals, however, the use of rabbit, sheep, or frog cells is also possible. The use of rats may provide certain advantages (Goding, 1986, pp. 60-61), but mice are preferred, with the BALB/c mouse being most preferred as this is most routinely used and generally gives a higher percentage of stable fusions.


Following immunization, somatic cells with the potential for producing antibodies, specifically B lymphocytes (B cells), are selected for use in the mAb generating protocol. These cells may be obtained from biopsied spleens, tonsils or lymph nodes, or from a peripheral blood sample. Spleen cells and peripheral blood cells are preferred, the former because they are a rich source of antibody-producing cells that are in the dividing plasmablast stage, and the latter because peripheral blood is easily accessible. Often, a panel of animals will have been immunized and the spleen of animal with the highest antibody titer will be removed and the spleen lymphocytes obtained by homogenizing the spleen with a syringe. Typically, a spleen from an immunized mouse contains approximately 5×107 to 2×108 lymphocytes.


The antibody-producing B lymphocytes from the immunized animal are then fused with cells of an immortal myeloma cell, generally one of the same species as the animal that was immunized. Myeloma cell lines suited for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render them incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas).


Any one of a number of myeloma cells may be used, as are known to those of skill in the art (Goding, 1986, pp. 65-66; Campbell, 1984, pp. 75-83). For example, where the immunized animal is a mouse, one may use P3-X63/Ag8, X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XXO Bul; for rats, one may use R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210; and U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6 are all useful in connection with human cell fusions.


One preferred murine myeloma cell is the NS-1 myeloma cell line (also termed P3-NS-1-Ag-4-1), which is readily available from the NIGMS Human Genetic Mutant Cell Repository by requesting cell line repository number GM3573. Another mouse myeloma cell line that may be used is the 8-azaguanine-resistant mouse murine myeloma SP2/0 non-producer cell line.


Methods for generating hybrids of antibody-producing spleen or lymph node cells and myeloma cells usually comprise mixing somatic cells with myeloma cells in a 2:1 ratio, though the ratio may vary from about 20:1 to about 1:1, respectively, in the presence of an agent or agents (chemical or electrical) that promote the fusion of cell membranes. Fusion methods using Spend virus have been described (Kohler and Milstein, 1975; 1976), and those using polyethylene glycol (PEG), such as 37% (v/v) PEG, (Gefter et al., 1977). The use of electrically induced fusion methods is also appropriate (Goding, 1986, pp. 71-74).


Fusion procedures usually produce viable hybrids at low frequencies, about 1×10−6 to 1×10−8. However, this does not pose a problem, as the viable, fused hybrids are differentiated from the parental, unfused cells (particularly the unfused myeloma cells that would normally continue to divide indefinitely) by culturing in a selective medium. The selective medium is generally one that contains an agent that blocks the de novo synthesis of nucleotides in the tissue culture media. Exemplary and preferred agents are aminopterin, methotrexate, and azaserine. Aminopterin and methotrexate block de novo synthesis of both purines and pyrimidines, whereas azasenne blocks only purine synthesis. Where aminopterin or methotrexate is used, the media is supplemented with hypoxanthine and thymidine as a source of nucleotides (HAT medium). Where azaserine is used, the media is supplemented with hypoxanthine.


The preferred selection medium is HAT. Only cells capable of operating nucleotide salvage pathways are able to survive in HAT medium. The myeloma cells are defective in key enzymes of the salvage pathway, e.g., hypoxanthine phosphoribosyl transferase (HPRT), and they cannot survive. The B-cells can operate this pathway, but they have a limited life span in culture and generally die within about two weeks. Therefore, the only cells that can survive in the selective media are those hybrids formed from myeloma and B-cells.


This culturing provides a population of hybridomas from which specific hybridomas are selected. Typically, selection of hybridomas is performed by culturing the cells by single-clone dilution in microtiter plates, followed by testing the individual clonal supernatants (after about two to three weeks) for the desired reactivity. The assay should be sensitive, simple and rapid, such as radioimmunoassays, enzyme immunoassays, cytotoxicity assays, plaque assays, dot immunobinding assays, and the like.


The selected hybridomas would then be serially diluted and cloned into individual antibody-producing cell lines, which clones can then be propagated indefinitely to provide mAbs. The cell lines may be exploited for mAb production in two basic ways. A sample of the hybridoma can be injected (often into the peritoneal cavity) into a histocompatible animal of the type that was used to provide the somatic and myeloma cells for the original fusion. The injected animal develops tumors secreting the specific monoclonal antibody produced by the fused cell hybrid. The body fluids of the animal, such as serum or ascites fluid, can then be tapped to provide mAbs in high concentration. The individual cell lines could also be cultured in vitro, where the mAbs are naturally secreted into the culture medium from which they can be readily obtained in high concentrations. mAbs produced by either means may be further purified, if desired, using filtration, centrifugation and various chromatographic methods such as HPLC or affinity chromatography.


Transformation Method

Numerous methods for transforming plant cells with recombinant DNA are known in the art and may be used in the present invention. Two commonly used methods for plant transformation are Agrobacterium-mediated transformation and microprojectile bombardment. Microprojectile bombardment methods are illustrated in U.S. Pat. Nos. 5,015,580 (soybean); 5,550,318 (corn); 5,538,880 (corn); 5,914,451 (soybean); 6,160,208 (corn); 6,399,861 (corn) and 6,153,812 (wheat) and Agrobacterium-mediated transformation is described in U.S. Pat. Nos. 5,159,135 (cotton); 5,824,877 (soybean); 5,591,616 (corn); and 6,384,301 (soybean), and in US Patent Application Publication 2004/0244075, all of which are incorporated herein by reference. For Agrobacterium tumefaciens based plant transformation system, additional elements present on transformation constructs will include T-DNA left and right border sequences to facilitate incorporation of the recombinant polynucleotide into the plant genome.


In general it is useful to introduce recombinant DNA randomly, i.e. at a non-specific location, in the genome of a target plant line. In special cases it may be useful to target recombinant DNA insertion in order to achieve site-specific integration, e.g., to replace an existing gene in the genome, to use an existing promoter in the plant genome, or to insert a recombinant polynucleotide at a predetermined site known to be active for gene expression. Several site specific recombination systems exist which are known to function implants include cre-lox as disclosed in U.S. Pat. No. 4,959,317 and FLP-FRT as disclosed in U.S. Pat. No. 5,527,695, both incorporated herein by reference.


Transformation methods of this invention are preferably practiced in tissue culture on media and in a controlled environment. “Media” refers to the numerous nutrient mixtures that are used to grow cells in vitro, that is, outside of the intact living organism. Recipient cell targets include, but are not limited to, meristem cells, callus, immature embryos and gametic cells such as microspores, pollen, sperm and egg cells. It is contemplated that any cell from which a fertile plant may be regenerated is useful as a recipient cell. Callus may be initiated from tissue sources including, but not limited to, immature embryos, seedling apical meristems, microspores and the like. Cells capable of proliferating as callus are also recipient cells for genetic transformation. Practical transformation methods and materials for making transgenic plants of this invention, e.g., various media and recipient target cells, transformation of immature embryos and subsequent regeneration of fertile transgenic plants are disclosed in U.S. Pat. Nos. 6,194,636 and 6,232,526, which are incorporated herein by reference.


The seeds of transgenic plants can be harvested from fertile transgenic plants and be used to grow progeny generations of transformed plants of this invention including hybrid plants line for screening of plants having an enhanced agronomic trait. In addition to direct transformation of a plant with a recombinant DNA, transgenic plants can be prepared by crossing a first plant having a recombinant DNA with a second plant lacking the DNA. For example, recombinant DNA can be introduced into first plant line that is amenable to transformation to produce a transgenic plant which can be crossed with a second plant line to introgress the recombinant DNA into the second plant line. A transgenic plant with recombinant DNA providing an enhanced agronomic trait, e.g., enhanced yield, can be crossed with transgenic plant line having other recombinant DNA that confers another trait, e.g., herbicide resistance or pest resistance, to produce progeny plants having recombinant DNA that confers both traits. Typically, in such breeding for combining traits the transgenic plant donating the additional trait is a male line and the transgenic plant carrying the base traits is the female line. The progeny of this cross will segregate such that some of the plants will carry the DNA for both parental traits and some will carry DNA for one parental trait; such plants can be identified by markers associated with parental recombinant DNA Progeny plants carrying DNA for both parental traits can be crossed back into the female parent line multiple times, e.g., usually 6 to 8 generations, to produce a progeny plant with substantially the same genotype as one original transgenic parental line but for the recombinant DNA of the other transgenic parental line.


In the practice of transformation DNA is typically introduced into only a small percentage of target cells in any one transformation experiment. Marker genes are used to provide an efficient system for identification of those cells that are stably transformed by receiving and integrating a transgenic DNA construct into their genomes. Preferred marker genes provide selective markers which confer resistance to a selective agent, such as an antibiotic or herbicide. Any of the herbicides to which plants of this invention may be resistant are useful agents for selective markers. Potentially transformed cells are exposed to the selective agent. In the population of surviving cells will be those cells where, generally, the resistance-conferring gene is integrated and expressed at sufficient levels to permit cell survival. Cells may be tested further to confirm stable integration of the exogenous DNA. Commonly used selective marker genes include those conferring resistance to antibiotics such as kanamycin and paromomycin (nptII), hygromycin B (aph IV) and gentamycin (aac3 and aacC4) or resistance to herbicides such as glufosinate (bar or pat) and glyphosate (aroA or EPSPS). Examples of such selectable are illustrated in U.S. Pat. Nos. 5,550,318; 5,633,435; 5,780,708 and 6,118,047, all of which are incorporated herein by reference. Screenable markers which provide an ability to visually identify transformants can also be employed, e.g., a gene expressing a colored or fluorescent protein such as a luciferase or green fluorescent protein (GFP) or a gene expressing a beta-glucuronidase or uidA gene (GUS) for which various chromogenic substrates are known.


Cells that survive exposure to the selective agent, or cells that have been scored positive in a screening assay, may be cultured in regeneration media and allowed to mature into plants. Developing plantlets can be transferred to plant growth mix, and hardened off, e.g., in an environmentally controlled chamber at about 85% relative humidity, 600 ppm CO2, and 25-250 microeinsteins m−2s−1 of light, prior to transfer to a greenhouse or growth chamber for maturation. Plants are regenerated from about 6 weeks to 10 months after a transformant is identified, depending on the initial tissue. Plants may be pollinated using conventional plant breeding methods known to those of skill in the art and seed produced, e.g., self-pollination is commonly used with transgenic corn. The regenerated transformed plant or its progeny seed or plants can be tested for expression of the recombinant DNA and screened for the presence of enhanced agronomic trait.


Transgenic Plants and Seeds

Transgenic plant seed provided by this invention are grown to generate transgenic plants having an enhanced trait as compared to a control plant. Such seed for plants with enhanced agronomic trait is identified by screening transformed plants or progeny seed for enhanced trait. For efficiency a screening program is designed to evaluate multiple transgenic plants (events) comprising the recombinant DNA, e.g., multiple plants from 2 to 20 or more transgenic events.


Transgenic plants grown from transgenic seed provided herein demonstrate enhanced agronomic traits that contribute to increased yield or other trait that provides increased plant value, including, for example, enhanced seed quality. Of particular interest are plants having enhanced yield resulting from enhanced plant growth and development, stress tolerance, enhanced seed development, higher light response, enhanced flower development, or enhanced carbon and/or nitrogen metabolism.













TABLE 1







NUC
PEP


annotation














SEQ
SEQ
Base

e-





ID NO
ID NO
vector
GENE ID
value
% identity
identifier
description

















1
194
1
PHE0003351_PMON81242
0
98
168586
gb|AAA33498.1|pyruvate, orthophosphate









dikinase


2
195
7
PHE0003351_PMON83625
0
98
168586
gb|AAA33498.1|pyruvate, orthophosphate









dikinase


3
196
1
PHE0000207_PMON77878
1.00E−144
96
34907990
ref|NP_915342.1|putative









calcium-dependent protein









kinase [Oryza sativa









(japonica cultivar-group)]


4
197
1
PHE0000208_PMON77879
1.00E−143
94
50919297
ref|XP_470045.1|putative









calmodulin-domain protein









kinase [Oryza sativa









(japonica cultivar-group)]


5
198
1
PHE0000209_PMON77891
1.00E−135
89
53850561
gb|AAU95457.1|At5g12180









[Arabidopsis thaliana]









dbj|BAB10036.1|calcium-









dependent protein kinase


6
199
1
PHE0000210_PMON77880
1.00E−137
89
26452430
dbj|BAC43300.1|putative









calcium-dependent protein









kinase [Arabidopsis










thaliana]



7
200
8
PHE0001329_PMON92878
0
100
34903780
dbj|BAB92151.1|putative









CBL-interacting protein









kinase 2 [Oryza sativa









(japonica


8
201
1
PHE0001425_PMON79162
1.00E−154
100
51979679
ref|XP_507586.1|PREDICTED









P0524F03.33 gene









product [Oryza sativa









(japonica cultivar-group)]









ref|XP_482612.1|putative









CCR4-NOT transcription









complex, subunit 7


9
202
8
PHE0001573_PMON92870
0
78
984262
emb|CAA58052.1|asparragine









synthetase [Zea mays]


10
203
12
PHE0001664_PMON99280
0
100
34906358
sp|Q9LDE6|CKX1_ORYS









A Probable cytokinin









dehydrogenase precursor









(Cytokinin oxidase) (CKO)


11
204
1
PHE0001674_PMON79194
5.00E−12
50
15223390
ref|NP_171645.1|myb









family transcription factor









[Arabidopsis thaliana]


12
205
10
PHE0002026_PMON96489
0
87
32488298
emb|CAE03364.1|OSJNBb0065L13.7









[Oryza sativa









(japonica cultivar-group)]


13
206
8
PHE0002108_PMON92821
2.00E−31
100
10176234
dbj|BAB07329.1|cold-shock









protein [Bacillus halodurans









C-125]


14
207
8
PHE0002109_PMON93856
6.00E−33
100
41324401
emb|CAF18741.1|COLD-









SHOCK PROTEIN CSPA









[Corynebacterium










glutamicum ATCC 13032]



15
208
8
PHE0002508_PMON92607
2.00E−79
72
50509850
dbj|BAD32022.1|putative









transcription factor [Oryza










sativa



16
209
1
PHE0002650_PMON81832
1.00E−132
100
9964296
gb|AAG09919.1|MADS









box protein 2 [Zea mays]


17
210
2
PHE0002989_PMON95630
1.00E−117
100
7271044
emb|CAB80652.1|small









GTP-binding protein-like









[Arabidopsis thaliana]


18
211
6
PHE0003290_PMON95107
4.00E−29
34
7269078
emb|CAB79187.1|hypothetical









protein [Arabidopsis










thaliana]



19
212
6
PHE0003300_PMON95106
7.00E−18
54
50908933
ref|XP_465955.1|putative









nodulin 3 [Oryza sativa









(japonica cultivar-group)]


20
213
6
PHE0003303_PMON95080
2.00E−96
69
38347194
emb|CAD37109.2|OSJNBa0024J22.22









[Oryza sativa









(japonica cultivar-group)]


21
214
8
PHE0003389_PMON94682
0
65
52076827
dbj|BAD45770.1|putative









Cyt-P450 monooxygenase









[Oryza sativa (japonica









cultivar-group)]


22
215
8
PHE0003614_PMON95111
0
94
32309578
gb|AAP79441.1|glutamate









decarboxylase [Oryza sativa









(japonica cultivar-group)]


23
216
8
PHE0003684_PMON92807
1.00E−72
68
34906004
dbj|BAB63676.1|induced









protein MgI1 [Oryza sativa









(japonica cultivar-group)]


24
217
9
PHE0003684_PMON93378
1.00E−72
68
34906004
dbj|BAB63676.1|induced









protein MgI1 [Oryza sativa









(japonica cultivar-group)]


25
218
8
PHE0003853_PMON92602
1.00E−179
98
62320210
ref|NP_195478.2|cyclin









family protein [Arabidopsis










thaliana] gb|AAS49095.1|










At4g37630 [Arabidopsis










thaliana]



26
219
11
PHE0003903_PMON98271
0
99
19851522
gb|AAL99744.1|pyruvate









decarboxylase [Zea mays]


27
220
11
PHE0003905_PMON99283
0
92
11995457
gb|AAG43027.1|aldehyde









dehydrogenase [Oryza










sativa]



28
221
11
PHE0003907_PMON98066
5.00E−87
86
50906015
ref|XP_464496.1|ribosomal









protein L12-like protein









[Oryza sativa (japonica









cultivar-group)]


29
222
11
PHE0003908_PMON98064
0
84
51535811
dbj|BAD37896.1|ARG1-









like protein [Oryza sativa









(japonica cultivar-group)]


30
223
6
PHE0003960_PMON95079
1.00E−156
87
50905641
ref|XP_464309.1|putative









choline-phosphate









cytidylyltransferase [Oryza










sativa (japonica cultivar-










group)]


31
224
5
PHE0003967_PMON95088
1.00E−102
83
55168334
gb|AAV44199.1|dehydroascorbate









reductase [Oryza










sativa (japonica cultivar-










group)]


32
225
10
PHE0003985_PMON96457
1.00E−30
58
55770043
ref|XP_550011.1|hypothetical









protein [Oryza sativa









(japonica cultivar-group)]


33
226
10
PHE0003987_PMON96134
5.00E−41
74
50919885
ref|XP_470303.1|hypothetical









protein [Oryza sativa









(japonica cultivar-group)]


34
227
10
PHE0004001_PMON96453
4.00E−22
66
51978970
ref|XP_507362.1|PREDICTED









OSJNBa0077F02.127









gene product [Oryza sativa









(japonica cultivar-group)]


35
228
8
PHE0004023_PMON92446
1.00E−132
88
12651665
gb|AAA20093.2|Alfin-1









[Medicago sativa]









pir||T09646 probable zinc









finger protein - alfalfa









(fragment)


36
229
4
PHE0004026_PMON93885
0
100
21592703
gb|AAM64652.1|LAX1/









AUX1-like permease









[Arabidopsis thaliana]


37
230
4
PHE0004027_PMON93860
0
100
7269873
emb|CAB79732.1|cytokinin









oxidase-like protein









[Arabidopsis thaliana]


38
231
15
PHE0004028_PMON94697
0
100
216765
dbj|BAA14344.1|sucrose









phosphorylase









[Leuconostoc










mesenteroides]



12607
231
n/a
PHE0010424_PMON17730
0
100
216765
dbj|BAA14344.1|sucrose









phosphorylase









[Leuconostoc










mesenteroides]



39
232
8
PHE0004034_PMON92631
0
100
6520233
dbj|BAA87958.1|CW14









[Arabidopsis thaliana]


40
233
8
PHE0004039_PMON92634
1.00E−178
65
26452061
ref|NP_191207.2|myosin









heavy chain-related









[Arabidopsis thaliana]


41
234
8
PHE0004047_PMON92619
4.00E−79
74
62087121
dbj|BAD91881.1|transcription









factor lim1 [Eucalyptus










camaldulensis]



42
235
14
PHE0004047_PMON93388
4.00E−79
74
62087121
dbj|BAD91881.1|transcription









factor lim1 [Eucalyptus










camaldulensis]



43
236
8
PHE0004068_PMON93663
3.00E−94
100
15293293
ref|NP_563710.1|AWPM-









19-like membrane family









protein [Arabidopsis










thaliana]



44
237
8
PHE0004071_PMON93311
1.00E−130
100
21358850
ref|NP_568751.1|









polyadenylate-binding









protein, putative/PABP,









putative [Arabidopsis










thaliana]



45
238
8
PHE0004072_PMON93654
0
100
23297397
ref|NP_192188.2|GTP-









binding family protein









[Arabidopsis thaliana]


46
239
14
PHE0004072_PMON93669
0
100
23297397
ref|NP_192188.2|GTP-









binding family protein









[Arabidopsis thaliana]


47
240
8
PHE0004074_PMON94164
0
100
9759255
ref|NP_196133.3|









transcription elongation









factor-related [Arabidopsis










thaliana]



48
241
8
PHE0004075_PMON92851
1.00E−132
100
11994587
ref|NP_566493.1|nodulin









MtN3 family protein









[Arabidopsis thaliana]


49
242
8
PHE0004080_PMON93321
1.00E−143
99
16173
emb|CAA42168.1|L-









ascorbate peroxidase









[Arabidopsis thaliana]


50
243
14
PHE0004084_PMON95141
0
100
7267537
emb|CAB78019.1|putative









phi-1-like phosphate-









induced protein









[Arabidopsis thaliana]









gb|AAM18526.1| cell cycle-









related protein [Arabidopsis










thaliana]



51
244
8
PHE0004093_PMON93332
0
100
12744973
gb|AAK06866.1|putative









ATPase [Arabidopsis










thaliana] ref|NP_173536.1|










O-methyltransferase,









putative [Arabidopsis










thaliana]



52
245
14
PHE0004093_PMON94155
0
100
12744973
gb|AAK06866.1|putative









ATPase [Arabidopsis










thaliana] ref|NP_173536.1|










O-methyltransferase,









putative [Arabidopsis










thaliana]



53
246
8
PHE0004139_PMON92898
2.00E−88
100
21554099
ref|NP_568761.1| expressed









protein [Arabidopsis










thaliana]



54
247
8
PHE0004144_PMON93842
1.00E−78
100
21555039
ref|NP_565390.1| actin-









depolymerizing factor 5









(ADF5) [Arabidopsis










thaliana]



55
248
8
PHE0004148_PMON92574
0
100
48768596
ref|ZP_00272945.1|COG0538:









Isocitrate









dehydrogenases [Ralstonia










metallidurans CH34]



56
249
8
PHE0004149_PMON92471
1.00E−148
99
31096331
ref|NP_441003.1|









phycocyanin alpha









phycocyanobilin lyase;









CpcE [Synechocystis sp.









PCC 6803]


57
250
14
PHE0004149_PMON93899
1.00E−148
99
31096331
ref|NP_441003.1|









phycocyanin alpha









phycocyanobilin lyase;









CpcE [Synechocystis sp.









PCC 6803]


58
251
15
PHE0004152_PMON93672
3.00E−85
60
8978267
ref|NP_199781.1|DNA-









binding protein-related









[Arabidopsis thaliana]


59
252
8
PHE0004155_PMON92626
0
100
22136876
ref|NP_200010.1|sorbitol









dehydrogenase, putative/









L-iditol 2-dehydrogenase,









putative [Arabidopsis










thaliana]



60
253
8
PHE0004156_PMON92623
0
98
12322729
ref|NP_187478.1|









phototropic-responsive









protein, putative









[Arabidopsis thaliana]


61
254
8
PHE0004162_PMON92481
3.00E−77
57
7269806
emb|CAB79666.1|phytochrome-









associated protein









PAP2 [Arabidopsis










thaliana]



62
255
8
PHE0004164_PMON92465
4.00E−67
100
21537028
ref|NP_198423.1|glycosyl









hydrolase family protein 17









[Arabidopsis thaliana]


63
256
8
PHE0004166_PMON93801
6.00E−09
100
13374861
emb|CAC34495.1|putative









strictosidine synthase-like









[Arabidopsis thaliana]


64
257
8
PHE0004167_PMON93333
1.00E−176
100
28827764
ref|NP_569050.1|









adenylylsulfate kinase,









putative [Arabidopsis










thaliana]



65
258
8
PHE0004168_PMON93855
0
100
18176302
ref|NP_199253.1|FAD-









binding domain-containing









protein [Arabidopsis










thaliana]



66
259
8
PHE0004169_PMON92568
0
100
5080826
gb|AAD39335.1|Putative









Aldo/keto reductase









[Arabidopsis thaliana]


67
260
8
PHE0004184_PMON92565
0
100
7270846
emb|CAB80527.1|multiubiquitin









chain binding protein









(MBP1) [Arabidopsis










thaliana]



68
261
8
PHE0004185_PMON92802
0
100
28460683
ref|NP_182075.1|









cytochrome P450, putative









[Arabidopsis thaliana]


69
262
8
PHE0004188_PMON92803
0
100
20465485
ref|NP_200218.1|heat









shock transcription factor









family protein [Arabidopsis










thaliana]



70
263
8
PHE0004190_PMON92801
1.00E−167
98
7267277
ref|NP_192426.1|basic









helix-loop-helix (bHLH)









family protein [Arabidopsis










thaliana]



71
264
8
PHE0004208_PMON92834
1.00E−83
55
21555865
gb|AAS09998.1|MYB









transcription factor









[Arabidopsis thaliana]


72
265
8
PHE0004215_PMON92827
2.00E−55
65
7320708
ref|NP_195750.1|









phosphatidylethanolamine-









binding family protein









[Arabidopsis thaliana]


73
266
8
PHE0004223_PMON92840
0
100
6523058
ref|NP_190239.1|fasciclin-









like arabinogalactan family









protein [Arabidopsis










thaliana]



74
267
8
PHE0004225_PMON94167
0
99
1421730
gb|AAC49371.1|RF2









gb|AAG43988.1|T









cytoplasm male sterility









restorer factor 2 [Zea mays]


75
268
10
PHE0004226_PMON95114
0
100
53793208
dbj|BAD54414.1|aldehyde









dehydrogenase ALDH2b









[Oryza sativa (japonica









cultivar-group)]


76
269
8
PHE0004227_PMON92605
5.00E−26
100
21314334
gb|AAM46894.1|early









drought induced protein









[Oryza sativa (indica









cultivar-group)]


77
270
8
PHE0004229_PMON92867
1.00E−24
100
6320482
ref|NP_010562.1|Small









plasma membrane protein









related to a family of plant









polypeptides that are









overexpressed under high









salt concentration or low









temperature, not essential









for viability, deletion causes









hyperpolarization of the









plasma membrane potential;









Pmp3p [Saccharomyces










cerevisiae]



78
271
8
PHE0004233_PMON92843
0
100
19310749
ref|NP_188922.1|heat









shock transcription factor









family protein [Arabidopsis










thaliana]



79
272
13
PHE0004237_PMON93673
9.00E−85
100
16338
emb|CAA45039.1|heat









shock protein 17.6-II









[Arabidopsis thaliana]


80
273
8
PHE0004243_PMON92621
3.00E−72
82
30409461
dbj|BAC76332.1|HAP3









[Oryza sativa (japonica









cultivar-group)]


81
274
8
PHE0004244_PMON92858
1.00E−159
96
15321716
gb|AAK95562.1|leafy









cotyledon1 [Zea mays]


82
275
8
PHE0004245_PMON93813
1.00E−131
100
50509850
dbj|BAD32022.1|putative









transcription factor [Oryza










sativa (japonica cultivar-










group)]


83
276
8
PHE0004248_PMON94672
1.00E−98
100
34907184
ref|NP_914939.1|putative









CCAAT-binding









transcription factor subunit









A(CBF-A) [Oryza sativa


84
277
8
PHE0004249_PMON95137
1.00E−48
100
12642910
ref|NP_850005.1|expressed









protein [Arabidopsis










thaliana]



85
278
8
PHE0004250_PMON92881
5.00E−78
100
30409463
dbj|BAC76333.1|HAP3









[Oryza sativa (japonica









cultivar-group)]


86
279
8
PHE0004252_PMON92606
1.00E−173
100
18481620
gb|AAL73485.1|repressor









protein [Oryza sativa]


87
280
8
PHE0004253_PMON92874
1.00E−143
100
18481626
gb|AAL73488.1|repressor









protein [Zea mays]


88
281
14
PHE0004258_PMON93385
0
100
1871189
gb|AAB63549.1|putative









protein kinase [Arabidopsis










thaliana]



89
282
8
PHE0004258_PMON93806
0
100
1871189
gb|AAB63549.1|putative









protein kinase [Arabidopsis










thaliana]



90
283
14
PHE0004259_PMON93384
0
100
9755654
ref|NP_197112.1|expressed









protein [Arabidopsis










thaliana]



91
284
8
PHE0004260_PMON92854
1.00E−48
100
12642910
ref|NP_850005.1|expressed









protein [Arabidopsis










thaliana]



92
285
14
PHE0004261_PMON93389
1.00E−170
100
7270230
ref|NP_195009.1|protein









kinase, putative









[Arabidopsis thaliana]


93
286
8
PHE0004261_PMON93655
1.00E−170
100
7270230
ref|NP_195009.1|protein









kinase, putative









[Arabidopsis thaliana]


94
287
8
PHE0004262_PMON92862
0
100
42570809
ref|NP_973478.1|protein









kinase, putative









[Arabidopsis thaliana]


95
288
14
PHE0004262_PMON93360
0
100
42570809
ref|NP_973478.1|protein









kinase, putative









[Arabidopsis thaliana]


96
289
8
PHE0004264_PMON92845
3.00E−95
100
21554624
ref|NP_201267.1|









invertase/pectin









methylesterase inhibitor









family protein [Arabidopsis










thaliana]



97
290
14
PHE0004264_PMON93354
3.00E−95
100
21554624
ref|NP_201267.1|









invertase/pectin









methylesterase inhibitor









family protein [Arabidopsis










thaliana]



98
291
8
PHE0004265_PMON92873
0
100
642305
ref|NP_013662.1|









Hypothetical ORF;









Yml050wp [Saccharomyces










cerevisiae]



99
292
14
PHE0004265_PMON93807
0
100
642305
ref|NP_013662.1|









Hypothetical ORF;









Yml050wp [Saccharomyces










cerevisiae]



100
293
8
PHE0004266_PMON92877
0
99
23506085
ref|NP_567548.1|pseudo-









response regulator 2









(APRR2) (TOC2)









[Arabidopsis thaliana]


101
294
8
PHE0004284_PMON93857
0
99
18399375
ref|NP_566402.1|U-box









domain-containing protein









[Arabidopsis thaliana]


102
295
10
PHE0004285_PMON95136
1.00E−161
96
37542675
gb|AAL47207.1|HAP3-like









transcriptional-activator









[Oryza sativa (indica









cultivar-group)]


103
296
8
PHE0004286_PMON93666
0
99
255220
gb|AAB23208.1|isocitrate









lyase, threo-D S-isocitrate









glyoxylate-lyase, IL {EC









4.1.3.1} [Brassica napus,









seedlings, Peptide, 576 aa]


104
297
8
PHE0004287_PMON93344
0
88
50937953
ref|XP_478504.1|putative









isocitrate lyase [Oryza










sativa (japonica cultivar-










group)]


105
298
2
PHE0004307_PMON94102
1.00E−105
62
38345397
emb|CAE03088.2|OSJNBa0017B10.3









[Oryza sativa









(japonica cultivar-group)]


106
299
14
PHE0004314_PMON93397
9.00E−52
54
55740645
gb|AAV63915.1|hypothetical









protein At4g03965









[Arabidopsis thaliana]


107
300
8
PHE0004321_PMON93811
1.00E−128
100
18655355
sp|O48646|GPX4_ARATH









Probable phospholipid









hydroperoxide glutathione









peroxidase, mitochondrial









precursor (PHGPx)









(AtGPX1)


108
301
14
PHE0004321_PMON93834
1.00E−128
100
18655355
ref|NP_192897.2|









glutathione peroxidase,









putative [Arabidopsis










thaliana]



109
302
8
PHE0004325_PMON93818
5.00E−78
89
50906887
ref|XP_464932.1|cytochrome









c biogenesis protein-like









[Oryza sativa (japonica









cultivar-group)]


110
303
8
PHE0004335_PMON93850
0
100
28393953
gb|AAO42384.1|putative









major intrinsic protein









[Arabidopsis thaliana]


111
304
8
PHE0004336_PMON93858
1.00E−146
69
51964952
ref|XP_482812.1|major









intrinsic protein-like [Oryza










sativa (japonica cultivar-










group)]


112
305
4
PHE0004337_PMON93886
0
62
50943587
ref|XP_481321.1|unknown









protein [Oryza sativa









(japonica cultivar-group)]


113
306
8
PHE0004348_PMON93810
1.00E−32
100
15644431
ref|NP_229483.1|cold shock









protein [Thermotoga










maritima MSB8]



114
307
8
PHE0004349_PMON93812
8.00E−33
100
15644617
ref|NP_229670.1|cold shock









protein [Thermotoga










maritima MSB8]



115
308
8
PHE0004350_PMON93826
3.00E−31
100
20808157
ref|NP_623328.1|Cold









shock proteins









[Thermoanaerobacter










tengcongensis MB4]



116
309
8
PHE0004351_PMON93821
7.00E−32
100
56419891
ref|YP_147209.1|cold shock









protein [Geobacillus










kaustophilus HTA426]



117
310
8
PHE0004352_PMON93824
1.00E−27
88
49611845
ref|YP_050486.1|cold









shock protein [Erwinia










carotovora subsp.











atroseptica SCRI1043]



118
311
8
PHE0004383_PMON93816
1.00E−34
98
50899510
ref|XP_450543.1|unknown









protein [Oryza sativa









(japonica cultivar-group)]


119
312
8
PHE0004393_PMON94192
8.00E−95
100
42572939
ref|NP_974566.1|calcineurin









B-like protein 1 (CBL1)









[Arabidopsis thaliana]


120
313
8
PHE0004395_PMON94145
0
100
30690488
ref|NP_849501.1|phospholipase









D delta/PLD delta









(PLDDELTA) [Arabidopsis










thaliana]



121
314
8
PHE0004396_PMON94137
0
100
7270422
emb|CAB80188.1|arginine









decarboxylase SPE2









[Arabidopsis thaliana]


122
315
8
PHE0004417_PMON94190
1.00E−170
100
1230677
gb|AAC17191.1|









spermidine synthase









[Saccharomyces cerevisiae]


123
316
8
PHE0004418_PMON94368
0
100
798930
sp|P50264|FMS1_YEAST









Polyamine oxidase FMS1









(Fenpropimorph resistance









multicopy suppressor 1)


124
317
8
PHE0004419_PMON95100
0
66
21281139
ref|NP_567276.1|









amidohydrolase family









protein [Arabidopsis










thaliana]



125
318
10
PHE0004421_PMON95120
2.00E−53
78
33321848
gb|AAQ06658.1|apetala2









domain-containing CBF1-









like protein [Oryza sativa]


126
319
10
PHE0004422_PMON95123
3.00E−51
80
25991254
gb|AAN76804.1|DREB-like









protein [Zea mays]


127
320
8
PHE0004425_PMON94428
7.00E−37
98
11762134
gb|AAG40345.1|AT5g17460









[Arabidopsis thaliana]


128
321
8
PHE0004431_PMON94398
1.00E−159
99
557818
ref|NP_012214.1|Pho85p









cyclin of the Pho80p









subfamily, forms a









functional kinase complex









with Pho85p which









phosphorylates Mmr1p and









is regulated by Pho81p;









involved in glycogen









metabolism, expression is









cell-cycle regulated; Pcl7p









[Saccharomyces cerevisiae]


129
322
8
PHE0004432_PMON94112
0
100
15156338
ref|NP_354295.1|









hypothetical protein









AGR_C_2368









[Agrobacterium










tumefaciens str. C58]



130
323
8
PHE0004472_PMON94115
1.00E−128
100
16323494
ref|NP_187978.1|seven in









absentia (SINA) family









protein [Arabidopsis










thaliana]



131
324
14
PHE0004472_PMON94126
1.00E−128
100
16323494
ref|NP_187978.1|seven in









absentia (SINA) family









protein [Arabidopsis










thaliana]



132
325
14
PHE0004488_PMON95609
1.00E−123
100
21554344
ref|NP_198627.1|ASF1-









like anti-silencing family









protein [Arabidopsis










thaliana]



133
326
14
PHE0004491_PMON95628
3.00E−12
45
14916641
dbj|BAB19648.1|









preprophytosulfokine









[Oryza sativa]


134
327
14
PHE0004492_PMON95614
0
100
22331730
ref|NP_190653.2|phototropic-









responsive NPH3 family









protein [Arabidopsis










thaliana]



135
328
10
PHE0004545_PMON95117
1.00E−106
100
28973235
ref|NP_173200.1|









ribosomal protein L14









family protein [Arabidopsis










thaliana]



136
329
8
PHE0004574_PMON94433
0
100
16329404
ref|NP_440132.1|transaldolase









[Synechocystis sp. PCC









6803]


137
330
14
PHE0004606_PMON95627
0
100
130709
pir||S29317 phosphoprotein









phosphatase (EC 3.1.3.16) 1 -









maize gb|AAA33545.1|









protein phosphatase-1


138
331
8
PHE0004620_PMON94189
1.00E−101
57
56421275
ref|YP_148593.1|6-









phosphofructokinase









(phosphofructokinase)









(phosphohexokinase)









[Geobacillus kaustophilus









HTA426]


139
332
14
PHE0004620_PMON94442
1.00E−101
57
56421275
ref|YP_148593.1|6-









phosphofructokinase









(phosphofructokinase)









(phosphohexokinase)









[Geobacillus kaustophilus









HTA426]


140
333
14
PHE0004622_PMON95621
0
100
10177836
ref|NP_974942.1|F-box









family protein [Arabidopsis










thaliana]



141
334
8
PHE0004626_PMON95101
0
88
50942161
ref|XP_480608.1|putative









gamma-aminobutyrate









transaminase subunit









precursor isozyme 3 [Oryza










sativa (japonica cultivar-










group)]


142
335
8
PHE0004630_PMON94367
0
100
7270516
emb|CAB80281.1|NAD+









dependent isocitrate









dehydrogenase-like protein









[Arabidopsis thaliana]


143
336
3
PHE0004634_PMON94385
1.00E−102
100
61656127
ref|NP_176491.1|AP2









domain-containing









transcription factor, putative









[Arabidopsis thaliana]


144
337
2
PHE0004640_PMON95066
0
73
34913436
ref|NP_918065.1|putative









fatty acid condensing









enzyme CUT1 [Oryza










sativa (japonica cultivar-










group)]


145
338
8
PHE0004645_PMON94655
1.00E−136
100
18411867
ref|NP_565174.1|14-3-3









protein GF14 pi (GRF13)









[Arabidopsis thaliana]


146
339
14
PHE0004645_PMON94685
1.00E−136
100
18411867
ref|NP_565174.1|14-3-3









protein GF14 pi (GRF13)









[Arabidopsis thaliana]


147
340
8
PHE0004647_PMON94651
1.00E−117
100
21554066
pir||T02447 hypothetical









protein At2g46000










Arabidopsis thaliana



148
341
14
PHE0004647_PMON94688
1.00E−117
100
21554066
gb|AAM63147.1|unknown









[Arabidopsis thaliana]


149
342
14
PHE0004650_PMON94686
1.00E−112
100
67633514
gb|AAY78681.1|putative E3









ubiquitin ligase SCF









complex subunit









SKP1/ASK1 [Arabidopsis










thaliana]



150
343
8
PHE0004652_PMON94657
1.00E−138
100
38603872
dbj|BAD43212.1|putative









glutamate/aspartate-binding









peptide [Arabidopsis










thaliana]



151
344
14
PHE0004652_PMON94687
1.00E−138
100
38603872
dbj|BAD43212.1|putative









glutamate/aspartate-binding









peptide [Arabidopsis










thaliana]



152
345
8
PHE0004687_PMON94669
7.00E−61
91
21592528
ref|NP_568396.1|ring-box









protein-related [Arabidopsis










thaliana]



153
346
10
PHE0004689_PMON95131
0
100
7268004
emb|CAB78344.1|serine/threonine-









specific protein









kinase MHK [Arabidopsis










thaliana]



154
347
10
PHE0004691_PMON95129
0
100
51978966
emb|CAB61629.1|









spermidine synthase 1









[Oryza sativa]


155
348
14
PHE0004719_PMON94698
1.00E−147
100
28416631
ref|NP_564556.1|zinc









finger (C3HC4-type RING









finger) family protein









[Arabidopsis thaliana]


156
349
8
PHE0004719_PMON95089
1.00E−147
100
28416631
ref|NP_564556.1|zinc









finger (C3HC4-type RING









finger) family protein









[Arabidopsis thaliana]


157
350
8
PHE0004734_PMON94667
1.00E−87
100
5080771
ref|NP_172848.1|









eukaryotic translation









initiation factor 5A-1/eIF-









5A 1 [Arabidopsis thaliana]


158
351
10
PHE0004735_PMON95116
9.00E−88
100
21592652
ref|NP_177100.1|









eukaryotic translation









initiation factor 5A, putative/









eIF-5A, putative









[Arabidopsis thaliana]


159
352
8
PHE0004739_PMON95110
1.00E−109
100
6562282
emb|CAB62652.1|rac-like









GTP binding protein









Arac11 [Arabidopsis










thaliana]



160
353
8
PHE0004753_PMON95105
0
100
6684442
ref|NP_178062.1|









succinate-semialdehyde









dehydrogenase (SSADH1)









[Arabidopsis thaliana]


161
354
8
PHE0004759_PMON95109
0
100
29824301
ref|NP_849582.1|expressed









protein [Arabidopsis










thaliana]



162
355
10
PHE0004770_PMON95122
1.00E−32
92
51038072
gb|AAT93875.1|unknown









protein [Oryza sativa









(japonica cultivar-group)]


163
356
10
PHE0004772_PMON95132
6.00E−36
33
9758946
ref|NP_200265.1|









expressed protein









[Arabidopsis thaliana]


164
357
10
PHE0004774_PMON95147
6.00E−52
66
50909195
ref|XP_466086.1|putative









multiple stress-responsive









zinc-finger protein [Oryza










sativa (japonica cultivar-










group)]


165
358
10
PHE0004777_PMON95118
2.00E−64
100
26452894
ref|NP_180514.1|DNA-









directed RNA polymerase









I(A) and III(C) 14 kDa









subunit (RPAC14)









[Arabidopsis thaliana]


166
359
14
PHE0004785_PMON95057
1.00E−145
84
34484312
sp|Q6UNT2|RL5_CUCSA









60S ribosomal protein L5


167
360
10
PHE0004786_PMON95604
0
100
7267537
ref|NP_192634.1|









phosphate-responsive









protein, putative (EXO)









[Arabidopsis thaliana]


168
361
8
PHE0004788_PMON95092
0
84
31126776
ref|XP_506910.1|









PREDICTED









OSJNBa0057G07.4 gene









product [Oryza sativa









(japonica cultivar-group)]


169
362
10
PHE0004799_PMON95602
0
99
9843858
emb|CAC03739.1|flavin









containing polyamine









oxidase [Zea mays]


170
363
10
PHE0004841_PMON95636
0
100
50909767
ref|XP_466372.1|cryptochrome









1a [Oryza sativa









(japonica cultivar-group)]


171
364
10
PHE0004844_PMON95637
3.00E−53
100
62734659
gb|AAX96768.1|expressed









protein [Oryza sativa









(japonica cultivar-group)]


172
365
14
PHE0004854_PMON95611
1.00E−163
100
21592743
ref|NP_199265.1|ribose 5-









phosphate isomerase-related









[Arabidopsis thaliana]


173
366
10
PHE0004862_PMON95601
5.00E−56
100
34902924
dbj|BAB07982.1|FPF1









protein-like [Oryza sativa









(japonica cultivar-group)]


174
367
10
PHE0004888_PMON95603
0
100
32405610
ref|XP_323418.1|hypothetical









protein [Neurospora










crassa]



175
368
n/a
At1g21790.1
1.00E−168
100
21593249
ref|NP_564152.1|expressed









protein [Arabidopsis










thaliana]



176
369
n/a
ERD4
0
100
17104683
ref|NP_564354.1|early-









responsive to dehydration









stress protein (ERD4)









[Arabidopsis thaliana]


177
370
n/a
At1g78070.2
0
100
42572153
ref|NP_974167.1|WD-40









repeat family protein









[Arabidopsis thaliana]


178
371
n/a
At1g78070.1
1.00E−128
100
18411805
ref|NP_565168.1|WD-40









repeat family protein









[Arabidopsis thaliana]


179
372
n/a
At3g47340.1
0
100
5541701
ref|NP_190318.1|









asparagine synthetase 1









[glutamine-hydrolyzing]/









glutamine-dependent









asparagine synthetase 1









(ASN1) [Arabidopsis










thaliana]



180
373
n/a
At3g47340.3
0
100
30692853
ref|NP_850664.1|asparagine









synthetase 1 [glutamine-









hydrolyzing]/glutamine-









dependent asparagine









synthetase 1 (ASN1)









[Arabidopsis thaliana]


181
374
n/a
At3g47340.2
0
100
30692849
ref|NP_850663.1|asparagine









synthetase 1 [glutamine-









hydrolyzing]/glutamine-









dependent asparagine









synthetase 1 (ASN1)









[Arabidopsis thaliana]


182
375
n/a
At5g13170.1
1.00E−163
100
9955561
ref|NP_196821.1|nodulin









MtN3 family protein









[Arabidopsis thaliana]


183
376
n/a
At2g19900.1
0
100
28059162
ref|NP_179580.1|malate









oxidoreductase, putative









[Arabidopsis thaliana]


184
377
n/a
At5g09480.1
8.00E−80
100
9955535
ref|NP_196510.1|









hydroxyproline-rich









glycoprotein family protein









[Arabidopsis thaliana]


185
378
n/a
At5g09530.1
0
100
7671436
ref|NP_196515.1|









hydroxyproline-rich









glycoprotein family protein









[Arabidopsis thaliana]


186
379
n/a
At2g42790.1
0
100
21700853
ref|NP_181807.1|citrate









synthase, glyoxysomal,









putative [Arabidopsis










thaliana]



187
380
n/a
At3g56200.1
0
100
7572918
ref|NP_191179.1|amino









acid transporter family









protein [Arabidopsis










thaliana]



188
381
n/a
At5g01520.1
1.00E−141
100
7327811
ref|NP_195772.1|zinc









finger (C3HC4-type RING









finger) family protein









[Arabidopsis thaliana]


189
382
n/a
At5g01520.2
2.00E−97
100
7327811
ref|NP_195772.1|zinc









finger (C3HC4-type RING









finger) family protein









[Arabidopsis thaliana]


190
383
n/a
At5g66780.1
2.00E−66
100
9758128
d ref|NP_201479.1|









expressed protein









[Arabidopsis thaliana]


191
384
n/a
At5g59320.1
1.00E−61
100
24417292
ref|NP_568905.1|lipid









transfer protein 3 (LTP3)









[Arabidopsis thaliana]


192
385
n/a
AtHB7
1.00E−151
100
20259175
gb|AAM14303.1|putative









homeodomain transcription









factor protein ATHB-7









[Arabidopsis thaliana]


193
386
n/a
RD20
1.00E−136
100
20465881
ref|NP_180896.1|calcium-









binding RD20 protein









(RD20) [Arabidopsis










thaliana]











Table 1 provides a list of protein encoding DNA (“genes”) that are useful as recombinant DNA for production of transgenic plants with enhanced agronomic trait, the elements of Table 1 are described by reference to:


“NUC SEQ ID NO” which is a SEQ ID NO for a DNA sequence in the Sequence Listing.


“PEP SEQ ID NO” which is a SEQ ID NO for an amino acid sequence in the Sequence Listing.


GENE ID” which is an arbitrary name for the recombinant DNA.


“Base Vector” which is a reference to the identifying number in Table 5 of base vectors used for transformation of the recombinant DNA. Construction of plant transformation constructs is illustrated in Example 1.


“annotation” refers to a description of the top hit protein obtained from an amino acid sequence query of each PEP SEQ ID NO to GenBank database of the National Center for Biotechnology Information (NCBI). Identifier is the GenBank ID number for the informative BLAST hit with -FT.


Screening Methods for Transgenic Plants with Enhanced Agronomic Trait

Many transgenic events which survive to fertile transgenic plants that produce seeds and progeny plants will not exhibit an enhanced agronomic trait. Screening is necessary to identify the transgenic plant of this invention. Transgenic plants having enhanced agronomic traits are identified from populations of plants transformed as described herein by evaluating the trait in a variety of assays to detect an enhanced agronomic trait. These assays also may take many forms, including but not limited to, analyses to detect changes in the chemical composition, biomass, physiological properties, morphology of the plant. Changes in chemical compositions such as nutritional composition of grain can be detected by analysis of the seed composition and content of protein, free amino acids, oil, free fatty acids, starch or tocopherols. Changes in biomass characteristics can be made on greenhouse or field grown plants and can include plant height, stem diameter, root and shoot dry weights; and, for corn plants, ear length and diameter. Changes in physiological properties can be identified by evaluating responses to stress conditions, e.g., assays using imposed stress conditions such as water deficit, nitrogen deficiency, cold growing conditions, pathogen or insect attack or light deficiency, or increased plant density. Changes in morphology can be measured by visual observation of tendency of a transformed plant with an enhanced agronomic trait to also appear to be a normal plant as compared to changes toward bushy, taller, thicker, narrower leaves, striped leaves, knotted trait, chlorosis, albino, anthocyanin production, or altered tassels, ears or roots. Other screening properties include days to pollen shed, days to silking, leaf extension rate, chlorophyll content, leaf temperature, stand, seedling vigor, internode length, plant height, leaf number, leaf area, tillering, brace roots, stay green, stalk lodging, root lodging, plant health, barreness/prolificacy, green snap, and pest resistance. In addition, phenotypic characteristics of harvested grain may be evaluated, including number of kernels per row on the ear, number of rows of kernels on the ear, kernel abortion, kernel weight, kernel size, kernel density and physical grain quality.


Although preferred seeds for transgenic plants with enhanced agronomic traits of this invention are corn and soybean plants, other seeds are for cotton, canola, wheat, sunflower, sorghum, alfalfa, barley, millet, rice, tobacco, fruit and vegetable crops, and turfgrass


EXAMPLE
Example 1
Plant Expression Constructs

This example illustrates the construction of plasmids for transferring recombinant DNA into plant cells which can be regenerated into transgenic plants of this invention.


Primers for PCR amplification of protein coding nucleotides of recombinant DNA are designed at or near the start and stop codons of the coding sequence, in order to eliminate most of the 5′ and 3′ untranslated regions. Each recombinant DNA coding for a protein identified in Table 1 is amplified by PCR prior to insertion into the insertion site of one of the base vectors as referenced in Table 5.


A. Corn Transformation Constructs


With reference to Table 2 and FIG. 1, pMON82060 illustrates the elements of base vector 1 for corn transformation. Other base vectors for corn transformation were also constructed by replacing the gene of interest plant expression cassette elements of base vector 1, i.e. the promoter, leader, intron and terminator elements, with the elements listed in Table 5 to provide base vectors 2-12 for corn transformation. Each of the protein encoding DNA as identified in Table 1 is placed in the gene of interest plant expression cassette before the termination sequence in each of the base vector 1-12.









TABLE 2







pMON82060













Coordinates





of SEQ ID


function
name
annotation
NO: 12603





Agro
B-AGRtu.right border
Agro right border sequence, essential for
5235-5591


transformation

transfer of T-DNA.


Gene of
P-Os.Act1
Promoter from the rice actin gene act1.
5609-7009


interest plant
L-Os.Act1
Leader (first exon) from the rice actin 1


expression

gene.


cassette
I-Os.Act1
First intron and flanking UTR exon




sequences from the rice actin 1 gene



T-St.Pis4
The 3′ non-translated region of the
7084-8026




potato proteinase inhibitor II gene which




functions to direct polyadenylation of the




mRNA


Plant
P-CaMV.35S
CaMV 35S promoter
8075-8398


selectable
L-CaMV.35S
5′ UTR from the 35S RNA of CaMV


marker
CR-Ec.nptII-Tn5
nptII selectable marker that confers
8432-9226


expression

resistance to neomycin and kanamycin


cassette
T-AGRtu.nos
A 3′ non-translated region of the
9255-9507




nopaline synthase gene of





Agrobacterium tumefaciens Ti plasmid





which functions to direct




polyadenylation of the mRNA . . .


Agro
B-AGRtu.left border
Agro left border sequence, essential for
 39-480


transformation

transfer of T-DNA.


Maintenance
OR-Ec.oriV-RK2
The vegetative origin of replication from
567-963


in E. coli

plasmid RK2.



CR-Ec.rop
Coding region for repressor of primer
2472-2663




from the ColE1 plasmid. Expression of




this gene product interferes with primer




binding at the origin of replication,




keeping plasmid copy number low.



OR-Ec.ori-ColE1
The minimal origin of replication from
3091-3679




the E. coli plasmid ColE1.



P-Ec.aadA-SPC/STR
promoter for Tn7 adenylyltransferase
4210-4251




(AAD(3″))



CR-Ec.aadA-
Coding region for Tn7
4252-5040



SPC/STR
adenylyltransferase (AAD(3″))




conferring spectinomycin and




streptomycin resistance.



T-Ec.aadA-SPC/STR
3′ UTR from the Tn7 adenylyltransferase
5041-5098




(AAD(3″)) gene of E. coli.









Elements of a corn transformation plasmid, pMON17730, for expressing a Leuconostoc mesenteroides sucrose phosphorylase are illustrated in Table 3. This construct was assembled using the technology known in the art.









TABLE 3







pMON17730













Coordinates of


function
name
annotation
SEQ ID NO: 12606





Agro
B-AGRtu.right
Agro right border sequence, essential
4862-5218


transformation
border
for transfer of T-DNA.


Gene of
P-Zm.Brittle2
Promoter from thecorn brittle 2 gene


interest plant
L-Zm.Brittle2
5′ untranslated region from the corn


expression

brittel 2 gene.


cassette
L-Ta.Lhcb1
wheat CAB leader



I-Os.Act1
First intron and flanking UTR exon
5276-6375




sequences from the rice actin 1 gene



CR-Lm.sp11
PHE0004028_PMON17730 SPL
6385-7857




coding region



T-Ta.Hsp17
The 3′ non-translated region of the
7870-8079




wheat low molecular weight heat




shock protein gene


Plant
P-CaMV.35S
CaMV 35S promoter
8226-8518


selectable
CR-Ec.nptII-
nptII selectable marker that confers
8583-9377


marker
Tn5
resistance to neomycin and


expression

kanamycin


cassette
T-AGRtu.nos
A 3′ non-translated region of the
9409-9661




nopaline synthase gene of





Agrobacterium tumefaciens Ti





plasmid which functions to direct




polyadenylation of the mRNA . . .


Agro
B-AGRtu.left
Agro left border sequence, essential
10003-10026


transformation
border
for transfer of T-DNA.


Maintenance
OR-Ec.oriV-
The vegetative origin of replication
194-590


in E. coli
RK2
from plasmid RK2.



CR-Ec.rop
Coding region for repressor of
2099-2290




primer from the ColE1 plasmid.




Expression of this gene product




interferes with primer binding at the




origin of replication, keeping




plasmid copy number low.



OR-Ec.ori-
The minimal origin of replication
2718-3306



ColE1
from the E. coli plasmid ColE1.



P-Ec.aadA-
promoter for Tn7
3837-3878



SPC/STR
adenylyltransferase (AAD(3″))



CR-Ec.aadA-
Coding region for Tn7
3879-4667



SPC/STR
adenylyltransferase (AAD(3″))




conferring spectinomycin and




streptomycin resistance.



T-Ec.aadA-
3′ UTR from the Tn7
4668-4725



SPC/STR
adenylyltransferase (AAD(3″)) gene




of E. coli.









B. Soybean Transformation Constructs


Plasmids for use in transformation of soybean are also prepared. Elements of an exemplary common expression vector plasmid pMON82053 are shown in Table 4 and FIG. 2. Other base vectors for soybean transformation were also constructed by replacing the gene of interest plant expression cassette elements of base vector 13, i.e. the promoter, leader, intron and terminator elements, with the elements listed in Table 5 to provide base vectors 13-15 for soybean transformation. Each of the protein encoding DNA as identified in Table 1 is placed in the gene of interest plant expression cassette before the termination sequence in each of the base vector 13-15.









TABLE 4







pMON82053













Coordinates of SEQ ID


function
name
annotation
NO: 12604





Agro
B-AGRtu.left border
Agro left border
6144-6585


transforamtion

sequence, essential for




transfer of T-DNA.


Plant
P-At.Act7
Promoter from the
6624-7861


selectable


arabidopsis actin 7 gene



marker
L-At.Act7
5′UTR of Arabidopsis


expression

Act7 gene


cassette
I-At.Act7
Intron from the





Arabidopsis actin 7 gene




TS-At.ShkG-CTP2
Transit peptide region of
7864-8091





Arabidopsis EPSPS




CR-AGRtu.aroA-
Synthetic CP4 coding
8092-9459



CP4.nno_At
region with dicot




preferred codon usage.



T-AGRtu.nos
A 3′ non-translated region
9466-9718




of the nopaline synthase




gene of Agrobacterium





tumefaciens Ti plasmid





which functions to direct




polyadenylation of the




mRNA.


Gene of
P-CaMV.35S-enh
Promoter for 35S RNA
 1-613


interest

from CaMV containing a


expression

duplication of the −90 to −350


cassette

region.



T-Gb.E6-3b
3′ untranslated region
 688-1002




from the fiber protein E6




gene of sea-island cotton;


Agro
B-AGRtu.right border
Agro right border
1033-1389


transformation

sequence, essential for




transfer of T-DNA.


Maintenance
OR-Ec.oriV-RK2
The vegetative origin of
5661-6057


in E. coli

replication from plasmid




RK2.



CR-Ec.rop
Coding region for
3961-4152




repressor of primer from




the ColE1 plasmid.




Expression of this gene




product interferes with




primer binding at the




origin of replication,




keeping plasmid copy




number low.



OR-Ec.ori-ColE1
The minimal origin of
2945-3533




replication from the E. coli




plasmid ColE1.



P-Ec.aadA-SPC/STR
romoter for Tn7
2373-2414




adenylyltransferase




(AAD(3″))



CR-Ec.aadA-
Coding region for Tn7
1584-2372



SPC/STR
adenylyltransferase




(AAD(3″)) conferring




spectinomycin and




streptomycin resistance.



T-Ec.aadA-SPC/STR
3′ UTR from the Tn7
1526-1583




adenylyltransferase




(AAD(3″)) gene of E. coli.
















TABLE 5







Compositions of expression cassettes for gene of


interest in plant transformation base vectors

















SEQ

SEQ

SEQ

SEQ




ID

ID

ID

ID



promoter
NO
leader
NO
intron
NO
terminator
NO



















Base










vector


for corn


1
P-Os.Act1
12581
L-Os.Act1
12592
I-Os.Act1
12596
T-St.Pis4
12598


2
P-Hv.Per1
12582
L-Hv.Per1
12593
I-Zm.DnaK
12597
T-St.Pis4
12598


3
P-Zm.RAB17
12591
NONE
/
I-Zm.DnaK
12597
T-St.Pis4
12598


4
P-Zm.NAS2
12584
L-Zm.NAS2
12595
I-Zm.DnaK
12597
T-St.Pis4
12598


5
P-Zm.PPDK
12585
L-Zm.PPDK
12588
I-Zm.DnaK
12597
T-St.Pis4
12598


6
P-Os.GT1
12586
NONE
/
I-Zm.DnaK
12597
T-St.Pis4
12598


7
P-Zm.PPDK
12587
L-Zm.PPDK
12588
I-Zm.DnaK
12597
T-St.Pis4
12600


8
P-Os.Act1
12581
L-Os.Act1
12592
I-Os.Act1
12597
T-St.Pis4
12598


9
P-Zm.PPDK
12587
L-Zm.PPDK
12588
I-Zm.DnaK
12597
T-St.Pis4
12600


10 
P-Os.Act1
12581
L-Os.Act1
12592
I-Os.Act1
12596
T-St.Pis4
12598


11 
P-Zm.SzeinC1
12589
L-
12601
I-Zm.DnaK
12597
T-St.Pis4
12598





Zm.SzeinC1


12 
P-Zm.NAS2
12584
L-Zm.NAS2
12595
I-Zm.DnaK
12597
T-St.Pis4
12598


Base


vector


for


Soybean


13 
P-CaMV.35S-
12590
NONE
/
NONE
/
T-Gb.E6
12599



enh


14 
P-CaMV.35S-
12590
NONE
/
NONE
/
T-Gb.E6
12599



enh


15 
P-Gm.Sphas 1
12583
L-
12594
NONE
/
T-Gb.E6
12599





Gm.Sphas1










DNA constructs with some recombinant DNA of interest, e.g., SEQ ID NO: 72, also contain a chloroplast transit peptide adjacent to the recombinant DNA.


C. Cotton Transformation Vector


Plasmids for use in transformation of cotton are also prepared. Elements of an exemplary common expression vector plasmid pMON99053 are shown in Table 6 below and FIG. 3. Primers for PCR amplification of protein coding nucleotides of recombinant DNA are designed at or near the start and stop codons of the coding sequence, in order to eliminate most of the 5′ and 3′ untranslated regions. Each recombinant DNA coding for a protein identified in Table 1 is amplified by PCR prior to insertion into the insertion site within the gene of interest expression cassette of pMON99053












TABLE 6








Coordinates of





SEQ ID NO:


function
name
annotation
12606







Agro
B-AGRtu.right border
Agro right border sequence,
11364-11720


transforamtion

essential for transfer of T-DNA.


Gene of interest
Exp-CaMV.35S-
Enhanced version of the 35S RNA
7794-8497


expression
enh + ph.DnaK
promoter from CaMV plus the


cassette

petunia hsp70 5′ untranslated region



T-Ps.RbcS2-E9
The 3′ non-translated region of the
 67-699




pea RbcS2 gene which functions to




direct polyadenylation of the mRNA.


Plant selectable
Exp-CaMV.35S
Promoter from the rice actin 1 gene
 730-1053


marker
CR-Ec.nptII-Tn5
first exon of the rice actin 1 gene
1087-1881


expression
T-AGRtu.nos
A 3′ non-translated region of the
1913-2165


cassette

nopaline synthase gene of





Agrobacterium tumefaciens Ti





plasmid which functions to direct




polyadenylation of the mRNA.


Agro
B-AGRtu.left border
Agro left border sequence, essential
2211-2652


transformation

for transfer of T-DNA.


Maintenance in
OR-Ec.oriV-RK2
The vegetative origin of replication
2739-3135



E. coli


from plasmid RK2.



CR-Ec.rop
Coding region for repressor of primer
4644-4835




from the ColE1 plasmid. Expression




of this gene product interferes with




primer binding at the origin of




replication, keeping plasmid copy




number low.



OR-Ec.ori-ColE1
The minimal origin of replication
5263-5851




from the E. coli plasmid ColE1.



P-Ec.aadA-SPC/STR
romoter for Tn7 adenylyltransferase
6382-6423




(AAD(3″))



CR-Ec.aadA-SPC/STR
Coding region for Tn7
6424-7212




adenylyltransferase (AAD(3″))




conferring spectinomycin and




streptomycin resistance.



T-Ec.aadA-SPC/STR
3′ UTR from the Tn7
7213-7270




adenylyltransferase (AAD(3″)) gene




of E. coli.









Example 2
Corn Plant Transformation

This example illustrates the production and identification of transgenic corn cells in seed of transgenic corn plants having an enhanced agronomic trait, i.e. enhanced nitrogen use efficiency, increased yield, enhanced water use efficiency, enhanced tolerance to cold and/or improved seed compositions as compared to control plants. Transgenic corn cells are prepared with recombinant DNA expressing each of the protein encoding DNAs listed in Table 1 by Agrobacterium-mediated transformation using the corn transformation vectors 1-12 prepared as disclosed in Example 1. Corn transformation is effected using methods disclosed in U.S. Patent Application Publication 2004/0344075 A1 where corn embryos are inoculated and co-cultured with the Agrobacterium tumefaciens strain ABI and the corn transformation vector. To regenerate transgenic corn plants the transgenic callus resulting from transformation is placed on media to initiate shoot development in plantlets which are transferred to potting soil for initial growth in a growth chamber followed by a mist bench before transplanting to pots where plants are grown to maturity. The plants are self fertilized and seed is harvested for screening as seed, seedlings or progeny R2 plants or hybrids, e.g., for yield trials in the screens indicated above.


Many transgenic events which survive to fertile transgenic plants that produce seeds and progeny plants do not exhibit an enhanced agronomic trait. The transgenic plants and seeds having the transgenic cells of this invention which have recombinant DNA imparting the enhanced agronomic traits are identified by screening for nitrogen use efficiency, yield, water use efficiency, cold tolerance and improved seed composition.


Example 3
Soybean Plant Transformation

This example illustrates the production and identification of transgenic soybean cells in seed of transgenic soybean plants having an enhanced agronomic trait, i.e. enhanced nitrogen use efficiency, increased yield, enhanced water use efficiency, enhanced tolerance to cold and/or improved seed compositions as compared to control plants. Transgenic soybean cells are prepared with recombinant DNA expressing each of the protein encoding DNAs listed in Table 1 by Agrobacterium-mediated transformation using the soybean transformation vectors 13-15 prepared as disclosed in Example 1. Soybean transformation is effected using methods disclosed in U.S. Pat. No. 6,384,301 where soybean meristem explants are wounded then inoculated and co-cultured with the soybean transformation vector, then transferred to selection media for 6-8 weeks to allow selection and growth of transgenic shoots.


The transformation is repeated for each of the protein encoding DNAs identified in Table 1 in one of the base vectors 13-15.


Transgenic shoots producing roots are transferred to the greenhouse and potted in soil. Many transgenic events which survive to fertile transgenic plants that produce seeds and progeny plants do not exhibit an enhanced agronomic trait. The transgenic plants and seeds having the transgenic cells of this invention which have recombinant DNA imparting the enhanced agronomic traits are identified by screening for nitrogen use efficiency, yield, water use efficiency, cold tolerance and improved seed composition.


Example 4
Cotton Transgenic Plants with Enhanced Agronomic Traits

Cotton transformation is performed as generally described in WO0036911 and in U.S. Pat. No. 5,846,797. Transgenic cotton plants containing the recombinant DNA having a sequence of SEQ ID NO: 1 through SEQ ID NO: 193 are obtained by transforming with the cotton transformation vector identified in Example 1.


Progeny transgenic plants are selected from a population of transgenic cotton events under specified growing conditions and are compared with control cotton plants. Control cotton plants are substantially the same cotton genotype but without the recombinant DNA, for example, either a parental cotton plant of the same genotype that was not transformed with the identical recombinant DNA or a negative isoline of the transformed plant. Additionally, a commercial cotton cultivar adapted to the geographical region and cultivation conditions, i.e. cotton variety ST474, cotton variety FM 958, and cotton variety Siokra L-23, are used to compare the relative performance of the transgenic cotton plants containing the recombinant DNA. The specified culture conditions are growing a first set of transgenic and control plants under “wet” conditions, i.e. irrigated in the range of 85 to 100 percent of evapotranspiration to provide leaf water potential of −14 to −18 bars, and growing a second set of transgenic and control plants under “dry” conditions, i.e. irrigated in the range of 40 to 60 percent of evapotranspiration to provide a leaf water potential of −21 to −25 bars. Pest control, such as weed and insect control is applied equally to both wet and dry treatments as needed. Data gathered during the trial includes weather records throughout the growing season including detailed records of rainfall; soil characterization information; any herbicide or insecticide applications; any gross agronomic differences observed such as leaf morphology, branching habit, leaf color, time to flowering, and fruiting pattern; plant height at various points during the trial; stand density; node and fruit number including node above white flower and node above crack boll measurements; and visual wilt scoring. Cotton boll samples are taken and analyzed for lint fraction and fiber quality. The cotton is harvested at the normal harvest timeframe for the trial area. Enhanced water use efficiency is indicated by increased yield, improved relative water content, enhanced leaf water potential, increased biomass, enhanced leaf extension rates, and improved fiber parameters.


Cotton plants with the transgenic cells by this invention are identified from among the transgenic cotton plants by agronomic trait screening as having increased yield and enhanced water use efficiency.


Example 5
Homolog Identification

This example illustrates the identification of homologs of proteins encoded by the DNA identified in Table 1 which is used to provide transgenic seed and plants having enhanced agronomic traits. From the sequence of the homologs, homologous DNA sequence can be identified for preparing additional transgenic seeds and plants of this invention with enhanced agronomic traits.


An “All Protein Database” was constructed of known protein sequences using a proprietary sequence database and the National Center for Biotechnology Information (NCBI) non-redundant amino acid database (nr.aa). For each organism from which a polynucleotide sequence provided herein was obtained, an “Organism Protein Database” was constructed of known protein sequences of the organism; it is a subset of the All Protein Database based on the NCBI taxonomy ID for the organism.


The All Protein Database was queried using amino acid sequences provided herein as SEQ ID NO: 194 through SEQ ID NO: 386 using NCBI “blastp” program with E-value cutoff of 1e-8. Up to 1000 top hits were kept, and separated by organism names. For each organism other than that of the query sequence, a list was kept for hits from the query organism itself with a more significant E-value than the best hit of the organism. The list contains likely duplicated genes of the polynucleotides provided herein, and is referred to as the Core List. Another list was kept for all the hits from each organism, sorted by E-value, and referred to as the Hit List.


The Organism Protein Database was queried using polypeptide sequences provided herein as SEQ ID NO: 194 through SEQ ID NO: 386 using NCBI “blastp” program with E-value cutoff of 1e-4. Up to 1000 top hits were kept. A BLAST searchable database was constructed based on these hits, and is referred to as “SubDB”. SubDB was queried with each sequence in the Hit List using NCBI “blastp” program with E-value cutoff of 1e-8. The hit with the best E-value was compared with the Core List from the corresponding organism. The hit is deemed a likely ortholog if it belongs to the Core List, otherwise it is deemed not a likely ortholog and there is no further search of sequences in the Hit List for the same organism. Homologs from a large number of distinct organisms were identified and are reported by amino acid sequences of SEQ ID NO: 387 through SEQ ID NO: 12580. These relationships of proteins of SEQ ID NO: 194 through 386 and homologs of SEQ ID NO: 387 through 12580 is identified in Table 7. The source organism for each homolog is found in the Sequence Listing.










TABLE 7





SEQ ID NO:
homolog SEQ ID NOs




























196:
3549
1976
8970
12287
11799
758
6083
9821
8256
7610
7869
4091




1111
1113
8630
7054
10917
3094
6712
9080
2702
2718
1130
1131



5382
6582
559
2169
1134
1132
1139
2295
11615
8090
2133
5063



5000
10336
12279
3828
7214
1485
2156
2232
2229
2242
2209
2203



2177
2207
2160
2151
11166
3220





197:
3549
1976
4850
8970
12287
11799
758
6083
9821
4946
11935
8256



7610
7869
1841
9456
4091
1113
1111
8630
7054
7880
6876
6237



6712
9080
2702
2718
1130
1131
5382
6582
559
2169
1134
1132



1139
2295
11615
8090
5063
5000
10336
12279
3828
7214
1485
2156



2232
2229
2242
2209
2203
2207
2177
2160
2151
7622
1377
6970



6143





198:
3549
1976
2210
6154
1028
1769
758
12325
9821
2973
4946
11935



8256
7610
5387
5384
5361
10434
8983
5051
4091
2766
6248
1113



1111
8630
9080
2702
2718
1131
1130
5382
7052
6582
1134
1132



1139
11615
2295
8090
6572
4803
1970
8113
3883
9565
1707
517



12372
11514
5441
5421
3828
7214
1485
1097





199:
3549
4850
2210
8970
12287
2360
11500
11799
6912
1028
6154
758



5783
6083
9552
12325
9821
2973
4946
8256
7610
5387
5361
5384



5300
10434
8983
5051
1111
1113
8630
9080
2702
2718
1130
1131



5382
7052
6582
559
2169
1134
1132
1139
8090
6572
11350
7138



1730
10762
11345
527
8679
5063
5000
2879
517
7986
12372
11514



10336
6955
12279
5441
5421
3828
7214
1485
2229
2207
2242
2232



2209
2203
2156
2160
2151
5328
8248





200:
11500
5617
8150
3321
2181
4364
1769
1028
5122
11328
6042
2711



1760
4874
4098
1914
11853
7334
6504
10624
2638
11705
7913
12171



12198
10430
12189
12219
10404
10432
10408
6957
8282
6184
11935
580



10470
1940
11039
8629
1096
742
12505
5801
11671
4006
12473
6778



2607
10849
6279
7500
2657
5584
8059
2622
2043
3269
10363
6186



9631
9243
11098
1168
6690
8584
10577
687
2977
9804
9337
6306



9118
4356
10225
9740
6652
5251
12514
7463
706
3048
3780
1925



11765
9803
10824
3004
5275
8642
1664
12173
4049
2031
11681
8980



2339
9172
11955
10576
9333
10482
813
5656
4628
10843
2352
5484



2856
4313
2877
1633
11143
6066
7722
7746
10941
11741
2941
2745



11364
7638
7884
1328
5606
6580
11262
7483
8156
412
453
7288



6842
1286
7896
9734
6570
10595
8863
1246
7112
12464
1373
3779



2705
5044
4017
5712
4619
3539
1029
1610
5976
4964
11724
9037



8989
1126
4073
395
10344
5428
4845
1611
10484
4496
3517
3418



10294
2427
3442
9747
5534
9571
1125
9720
9319
12346
3417
1588



2779
4611
5312
10179
6867
3049
3051
9900
1265
9463
4576
764



6024
432
8921
11379
2141
1755
9498
7395
8179
7462
7279
8729



9676
11351
1758
10907
4995
1205
608
12100
8331
8341
10326
6852



11947
6597
2475
6407
8077
10788
11815
5269
489
9317
5574
11240



11821
11485
2868
9753
676
11223
1924
8045
1689
12035
11980
5906



7805
6728
5177
1711
1715
5050
1601
11242
1010
11286
7814
7152



3730
5888
615
11078
9681
2883
8522
8210
4450
11632
7573
6031



2713
3861
9480
5307
7874
2048
5136
8625
2168
4580
10634
5772



5082
8731
2678
9311
10561
7803
4408
6227
12026
11234
7247
5578



9683
3999
2953
2193
3370
11542
10711
6403
4207
11251
8447
6805



727
951
737
9090
1828
1928
2277
986
739 7044
10025
7409



9449
944
8427
10911
3965
1299
5294
6332
5145
9418
6150
9008



1004
3831
5157
6968
11922
7392
9855
5061
5448
6857
2354
2879



620
7986
10208
4520
9003
8015
525
8013
11884
10726
12493
9260



8508
5693
1450
4258





201:
7470
10842
5790
6772
1530
9966
9973
10368
655
4677
4157
1015



9967
9732
1621
1702
2553
11599
9342
3724
6613
4462
2681
4577



3827
8039
2557
8538
9605
12321
3228
2139
9255
11428
3022
5404



9564
12166
8047
11255
11888
1492
5870
4250
5541
2481
8585
5674



2062
2021
6718
2810
4015
12306
8941
3135
7850
7009
4247
5760



643
2512
2422
8709
5661
2437
11487
8706
3703
6811
5006
6000



2290
11973
8426
2912
6498
10642
8257
5362
1189
996
1740
10904



5778
4372
12095
1616
9708
1598
4525
7513
1934
10939
9044
7273



6105
6950
12122
5936
2802
3711
8640
6644
9842
6994
2587
7510



8609
1877
5408
8009
9943
8475
4333
8476
2651
5379
11144





202:
7477
1676
4448
2400
6045
6940
8526
9923
11995
8913
10513
634



7969
11746
6446
4371
1018
4026
10874
11604
5505
9219
4140
11205



12025
3605
1669
1987
2822
2279
10124
11930
4546
3504
1950
7696



1604
4492
710
11737
3171
8574
11646
9030
765





203:
9581
1789
9205
10127
507
7859
5085
10794
2201
5072
1384
7541



12225
5253
4000
8561
1469
3834
12504
9837
7137
4670
9143
1972



230
11807
7457
3867
12503
9644
10286
686
3416
8708
913
9391



9343
1949
971
11938
12315
7511
9076
8346
3455
1790
6685
11054



10989
4775
9544
2197
3225
1198
7996
9715
6751
11217
3189
10361



3589
2768
4753
393
7426
9423
2744
1339
10139
2332
8771
3079



4312
7098
11256
1681
642
411
5179
11964
5793
8376
2386
9500



2401
5669
10501
1939
11311
4977
7401
8266
12472
480
10947
12116



539
7591
1020
1493
9017
2513
3100
4405
5679
3373
3795
10805



11445
10653
5898
5556
12139
12448
8448
5245
12533
10039
1324
2498



9955
6104
5516





204:
3474
7088
4085
10331
6972
7065
2023
10909
5915
5913
6491
5970



6936
5920
5919
5966
5944
5738
5968
6663
1233
5947
2258
10694



9592
4692
12344
11227
6753
8618





205:
9144
6127
6445
4401
3645
9756
5274
8302
1548
9875
9979
1922



1941
9100
7274
12121
11051
11528
9523
7830
3543
6760
1979
3997



9779
9635
4955
1818
946
5201
12580
8270
10531
415
4910
1802



2256
2979
7899
3139
3777
10332
10536
4842
8280
9000
1327
10950



8576
513
4263
6884
8684
3877
7243
7262
6420
1424
2680
10546



9965
11711
6656
1164
1160
5248
4812
11605
3598
8386
12446
3922



10305
467
5963
9481
1998
4655
4064
446
6112
6111
4689
3743



449
1123
11231
1143
42456
471
11629
6249
2152
2171
6494
8636



11953
5487
7844
6164
11566
1495
4623
6920
3447
3181
3153
1081



11890
3476
1127
1195
1192
12349
3600
11090
5377
8022
7160
11091



10643
7586
12247
6202
6217
4617
2237
2380
6219
1756
7456
925



3237





206:
5804
12016
10678
10712
10735
7448
9024
10738
10708
12014
10638
7423



7421
7417
309
10586
10603
10589
10584
7444
10644
7446
5047
10645



10646
12280
207
9710
2096
11839
9709
1612
8993
10037
6780
11613



9034
306
307
2004
11103
8166
6931
7311
6922
8933
10494
3783



308
11857
12034
3781
916
6666
9745
9140
6285
12449
10356
9452



4275
12246
9728
9405
2987
7223
2067
3934
8138
11430
9052
12318



6252
410
2407
6792
3564
2073
4786
11326
9877
3397
310
11058



9105
8474
12047
6860
7715
860
8446
4050
6973
6725
9408
4088



3842
1902
4332
2342
1701
10402
11870
4672
3986
10725
12181
1973



3950
9992
4578
10224
862
7045
11785
4789
5465
8088
3553
10189



9964
2793
6677
10001
3375
4200
10391
1361
1234
10741
10641
10683



11712
10743
10575
10581
4747





207:
12016
7448
12014
7423
309
5047
9710
2096
11839
1612
8993
10037



6780
9034
307
306
2004
6931
6922
8933
10494
308
11857
3781



916
9745
6666
9140
6285
12449
9452
8035
10356
11492
12021
4443



10064
8344
2067
3934
4275
8138
12246
9405
2987
9728
11430
9052



12318
6252
7223
410
6792
3564
2073
4786
9877
3397
310
11058



8474
9105
11870
12047
4672
3986
6860
7715
860
2342
8446
1701



4050
10402
6973
9408
4088
3842
4332
6725
1902
10725
12181
6779



1973
2823
9849
10154
862
7045
11785
4789
5465
10224
8088
4578



10189
3553
2793
6677
10001
3375
4200
10391
3950
9992
1361
1468



9964
7410
2176
10741
11712
10743
10575
10581
206





208:
8564
10720
7580
12251
9922
5975
8617
4257
645
3210
4615
8228



747
1408
10412
3357
4397
7547
10137
3018
7289
11413
1687
2058



4738
1274
12252
8769
6626
4708
2751
1442
2843
10230
6198
10814



2304
9207





209:
9386
8213
8184
6094
8240
8242
8209
8211
5327
9254
10652
9428



11965
11812
11814
9275
9274
6208
8173
7971
9276
9278
9280
9297



9253
8100
9330
9303
9305
4986
4730
10770
11755
3994
5070
7569



5734
3989
3985
9531
9214
9429
9365
11108
6372
5373
2117
3351



12521
4075
1896
3535
10982
4340
2371
858
3813
10602
5493
5548



10627
5552
2460
4278
1787
3297
2964
2965
2962
3630
9434
3625



4592
10087
8272
3870
4415
8484
5940
10629
10623
10636
10174
10667



5553
10670
10671
2562
2568
8456
5226
5200
11493
7169
9374
7962



11722
5462
2866
10150
10170
10153
4425
1856
4727
9772
6514
2550



9367
4482
9458
9455
2869
2162
9300
9302
10632
3616





210:
2857
3612
6601
1183
1181
1182
6604
1159
10118
10806
11819
11745



6639
11715
7049
10888
10024
7122
8076
8876
8903
1266
10535
624



7532
4011
5266
6168
6326
11178
2641
2461
6646
8758
7990
9318



8505
7393
2727
6008
3940
9115
5137
9096
1148
1363
10193
9377



9250
5445
11200
11273
11276





211:
11176
8570
11245
10274
6081
7181
6450
4624
9320 6129
984
7196



7388
2804
542
11805





212:
23933
4071
1789 8124
2340
3714
1395
1433
12303
375
2814
6364



9438
3292
12390
2984
6746
9695
675
2101
3618
12081
6128
1892



3448
9864
6152
2844
7381
4291
4973
5447
10140
11877
8566
7624



6472
10665
2089
9925
938
8536
6156
10608
11433
5967
1511
11974



12573
4734
11501
5076
12428
8275
2769
4402
11854





213:
4784
5997
2399
6338
3933
4092
10151
2740
10610





214:
10855
2954
6766
2958
8910
12101
6783
3620
7658
7785
3180
9266



9246
9247
1792
8649
5777
10173
10178
3461
9046
5810
5806
1226



3287
12557
8375
12235
8403
8384
7414
5429
4396
6501
8433
7094



8413
7920
5588
9853
6890
6483
9273
9841
683
9313
6871
6899



6877
2491
4890
9129
5744
9572
11085
12037
11048
12113
613
9424



6574
12066
7504
5863
8409
4273
10572
5923
1895
1893
9040
3665



5481
7755
8408
924
1454
12140
8378
5510
5509
5513
3124
3103



11911
4141
2082
2247
4630
8299
6667
702
8975
6801
745
741



779
770
772
744
771
11549
719
7117
5565
11875





215:
11919
9154
5594
10308
2827
2830
3408
3403
2471
5367
1120
5371



5081
4880
10931
7367
6883
11808
6136
2549
11638
6868
8315
3118



10508
10877
650
5616
4115
3026
3028
9516
785
9083
7596
8108



4176
6525
5765
3802
1806
8081
7208
8893
12007
8654
9048
9072



8575
8423
6300
6409
4165
6095
9477
2485
10112
5117
2278
2281



2264
2284
6055
2348
4251
8187
10826
9660
9216
2777
4403
7239



2643
782
2262
8111
1799
781
2696
8265
821
6575
9029
6259



5907
2153
9132
1008
9697
11658
5996
6135
3512





216:
1063
9995
9748
8083
4921
10081
2976
7153
8380
1072
2845
2124



5604
2742





217:
1063
9995
9748
8083
4921
10081
2976
7153
8380
1072
2845
2124



5604
2742





218:
10265
3604
11692
2087
2100
2084
4972
8627
4940
10555
4941
652



1430
11778
7581
915
1478
8934
1244
9538
6106
9540
6923
5854



6892
9462
3486
10996
12018
9346
3284
6742
8247





219:
5171
3451
10952
6452
5333
11383
12420
9816
9099
11249
528
11871



11060
8935
3521
3063
10253
9510
10954
6303
6941
523
904
5364



4534
1993
9623
3245
12506
8843
10612
7200
2319
7201
1746
9164



1043





220:
6376
1316
5391
12526
7194
2996
3154
10569
11756
11824
3924
9004



5150
5993
10023
5309
10233
5582
9183
5649
2780
11917
6719
11145



10056
2516
1372
5622
7269
2665
1402
5885
7636
6193
3223
2719



6657
1867
7660
12334
9360
5492
2710
2076
8465
7571
11887
2033



8847
3260
10323
11018
7553
6905
5747
10773
5018
9023
9420
9484



9512
8291
2650
4553
2233
4983
7834
11916
8565
4123
1090
3981



610
2885
5427
3349
649
9974
10523
10337
5840
8815
6996
11041



1321
11532
11331
9757
6755
2327
2730
5199
5280
11943
3656
6297



4570
2983
6557
12145
2376
7618
6924
9049
10975
8678
12452
7263



2204
3741
7210
7502
4325
11408
1350
6089
2892
8054
8643
2501



1647
11693
6378
1729
6966
8734
9027
8827
5647
9075
7286
659



4113
6496
4454
11650
4378
2224
2687
1763
830
3255
5001
3830



6495
3121
1757
7740
8530
2770
1866
459
2049
4814
12517
2408



8583
6850
7550
5545
2042
3709
5474
11062
4761
10345
7778
1449



1562
8901
4943
10916
11403
6820
3167
1997
7484
9833
12022
8573



5100
5639
7158
8791
9723
4484
10282
1334
11312
11317
4294
9400



4982
7125
2655
10854
9131
992
5153
2528
12519
12187
6818
799



861
11120
11361
6634
12230
10852
8817 3105
9513
8235





221:
6205
11358
3072
2888
2907
6203
2800
7221
4750
3627
12485
2816



10896
4463
3774
8273
5002
4122
8581
8364
3273
6044
6503
6451



6887
4226
5120
9987
679
12019
1695
939
9726
8964
2326
6178



6080
8551 12220
926
10271
3458
983
6773
5354
551
12326
1673



10474
7111
503
3261
7427
7498
5710
9522
12089
8842
8147
8799



9369
2355
6063
3582
3537
3557
1618
2519
10121
9781
10031
1438



4529
11657
7069
3979
1260
8752
9515
1762
10093
875
12460
12052



9166
7493 12523
10742
10451
8622
8931
10210
7668
3177
3657
6276



625
6423





222:
9766
2574
8653
12518
6881
10011
1281
4435
3555
696
5489
10478



6961
6001
1591
1453
10635
2267
6727
12366
4551
1889
1367
1388



9264
8099
5016
1033
4094
12546
7145
6511
1331
1524
3894
1943



8569
11313
5235





223:
12210
2632
5689
5995
9108
6848
3162
5357
9825
6099
9769
11406



12011
4089
11037
2154
7634 2930
6937





224:
11851
9599
392
3514
5363 9918
7949
12550
981
8255
3499
2997



9043
6076
2056
2922
11064
11131
9209
5316
10222
11118
1947
4743





225:
12336
2351
3767
1826





226:
9174
12242
516
9436
5692
6101
8462
9960
3910





227:
882
7014
8781
8246
10705
2703
8520
6497
7900
6599
3575
3216





228:
2359
5356
6318
6123
588
7908
6312
4748
9929
6824
6509





229:
9744
8168
1420
6853
7687
2503
7653
5252
787
6057
2759
8114



9054
8122
8127
4410
5238
4675
7892
11484
12365
11744
3437
6705



3241
11187





230:
9581
9205
10794
5085
2201
1384
4000
8605
4670
1972
10286
11576



686
913
2768
203
393
4753
1339
2332
8771
9423
7426
2744



3079
10139
4312
11256
7098
642
1681
411
11964
5179
1324
9955



6104
5516
9644
11807
7457





231:
12356
4958
6943
8532
8516
9081
4754
8450
8451
10677
4939
12575



11787
7205
4213
972
3291
9604
11517
7192
10860
5598
12538
4035



11116
695
7007
479
4154
10733





232:
641
10835
7416
7705
8597
5506
5365
2998
4911
1710
4507
7519



1965





233:
7211
12486
7508
11321
5086
11818
8707
9321
1682
4612
3885
10374



3698
2956
2709
2789
9060
3654
4690
9089
7726
3369
8385
2927



2192
5052
11202
11758
10190
5874
8038
8631
537
10655
4768
2120



3687
4281
11320
6521
4769
7545
7786
7407
12108
9206
12454
2147



7282
12432
3610
8128
5956
3069





234:
9373
9421
11561
11557
12294
10301
9284
6616
1308
6809
3915
11093



3919
11088
11597
11298
11592
6281
3917
11137
1726
11130
1230
3689



4740
3725
11047
2975
6172
1216
3544
4142
7375

746
11962
6474



12427





235:
9373
9421
11561
11557
12294
10301
9284
6616
1308
6809
3915
11093



3919
11088
11597
11298
11592
6281
3917
11137
1726
11130
1230
3689



4740
3725
11047
2975
6172
1216
3544
4142
7375
746
11962
6474



12427





236:
444
10758
1559
12502
889
9874
9788
7310
12020
6831
7980
10109



5949
6731
11689
7825
3697
1264
4393
548
2268
1773
3208
1147



4029
9056
1141
7469
5188
10443
7314
1452
1744
5383





237:
5650
5881
10697
3343
2506
6706
9195
3119
609
11113
12263
12264



9501
8410
8925
3221
7983
7956
933
2361
8269
9921
6336
10563



632
12541
10155
10751
9511
7976
6351
5482
10797
4571
1776
12112



7190
1900
9324
6339
7001
2317
9820
7015
6384
4917
11822
4227



11377
6229
10949
11498
1448
8172
10908
7776
6183





238:
3651
11823
2950
1915
5176
4381
8742
6316
9780
3427
8319
899



4829
11372
12232
6415
3788
1658
9838
11020
8918
7485
10102
8428



1054
2552
11363
12489
9487
10566
9535
11344
4210
1739
5067
8368



9789
7897
2937
10388
8859
10675
3146
1783
2989
3471
4847
919



918
5832
1172
2121
5023
806
11459
12478
12285
11359
2683
11412



12180
11214
5716
7022
8289
6594
7858
11270
1848
12273
9776
6464



1578
4239
7235
5329
9074
3608
6048
1812
3310
7872
5540
8662



4796
790
2336
6532
8866
6741
7383
5683
4201
1638
1583
6819



11937
2788
11593
12298
6125
6977
1956
8141
7002
1569
11618
3937



5648
10925
10480
9137
6221
2366
6277
10503
5161
12302
5628
4791





239:
3651
11823
2950
1915
5176
4381
8742
6316
9780
3427
8319
899



4829
11372
12232
6415
3788
1658
9838
11020
8918
7485
10102
8428



1054
2552
11363
12489
9487
10566
9535
11344
4210
1739
5067
8368



9789
7897
2937
10388
8859
10675
3146
1783
2989
3471
4847
919



918
5832
1172
2121
5023
806
11459
12478
12285
11359
2683
11412



12180
11214
5716
7022
8289
6594
7858
11270
1848
12273
9776
6464



1578
4239
7235
5329
9074
3608
6048
1812
3310
7872
5540
8662



4796
790
2336
6532
8866
6741
7383
5683
4201
1638
1583
6819



11937
2788
11593
12298
6125
6977
1956
8141
7002
1569
11618
3937



5648
10925
10480
9137
6221
2366
6277
10503
5161
12302
5628
4791





240:
5298
3673
6171
5229
8230
6271
9427
1356
10882
11852
10687
6088



10076
9830
10597
6373
3987
10322





241:
2393
3407
11789
11391
11346
5568
689
9121
3768
6558
5447
1870



7849
2504
8733
10066
994
11743
980
4909
7933
8486
8369
5152



1705
6156
10608





242:
3431
5395
4346
8330
8327
8702
7787
5265
8943
12561
4536
11625



4411
1035
11796
6078
2720
4449
10010
3057
9876
3536
5603
11727



5025
698
9899
6457
10804
3454
2741
11343
11668
12537
9198
9194



6906
11749
2886
4118
11050
3125
3104
8238
7647
11157
11552
5735



3190
1224
2010
10669
3186
12278
10534
9546
10088
3888
1521
10626



10413
11620
12324
1406
12498
3067
7386
6359
10120
6004
2803
9290



11141
854
2391
6032
10433
12371
11636
11795
6713
8567
10754
717



2465
9545
9886
6990
4012
8324
3742
1053
8586
8683
10073
12149



7481
2755
2646
6082
8956
4440
4579
4447
6886
4268
561
11512



3439
1568
8328
1091
7948
5861
726
582
11893
2118
12271
6845



6843
6847
2068
9119
2022
8587
12175
8754
6777
497
9325
6872



7531
11335
2928
9885
5358
1963
6109
7533
11337
11444
9889
6179



1632
6874
3342
12072
12199
11476
9892
6224
6254
5355
11338
7625



10426
10428
11395
1315
11066
11063
11076
5351
1440
11336
11316
3538



8749
9778
5154
9356
835
831
2589
8503
10727
2891
8958
11046



6790
9818
9094
9828
5374
8610
7368





244:
9283
4282
1754
571
9388
10252
4060
4063
10254
9392
10256
10251



8049
10250
10237
10240
8942
10188
9163
9457
9412
4148
2795
2440



10370
3577
434
12383
7841
4935
4928
4931
4933
4908
701
7640



2602
8966
4824
5455
4822
4823
5454
9020
8692
9551
6293
8301



3456
1197
12421
3247
6475
7319
9389
569
6169
1497
1499
9460



2309
600
2172
2178
6997
2668
8309
2821
4458
2940
9832
5380



6918
732
9375
9376
9294
2109
12129
8117
12379
4965
10550
7218



12182
11653
9067
4197
9956
4905
3379
8543
5663
10834
8946
3814



4643
1788
6732
9857
4189
10740
6347
1240
5417
6399
1781
1782



3068
3398
10951
3402
4557
3406
1307
4161
11960
8337
8307
7812



2486
2510
1431
6430
894
5282
12422
6029
10938
10935
10936
2671



4260
10891
7914
5646
9237
11207
11111
4869
10685
6067 459612455



4572
7777
2072
1364
3840
4879
1193
7010
1667
2748
4809 1850



8067
8922
9994
5724
12160
6849
3432
11503
11999
2619
11453 5074



12050
3193
3298
5344
3303
3301
3300
3362
3283
3251
3211 9607



3277
4512
10924
8703
8838
4726
6467
2527
962
5203
4589 9809



9806
9805
9812
1242
312314
3674
3728
3676
4145
7690
4132 3000



3002
2009
2415
3348
2543
1825
3368
1753
11838
6270
11163 4736



11353
3911
10235
1023
29385
10283
10275
10280
10279
1285
1293 1279



1312
1291
1089
2708
1407
10065
9873
12041
9138
11097
4104
405



10732
3843
10734
9232
1527
5586
4841





245:
9283
4282
1754
571
9388
10252
4060
4063
10254
9392
1025610251



8049
10250
10237
10240
8942
10188
9163
9457
9412
4148
2795 2440



10370
3577
434
12383
7841
4935
4928
4931
4933
4908
701
7640



2602
8966
4824
5455
4822
4823
5454
9020
8692
9551
6293
8301



3456
1197
12421
3247
6475
7319
9389
569
6169
1497
1499
9460



2309
600
2172
2178
6997
2668
8309
2821
4458
2940
9832
5380



6918
732
9375
9376
9294
2109
12129
8117
12379
4965
10550
7218



12182
11653
9067
4197
9956
4905
3379
8543
5663
10834
8946
3814



4643
1788
6732
9857
4189
10740
6347
1240
5417
6399
1781
1782



3068
3398
10951
3402
4557
3406
1307
4161
11960
8337
8307
7812



2486
2510
1431
6430
894
5282
12422
6029
10938
10935
10936
2671



4260
10891
7914
5646
9237
11207
11111
4869
10685
6067
4596
12455



4572
7777
2072
1364
3840
4879
1193
7010
1667
2748
4809
1850



8067
8922
9994
5724
12160
6849
3432
11503
11999
2619
11453
5074



12050
3193
3298
5344
3303
3301
3300
3362
3283
3251
3211
9607



3277
4512
10924
8703
8838
4726
6467
2527
962
5203
4589
9809



9806
9805
9812
12423
12314
3674
3728
3676
4145
7690
4132
3000



3002
2009
2415
3348
2543
1825
3368
1753
11838
6270
11163
4736



11353
3911
10235
10232
9385
10283
10275
10280
10279
1285
1293
1279



1312
1291
1089
2708
1407
10065
9873
12041
9138
11097
4104
405



10732
3843
10734
9232
1527
5586
4841





246:
6942
11388
3778
2672
12375
7074
1179
12458
1855
12015
9980
10716



10918
11770
10255
581
10006
4467
10169
7675
1250
5319
9827
496



1732
8778





247:
9530
12217
826
5267
2006
547
7365
1816
10509
6784
2509
7339



3841
5471
11850
11519
2806
7443
8018
11751
1529
4077
12088
6149



1489
868
7473
2466
614
1176
6038
2195
1557
8182
3984





248:
2809
1347
5519
6353
8932
7422
7557
4683
11147
10637
9404
11768



910
8870
6324
5045
4945
9453
7164
4152
3322
10499
7328
8994



11460
9634
9064
9047
10906
11904
749
5014
9906
9939
9963
2364



6617
1635
4234
3462
12043
10075
3459
10489
8606
1999
4508
10028



5341
6180
9971
7215
3422
5091
9652
10601
8028
11427
6678
4365



7082
1022
3209
4357
9159
7321
12077
11967
680
7943
661
11246



10622
7676
818
3364
9160
6187
8531
4604
6381
4859
2298
10753



12368
9200
5155
2175
8058
11106
1639
5299
1905
1068
110937
1738



3580
7344
8320
8466
5687
5293
8844
5030
1572
1735
543
1105



562
3483
9147
12109
11282
7291
10666
11009
2523
12408
12128
12406



2535
10560
12212
10101
11610
5148
8687
5945
11651
12286
5942
12291



11624
11675
12078
4588
1480
1513
4665
759
5868
705
4662
1458



4585
4555
5193
754
756
5855
4641
4563
1455
761
5867
5859



5756
1520
4608
1437
5787
1459
671
1515
5784
5824
5864
5902



5791
678
5169
5797
5166
807
808
5897
5173
793
5839
5899



5761
700
5752
5748
848
845
792
786
815
673
853
1429



812
850
849
817
1432
5172
5009
5062
5040
4868
5060 5066



5032
5034
5008
5092
9098
5069
5717
7327
3898
5904
8185
10968



12327
12382
12376
12380
12358
12355
4920
5826
4918
9879
6009
6638



4899
6614
6005
9882
9880
9915
6609
6007
9959
4923
9936
9912



5794
9935
9908
6637
9941
9962
9957
9970
6610
9996
9993
9991



9998
4974
5857
5931
5830
5865
5007
5903
5852
5833
5862
5202



5093
4978
5098
5096
4892
6002
5934
5788
5751
5785
5981
5985



5822
5958
5227
6671
6643
6645
6640
1393
12542
1691
10538
9575



2875
1909
6944
2273
7752
7749
7747
7774
7150
7754
7753
7720



7717
7154
7723
6454
9178
1910
9184
12431
11386
11005
3701
2612



991
4598
6761
458
1261
11303
11387
5560





249:
11466
10817
8971
4262
10839
329
8600
5335
896
791
1352
7322



10270
7741
9035
6714
10000
8201
3746
5174
4398
7207
587
4853



4851
2261
11405
10793
3440
3463
7505
1693
2532
2862
2859
5792



2825
11560
7637
7633
7614
2464
11222
1778
11268
11462
2158
10647



1146
7316
6100
12545
1698
4358
879
1727
12205
7170
6117
10722



12516
7294
12005
11165
1857
12042
6879
3473
4353
2798
10096
2424



7595
9288
3396
4644
7051
6749
4932
1417
11847
8676
2675
3149



4493
8041
2231
10890
2301
3232
3614
9139
3530
7139
7836
3718



12250
881
2373
4126
9707
5779
9630
2905
11956
10260
8176
8370



1834
1301
5330
2572
10162
3878
8872
7166
12030
9648
2689
10149



10973
9109
4471
11920
685
6584
10680
5472
5665
3253
2889
12470



8726
6034
6623
4199
4362
12405
6411
10429
12497
9570
1214
1030



617
829
10859
11229
1603
3932
5522
1255
12084
10987
900
11188



2018
616
10866
6138
1003
7084
10459
1656
9217
4190
10206
4395



2310
3027
3199
8196
12409
1333
1930
7140
8939
3081
5939
1360



6958
10063
5908
2324
5587
735
10365
8940
1173
7035
8162
10945



7665
8546
4249
8439
4095
10156
10177
10176
931
2377
8634
420



2894
3098
4069
5285
1311
9272
6242
7611
3944
3947
5722
5719



5695
5720
5753
5727
5731
12515
9999
6710
9394
9395
4022
4024



10165
3990
10801
3995
10163
1553
3993
11441
10846
11136
7843
10491



4725
11489
4723
10823
10498
10615
626
11339
10409
11480
1805
7639



10281
10034
8405
11038
3492
8645
5037
12001
5800
7175
4668
9467



3156
11075
2995
9347
7905
1423
7870
7748
2283
9865
11865
5561



8231
8097
6110
8686
7829
8871
5715
1804
5644
4423
2259
11914



11250
8485
9933
716
6323
6799
3509
12565
7764
5263
9011
6246



4504
2358
8877
2182
11148
10158
5262
5258
4660
3899
6021
10821



10978
1801
8831
1936
6826
9977
3546
5982
3472
8460
3460
12528



5242
8527
8657
8552
7744
6286
2066
9201
506
6016
5456
399



481
11107
9066
4390
6748
11573
5819
5182
9176
11244
8029
3399



7013
10161
10468
11469
5983
9301
5544
7268
5412
8121
3720
9353



2299
6358
3224
11486
2423
1330
12174
3550
4953
2783
11429
8828



8602
1300
9104
7287
8658
1986
5677
8336
12262
3449
4980
9514



7606
2388
11771
10820
1780
11551
2392
10995
9489
2737
8454
10493



975
1824
7713
12036
7172
8395
6062
4409
8222
5608
5031
12363



11455
2661
2189
5632
6561
3215
11858
2652
9866
8620
11816
2701



10674
5681
1663
11649
9706
12317
12525
2916
8590
7129
9310
11073



7694
1472
5767
7178
8963
4159
3109
8186
2200
5114
9659
6461



8688
6519
5873
668
11777
10392
4625
10853
6210
3001
4310
1966



1885
7538
5702
8513
9937
10901
11642
2005
4671
9435
3667
4480



5740
6785
4971
10956
5657
2890
7670
8813
6102
8483
8452
11464



10848
11438
10851
10769
10766
10764
10763
6869
8373
1564
5524
10079



11491
11440
10713
7635
7631
5372
5348
9233
9231
9221
9240
9235



9220
3029
10761
9983
814
7040
12560
7016
8158
8759
8762
8163



7037
7822
8767
7066
7061
10679
11467





250:
11466
10817
8971
4262
10839
329
8600
5335
896
791
1352
7322



10270
7741
9035
6714
10000
8201
3746
5174
4398
7207
587
4853



4851
2261
11405
10793
3440
3463
7505
1693
2532
2862
2859
5792



2825
11560
7637
7633
7614
2464
11222
1778
11268
11462
2158
10647



1146
7316
6100
12545
1698
4358
879
1727
12205
7170
6117
10722



12516
7294
12005
11165
1857
12042
6879
3473
4353
2798
10096
2424



7595
9288
3396
4644
7051
6749
4932
1417
11847
8676
2675
3149



4493
8041
2231
10890
2301
3232
3614
9139
3530
7139
7836
3718



12250
881
2373
4126
9707
5779
9630
2905
11956
10260
8176
8370



1834
1301
5330
2572
10162
3878
8872
7166
12030
9648
2689
10149



10973
9109
4471
11920
685
6584 10680
5472
5665
3253
2889
12470



8726
6034
6623
4199
4362
12405
6411
10429
12497
9570
1214
1030



617
829
10859
11229
1603
3932
5522
1255
12084
10987
9001
1188



2018
616
10866
6138
1003
7084 10459
1656
9217
4190
10206
4395



2310
3027
3199
8196
12409
1333
1930
7140
8939
3081
5939
1360



6958
10063
5908
2324
5587
735 10365
8940
1173
7035
8162
10945



7665
8546
4249
8439
4095
10156 10177
10176
931
2377
8634
420



2894
3098
4069
5285
1311
9272
6242
7611
3944
3947
5722
5719



5695
5720
5753
5727
5731
12515
9999
6710
9394
9395
4022
4024



10165
3990
10801
3995
10163
1553
3993
11441
10846
11136
7843
10491



4725
11489
4723
10823
10498
10615
626
11339
10409
11480
1805
7639



10281
10034
8405
11038
3492
8645
5037
12001
5800
7175
4668
9467



3156
11075
2995
9347
7905
1423
7870
7748
2283
9865
11865
5561



8231
8097
6110
8686
7829
8871
5715
1804
5644
4423
2259
11914



11250
8485
9933
716
6323
6799
3509
12565
7764
5263
9011
6246



4504
2358
8877
2182
11148
10158 5262
5258
4660
3899
6021
10821



10978
1801
8831
1936
6826
9977
3546
5982
3472
8460
3460
12528



5242
8527
8657
8552
7744
6286
2066
9201
506
6016
5456
399



481
11107
9066
4390
6748
11573
5819
5182
9176
11244
8029
3399



7013
10161
10468
11469
5983
9301
5544
7268
5412
8121
3720
9353



2299
6358
3224
11486
2423
1330 12174
3550
4953
2783
11429
8828



8602
1300
9104
7287
8658
1986
5677
8336
12262
3449
4980
9514



7606
2388
11771
10820
1780
11551
2392
10995
9489
2737
8454
10493



975
1824
7713
12036
7172
8395
6062
4409
8222
5608
5031
12363



11455
2661
2189
5632
6561
3215 11858
2652
9866
8620
11816
2701



10674
5681
1663
11649
9706
12317 12525
2916
8590
7129
9310
11073



7694
1472
5767
7178
8963
4159
3109
8186
2200
5114
9659
6461



8688
6519
5873
668
11777
10392 4625
10853
6210
3001
4310
1966



1885
7538
5702
8513
9937
10901 11642
2005
4671
9435
3667
4480



5740
6785
4971
10956
5657
2890
7670
8813
6102
8483
8452
11464



10848
11438
10851
10769
10766
1076410763
6869
8373
1564
5524
10079



11491
11440
10713
7635
7631
5372
5348
9233
9231
9221
9240
9235



9220
3029
10761
9983
814
7040 12560
7016
8158
8759
8762
8163



7037
7822
8767
7066
7061
10679 11467





251:
7566
9095
9909
985
3712
4673
10400
6894
5106
4420
10664





252:
1273
6354
10628
10067
5950
6721
684
10319
709
8095
11478
8177



9858
2059
488
468
466
443
6770
8271
8157
9002
4162
7370



1098
10796
8991
10090
3419
1137
3784
4900
1074
6158
9679
1086



7420
7419
11662
4061
7548
11926
460
10362
8812
6107
10946
6408



8006
2847
1989
3661
2787
1619
1169
7204
7238
10070
8193
12501



5485
1845
2794
7224
9406
3749 12378
7011
3438
11084
5896
11474



11425
546
7789
4010
6448
7795
7357
11260
11210
8046
7430
5071



10524
9742
3252
900
610057
646
7991
5217
3450
5973
6730
3980



4722
10407
12354
911
10043
9379
9461
9509
6855
11475
4699
4707



3903
7938
9028
10396
7951
1494
6633
5811
1535
1538
1708
5130



11886
5347
10359
6327
7431
11504
7564
4929
6272
10295
1505
3845



4840
5433
8232
12488
4783
9665
667
1675
7251
12058
1860
10394



8850
8383
714
6900
2682
4992
12142
10423
878
6382
4981
6573



9261
426
2584
2775
2459
8550
6512
3410
10959
3484
8923
9711



619
9357
3314
7516
5046
10986
11915
4893
6348
6418
3650
5909



6647
12436
7700
1565
10495
10526
10511
10870
9093
4720
2493
9031



11617
9494
11310
11940
4618
11774
692
1411
9722
4468
12568
11407



7852
5755
8339
8261
1024
8260
11252
8668
12554
11172
2126
3350



8274
2633
2347
867
9039
11029
518
11209
8727
10724
3847
2316



1653
909
1651
2630
6035
567
11952
6533
2167
6980
2903
5645



2985
1419
2272
8096
2028
6291
11208
11025
11024
5181
7856
8183



7234
7750
3519
10320
10862
1964
3457
3453
5882
5849
8580
4942



3849
5260
6222
9848
5523
8905
11374
436
465
464
1140
11443



10042
3806
9553
10185
7826
10304
8012
5024
2583
2439
8659
11296



4457
3826
3825
2123
6153
2580
3823
11235
5180
1488
1490
5211



2474
1881
12311
1354
9614
7907
6374
3347
10926
1920
6334
5431



8595
7641
5799
11247
7348
12051
5914
3330
8845
6621
4241
11797



2199
12467
478
1427
11654
1136
8093
577
6132
2150
5407
11992



8519
5378
6745
2449
11259
1376
10055
7661
4076
8854
8603
10662



6195
12075
11323
11304
7916
8839
1138
7326
8295
12332
9482
11477



484
7028
7408
7379
5325
4461
9084
5254
12236
5518
9609
442



8120
4033
10357
514
6417
3763
2952
10085
1346
11907
10086
11849



11941
2826
10100
5164
4319
7506
2567
5959
2764
12070
2700
7978



3044
3064
1422
715
3359
9532
441
440
1862
740
718
8115



3061
534
3160
10696
10298





253:
5927
3822
5709
5332
11543
10238
4587
4298





254:
3005
4566
3638
3636
4949
5593
4950
4952
6386
6624
4307
3140



6319
7213
7928
8481
10333
12107
5205
4749
1984
5730
3405
11861



3819
11697
3214
6534
9110
11404
7447
7451
2747





255:
6851
10963
4533
8701
12352
4018





256:
1398





257:
4311
9437
6301
9698
8305
4430
1916
3966
2446
8223
12071
7173



11279
2994
12463
6181
12347
6140
9285
6201
11237
4813
11876
1006



7131
9122
9924
9082
6064
8234
4545
11494
6466
1475
6806
9092



6515
10540
856
2077
6207
8044
6949
8542
10988
7589
12288
4280



9331
1713
1349
9061
4855
4694
10186
10818
12322
777
803
4460



8010
8775
12388
6586
9554
5768
4599
10157
570
5597
4451
607



1039
7554
2538
11891
3123
5515
536
4495
5739
3594
9870
4947



9673
4798
1280
4136
2322
11007
6288 4646
6933
1844





258:
9859
12104
8809
8807
6357
6356
1789
10837
2642
3264
9441
8984



8089
4196
9932
3047
6863
7859
9791
10592
12563
993
9958
7654



4937
4540
8667
1650
1296
7541
6815
1649
1469
8561
3834
11908



12504
8493
9837
7137
7837
9143
3913
8926
669
602
397
11747



10928
3857
2947
3905
7688
6370
7161
1745
7945
2746
10541
4925



5430
5845
1383
1484
11461
7123
11294
2690
9638
7340
1898
10844



4970
7629
12350
6619
7029
654
4815
12384
9127
11340
2498
1184



3150
11558
12295





259:
8388
3722
7698
3015
10098
10548
508
4289
7734
7728
8287
7796



7582
8616
10704
7030
4169
7702
7706
7760
5133
7788
7765
7767



9315
6998
6984
7008
7005
7058
7114
7092
7063
7091
7096
7067



7000
7012
10040
1961
1397
9439
8663
4664
8071
7086
6419
7987



12490
1679
1657
4331
1983
6707
3391
7497
7380
7845
7666
9658



7955
1477
11341
8188
12012
775
12065
8672
1245
4446
3055
11555



8112
886
8711
8285
8283
7104
1258
3726
5057
9344
1937
12566



8716
11643
5989
6696
2375
2637
11384
8563
3794
3791
3013
2235



893
12177
1467
895
8779
4771
6545
757
2136
2135
2138
10125



10542
4351
10760
8345
6952
3663
2436
10787
2205
4770
5789
1191



7588
4737
1645
3194
1643
5301
9568
4597
606
8738
8740
688



1447
11990
725
11030
7724
11012
7085
1201
4153
2707
1236
10243



3571
4602
2754
10867
4661
5479
11835
7842
6726
2808
5829
8796



4175
4871
6440
8878
2385
11553
3306
4444
1014
7794
8496
6687



4238
425
8393
5926
6037
11564
937
6397
11272
11274
6981
597



4128
8492
4235
4252
3066
1793
10958
11713
9976
10957
4236
8721



5036
6827
1967
3424
2431
10983
9952
5142
2900
8262
12459
2776



2253
12260
3016
5741
11451
1820
2515
3609
11133
2251
7893
12254



5141
12377
5004
12351
5115
1696
5979
3793
3263
11081
6921
2030



11957
4960
10571
7486
5011
8357
6335
10863
7264
10012
2344
7350



5370
1724
5528
8203
2297
10903
8202
6704
3288
3690
8804
5418



2130
1392
522
9793
1466
7038
12237
4120
8407
12161
3787
8131



6605
5883
1830
8928
10864
6480
7542
11726
3185
6635
3525
5209



5234
2592
5776
10562
11330
9613
11397
8358
9161
3218
9729
6444



7598
7957
4667
4732
3764
11232
7992
7758
7742
7792
8316
8321



8313
8318
8898
8314
8896
7036
7708
2838
2837
9204
9196
9165



9169
9167
3629
7679
12494
7034
7730
7736
7901
2749
5013
9348



10267
9407
4173
7059
7060
8764
5946
3386
3233
4464
7886
9574



5105
5163
3187
3949
10398
3963
6241
6243
5232
5231
723
4071



9692
10318
1592
1640
1593
6043
6028
2626
6027
8571
6486
6490



8490
9869
6434
3326
7917
4490
10856
2497
8664
3138
6108
12215



12152
5483
1775
5517
2378
8613
4639
6675
9175
3415
4345
7783



4417
11725
2331
636
5449
2434
6189
4360
4452
3601
1706
2313



5292
3390
5676
5698
6810
1021
1242
844
4121
6897
9485
11171



5444
6735
1209
10132
10389
3113
10103
11622
11619
5681
5315
8607



1700
11450
1379
6862
6993
9444
4352
6954
9727
10997
9454
9474



9450
9445
2470
8722
7620
12274
9335
7283
920
6069
9134
7032



8458
8960
7699
7097
4729
2280
4472
6660





260:
4214
10052
2812
5162
6750
9903
2712
3501
7527
5168
5346
10564



1609
10272
4848
8554
7685
7584
7875
4883
12569
2098
9005
8016



1217
4832
4511
10354
4039
4267
11757
666
4526
4827
12579
2173



8776
3900
2116
6377
3983
9759
955
5583
4721
3576
1498
8723



6768
8718
3644
2075
5987
7882
5225
3196
7716
495
6935
9761



3085
5953
9503
8755
5029
10373
10700
9192
7081
3865
7894





261:
485
7151
1320
1290
451
4232
7155
450
2079
447
12101
9224



6447
8360
4519
6844
8050
1655
8361
5543
2398
10378
6673
9961



998
3436
9533
8649
10960
11580
9946
3430
6890
6483
7347
3268



5572
3753
7695
5744
8043
8832
7891
6441
3622
9579
3776
3752



3773
6487
10375
8408
7209
1630
9190
3033
7177
1534
5860
2083



8378
2654
5222
6744
2982
505
690
7195
6667
702
4348
5933



4349
12102
12119
10347
8591
12096
4828
10352
10351
6392
771
770



744
772
779
741
745
6274
719
4243
7117
5591
12243





262:
8290
9642
1843
11732
12475
1766
8069
520
6505
2170
9021
10836



7854
11836
4028
3732





263:
11809
8254
6051
11522
760
6489
10701





264:
8907
8133
10594
3921
5803
9945
10922
7645





265:
4066
1661
3518
11779
11827
2479
11987
1102
9997
4456
4994
1897



6649
6269
2684
3489
6608
10414
7293
502
967
6655
9887
2074



4887
2305
7607
1852
1582
11458
4253
11609
11608
7459
6103
1624



1305
10639
10069
4293
10871
3496
10261
7784
10568
6526
10840
3542



7396
12120
5547
7108
1586
6694
4687
8748
2430
2105
541
1325



2500
4205
9610
10752
2166
6371
10316
10321
4329
12333
5381
2921



811
12135
10383
1428
3930
10207
6670





266:
2090
9566
9464
2088
2091
2106
10582
5288
7559
7950
2246
2729



2621
1225
611470
6622
780
7206
11763
3939
2108
9703
9655
9674



3145
9678





267:
2306
2969
1292
5197
12526
12222
2996
3154
11518
9179
3130
11756



11824
3924
9004
5150
1597
4858
5733
8995
10095
6969
5582
2383



9888
6686
5932
3811
12143
5699
9088
9087
8207
1596
9901
6137



1254
2780
4194
9091
8401
9488
1969
6581
1948
4979
8425
9465



789
7551
7265
10056
2516
11201
5622
7269
10981
10587
2719
6657



10054
9953
8025
2252
4474
5694
9696
10809
10346
3591
12540
2472



8500
7526
6542
8794
6428
3260
3853
834
11437
7553
2104
1174



4070
10284
11846
6905
3318
3112
7937
11417
1512
7587
8381
8471



6595
1879
5084
3895
4878
7737
7879
4626
4820
3745
8954
4765



734
7376
2762
4983
4164
11186
7226
9505
6206
2370
7873
7227



1335
2656
12316
9150
10736
5160
12224
3384
4212
1038
1090
7813



2000
11019
8633
9202
12547
610
1151
477
11842
4459
10523
846



6976
6177
3478
7601
7819
12396
3429
9472
1952
9073
6996
9361



9298
8548
3686
3959
8332
8435
11759
6603
3632
9256
7646
4433



10471
8992
2187
1321
8167
1369
12178
6756
431
11621
3129
9398



7887
6330
1777
4570
7576
5170
3648
2127
1482
4993
4083
1890



9636
10445
10415
2376
3523
6676
8678
6924
7263
9813
1641
8070



4031
1716
9502
8473
3741
4330
11966
7877
10022
12534
9351
5643



9443
9022
4325
11408
1742
9580
2032
2312
12130
6053
12465
5399



9807
2943
5566
5880
4392
1847
2346
4013
4682
6974
5503
1470



2501
1647
5895
11762
11022
7003
3169
11760
7954
3040
4710
3312



3856
11269
10512
8997
10381
1594
11874
3858
5763
2945
2389
1287



3666
12296
11449
6966
8724
3091
1104
1526
4106
2426
7312
5089



4558
1362
784
7286
6804
2692
9155
638
4087
7165
4778
6496



6596
11650
4378
2529
10338
3020
2704
2613
10136
2968
1289
2913



12208
12213
2687
1763
1605
3255
5001
10446
3830
622
4919
7514



6495
8862
3508
1757
6913
2770
456
6821
2248
6264
10756
7128



2597
11198
8880
1229
11102
2417
665
9103
6909
2972
4374
8782



12517
10310
9656
8637
959
10314
2408
8583
12484
5284
8004
7865



11095
5879
10104
8003
8292
6166
5477
12443
8881
7245
6369
4831



5113
2644
1519
7906
7797
6820
3167
8998
1997
268
10780
11194



2311
6443
12293
9910
9913
11253
2438
3383
11083
1199
5020
8646



5389
5140
825
4294
9400
9402
9536
4982
4149
8342
524
10019



6757
1894
7267
7062
6209
2655
10289
6225
423
6999
2829
4645



408
9131
10854
7186
9600
3389
3166
4041
9764
8477
11226
2528



12519
987
1542
11389
1514
6818
6026
4183
3426
9065
8073
7662



521
1525
6163
8690
2566
11120
6634
12230
3498
10852
11230
8317



9286
4782
2861
5592





268:
2306
2969
631
4857
1313
7109
1316
1358
6436
6376
1292
5197



12526
12222
2996
3154
7194
11518
9179
4127
11305
10569
10567
3130



11756
11824
3924
9004
5636
5150
1597
4858
3748
898
7330
7336



5733
1840
8995
10095
6969
10023
5215
5309
5582
10233
2383
9888



6686
5932
9183
3811
12143
5699
9088
9087
8207
1596
6137
9901



2799
8411
9354
6560
3176
10832
2488
9926
11193
11195
5123
1254



2780
4194
12044
1537
4188
9091
1969
8401
9488
6581
1948
4979



8425
9465
4172
1215
5187
11001
6054
396
6093
5210
11954
789



7551
7265
10056
2516
11201
1372
5622
7269
10981
1402
10587
10020



6657
11034
11032
10054
9953
8025
2252
4474
5694
9696
5691
10809



8977
10346
3591
9180
7391
7394
5492
12540
2472
2710
2686
2076



2660
8500
8465
7571
11887
416
7526
6542
8794
8847
6428
3260



3853
11018
10379
10323
834
11437
7553
4070
2104
1174
10284
11846



388
1135
9188
4081
504
11872
1116
6905
3318
3112
11306
7937



11417
7202
929
9811
7587
1512
8381
8471
6595
1879
5084
8348



9653
4878
3895
7737
7879
4820
4626
3745
8954
4765
5018
734



9023
11647
10134
7376
2762
4553
4983
4164
2233
11186
7226
9505



1463
8789
7834
2370
6206
4286
11883
2350
1779
7873
7227
1335



8565
2293
12316
2656
10736
9150
5160
4096
1749
1878
1023
10744



12224
3384
4212
4181
1038
968
5850
4844
1090
7813
2000
11019



8633
1077
11086
5295
3092
9202
12547
5178
1585
5771
2349
2911



610
1151
477
2885
651
9730
4897
9257
1434
10783
3065
3735



8911
3349
847
4678
4283
11842
2667
11788
10003
7487
5930
5684



11740
7691
6817
5962
1052
10745
439
4459
10523
846
6976
6177



3478
7601
7819
1952
12396
3429
9472
4315
10929
10731
1117
7823



12261
8415
9073
6996
9361
8548
9298
3686
10143
8957
3959
8332



8435
10657
2315
11759
6603
3632
9256
7646
4433
1683
10471
8992



2187
1321
8167
9757
1369
12178
6756
431
6755
7219
11621
3129



2327
9398
7887
6330
2730
1777
4570
11848
7576
5170
3715
5103



5411
11655
2924
10812
3648
2127
1482
4922
8103
12323
9555
9526



12027
4993
4083
1890
3046
4303
9846
12410
1069
9636
10445
10415



2376
3523
7618
6676
11793
8678
6924
9049
10975
7263
9813
1641



8070
4031
1716
3030
6543
10257
12281
9502
8473
5890
6492
3741



4330
11966
7877
10022
12534
5643
9351
6220
9022
9443
8593
9086



8252
3053
637
11399
3927
3956
6740
12074
3207
6653
4325
11408



1742
2842
4629 8906
5476
6247
2037
7968
12118
9580
2032
12130



2312
6053
12465 5399
9807
3325
9881
11280
8190
3467
8160
8985



6516
7967
3272 2943
5566
1284
389
5614
9307
5191
10111
6835



3477
1982
527312440
2901
5880
1847
4392
2346
4013
11723
1891



4191
7522
4412 9130
4218
4682
5503
6974
1470
4766
8026
1555



3869
2323
8023
630
7300
3951
8763
8948
2501
1647
5895
11762



5216
7003
11022
3169
11760
7954
3040
10199
4710
11126
10147
8857



5621
5668
11780
11939
5425
3312
3856
11269
8997
10512
1594
11874



10381
3858
5763
2945
2389
1287
3666
11449
12296
2318
10463
1558



448
3760
11055
1343
7993
2443
10324
3916
5526
9528
10453
2276



7298
12136
11969
2482
6966
8724
3091
8734
8951
1104
1526
2426



4106
5647
2321
7312
5089
1362
4558
784
10556
7286
2692
6804



9155
10921
10659
638
659
4087
7165
4778
7233
6020
7284
10698



6496
6596
11650
4378
2529
10338
3020
2704
2613
10136
1375
1948



1712
2968
1289
2913
2224
11190
3021
1220
812213
2687
12495
1763



1605
3255
830
8955
5001
10446
3830
622
4919
6716
9314
7514



6495
8862
3508
8463
1757
6913
2770
456
459
4180
682
6264



10756
12248
2597
11198
7128
8880
1229
11102
2417
665
3855
10502



9103
6909
2972
4374
8782
12517
6215
10310
9656
8637
959
10314



6073
550
6945
9390
11644
3958
9252
2408
8583
12484
5284
9146



353
4888
8004
7865
6919
3790
3191
5474
11095
5879
8003
10104



9560
7254
3313
6166
8292
5477
12443
8881
7245
4818
6523
601



7467
5655
7904
2616
7385
11356
10441
4896
10757
5707
2099
10943



3339
10559
10300
6401
2699
12163
6765
7800
6015
796
9475
5508



1048
6449
4831
6369
5113
2644
1519
1551
1516
7906
3948
3970



1241
8048
7797
6820
3167
8998
1997
10780
11194
2311
6443
7250



5239
4290
8558
2604
1457
9596
9792
7405
4277
12381
5426
10573



11978
7424
2328
2813
8478
10887
10427
2478
267
4782
8317
9286



2861
5592
4717
1627
11355
4384
1626
12203
1628
1634
3012
5310



10932
1938
1631
9170
11150
9904
12196
5943
7142
474
9062
10827



2811
11127
11368
5339
9304
6956
10334
4001
6413
5342
7798
3896



11894
7780
6114
3142
5535
11149
6833
3647
4112
12293
9910
9913



11253
11312
2438
3383
11537
12138
2772
11083
1199
5020
10690
8646



5389
5140
825
8086
4294
9402
9400
9536
4982
4149
8342
524



10019
6757
1894
7267
7062
6209
2655
10289
6225
423
6999
2829



4645
408
6995
8495
12394
9131
10854
7186
9600
3389
3166
5667



7275
4542
6618
519
12086
1366
4041
9764
8477
7372
1002
9763



11446
11226
2528
12519
987
1542
11389
1514
6818
6026
4183
9065



3426
8073
7662
521
1525
6163
8690
2566
11120
6634
11361
9685



12230
3498
10852
11230
8817
11471
3901





269:
10246
7020
10686
1680
2796
1248
4594
2505
2649
8814
4168
8374



6389
751
11074
5159
11572
9199
8170
11830
3320
1694
6988
4377



1158
2140
6808
1540
816
2611
2241
4706
12106
2495
7793
6342



12477
3412
7006
12049
10544
4477
12125
7475
4354
2846
7156
6363



2055
7558
5296
12398
1019
2781
7458
6926
7121
11829
3754
9602



3038
2174
11439
11516
8441
3201
538
4055
8783
11982
11239
4860



6050
7851
6664
4339
8596
1835
4062
8288
1678
5580
3810
8594



7041
6577
1960





270:
4062
1835
12226





271:
8290
9642
18431
1732
12475
1766
8069
520
1037
6505
5910
11968



2170
9735
9733
3296
9919
9736
6388
4211
10836
7854
6903
4895



4891
2824
11297
6396
5660
3159
4028
3732





272:
8063
5732
3188
12369
8106
5080
8559
5286
9212
6803
750
4584



1070
6395
12048
6368
4780
6720
3285
7270
5175
10059
3031
9890



4441
8785
8432
7543
8947
2382
9338
9916
2726
5706
4904
1112



8534
12046
5615
4488
804
3480
1954
12218
6267
11927
6258
8125



8126
5527
6214
11902
1822
1837
6240
7878
12091
8556
9969
9381



11837
7476
8665
452
3702
12328
10209
2368
7672
6087
4676
4229



7434
3076
10466
6404
841
4861
4575
2872
9917
8967
9749
12115



10692
5473
7256
1873
2198
1336
3931
5798
5808
8673
3377
510



3158
3925
8389
12141
9014
11932
3569
10651
2208
8990
3345
906



12209
1050
7346
9893
1587
3161
10825
3649
1918
6767
501
4795



10221
5149
6439
2784
10214
1584
3120
12202
5678
428
10578
7612



4274
6191
4074
6190
7590
10144
3043
5323
3640
5250
1128
8414



9490
9112
9758





273:
8564
10720
7580
12251
9922
5975
9534
9393
11158
3613
2357
8444



2119
7602
3108
2579
8365
9547
11895
2245
12158
11802
1274
6626



8769
278
2843
10230
6198 10814
2304
9207
9542
6236
10051
10027





274:
8564
10720
7580
12251
9922
9576
4259
7808
6453
6362
10533
12131



4838
10436
9019
7182
4738
7025
1326
7147
8769
6626
4708
11348



8116
2843
10230
6198
10814
2304
9207
9975





275:
8564
10720
7580
12251
9922
5975
8617
4257
645
295
9393
9534



11158
3613
6982
2357
9576
4259
7808
8296
3210
4615
747
8228



8444
6520
1408
1212
2119 12131
4397
10412
3357
10137
7547
3018



7602
1687
7289
2579
11413
4889
3108
2245
2058
1274
1304
1326



12252
9409
6626
8769
4708 11442
5397
12002
8139
5642
11431
8792



387
7509
208
2269
11533
6769
2676
1510
921
3668
8728
2843



10230
6198
10814
2304
9207





276:
8564
10720
7580
12251
9922
5975
6953
3210
8228
4615
1408
747



8444
2119
6520
12131
1212
8085
4738
11349
8769
6626
4708
2149



6060
1642
2843
10230
6198 10814
2304
9207





278:
8564
10720
7580
12251
9922
5975
8365
9547
11895
12158
4163
4240



4160
5925
3184
8350
7490 11199
6290
9672
12433
3775
6965
6236



2843
10230
6198
10814
2304
9207





279:
11873
12447
2706
9271
8545 8588
8589
1577
1575
1576
1556
1574



1554
12551
2725
3886
4500
6611
2287
8846
8469
10838
672
10223



7975
8434
3868
4882
10126 11563
3642
9352
11652
8174
11905
9191



8406
4808
4695
731
743 11308
557
8768
8766
7331
8826
8798



8805
8823
8802
8770
8810
7337
10227
12576
6424
8751
2625
2329



11117
5782
5613
12126
3234 11981
7912
4328
8756
10460
11394
11912



11140
11794
5736
7997
8001
8833
8858
8229
11559
4865
2620
4139



10306
12509
7191
6463
3414
7888
9622
2636
10442
1509
8263
5935



4620
8920
7281
9781
2244
8303
4679
10588
12456
8675
1462
10865



2027
9686
1337
7315
2477
4322
2786
12487
3434
8685
1110
10015



12292
1614
10953
5654
1401
5132
4731
4059
10385
8101
1092
2544



3727
8068
9657
11690
9843
902
11114
11508
9248
5844
4093
4193



7973
7272
9752
3395
7480
12062
7735
7260
5272
5194
2631
1302



11584
6056
11710
6971
11324
10325
2534
3684
9590
5816
1644
7616



5600
5596
8889
8884
7853
7024
1648
8367
5246
4913
12176
704



10123
9378
1836
11691
1654
9950
2628
11218
5390
4684
8860
5562



4654
5424
4056
4054
4649
5575
5573
4685
4681
794
1741
10798



10795
10815
3025





280:
8944
10309
11523
5409
9218
5496
3060
12127
10717
1563
11079
5075



5446
7162
6394
475
2895
11855





281:
8713
1390
12290
11594
6366
5219
9822
472
990
1864
5322
3734



5671
8402
1798
5624
8175
8143
2112
2007
9228
8075
8074
9689



1977
6691
4246
11342
9339
12570
3946
1709
3643
7404
4008
822



2906
9396
6308
7762
8245
5247
8501
5398
9724
10792
9537
8154



1704
3799
12444
7567
4631
10236
4053
10234
12524
11204
12520





282:
8713
1390
12290
11594
6366
5219
9822
472
990
1864
5322
3734



5671
8402
1798
5624
8175
8143
2112
2007
9228
8075
8074
9689



1977
6691
4246
11342
9339
12570
3946
1709
3643
7404
4008
822



2906
9396
6308
7762
8245
5247
8501
5398
9724
10792
9537
8154



1704
3799
12444
7567
4631
10236
4053
10234
12524
11204
12520





283:
5129
579
7910
6041
4924
9938
8648
1959
5116
11840
10410
6723



2627
2374
8349
5198
4261
7308
12451
4744
8824
5423
9208
7703



8379
7382
4873
7258
8871
2265
9643
1685
7499
8488
3329
7902



9795
3563
11706
486
9611
5352
8424
2190
6175
6882
6684
10772



7323
5838
5796
12157
5042
12530
8929
2774
7524
3019
6134
9705



11596
12028
5028
8919
6435
10672
5108
3737
6630
1204
10355
3914



934
8102
11080
3227
5595
4999
11933
10068
493
10775
6715
4025



748
3338
2537
4002
9897
12249
4601
2307
2406
12399
3839
11641



7811
855
11881
4418
874
11400
3526
2517
5240
7534
9327
9479



6916
4651
2448
4764
7115
7359
4745
2218
2445
5550
11288
4565



10376
10600
10339
6052
5107
10317
2243
9128
4595
3864
2303
9770



9539
9743
11803
7677
11096
8297
1154
3485
10991
876
4100
7296



4016
2065
72361
2548
10273
12097
2595
7217
1666
8670
10349
1774



2476
7363
4741
6796
6565
11292
1849
4373
3435
7230
3341
2541



1821
8498
5396
3198
11538
3685
8651
10348
7686
3494
2601
3152



2923
7678
10044
12272
8979
8978
9671
457
3653
1629
4117
4614





284:
6668
3235
3818
3280
4758
4297
9603
12233
6255
277
11983
5049



1677
10510
5376
4876
7709
2606
7855
5817
5502
2752
8873
7831



12155
4505
3421
8647
2936
8837
1861
10226
3621





285:
1976
5617
4364
10244
11750
7026
10598
10444
12198
6957
11935
1931



721
957
10530
5964
3926
2863
5386
3808
8614
2702
6345
10476



5312
4110
6414
9914
11598
7824
5318
417
12305
7779
5448
12493



4038





286:
1976
5617
4364
10244
11750
7026
10598
10444
12198
6957
11935
1931



721
957
10530
5964
3926
2863
5386
3808
8614
2702
6345
10476



5312
4110
6414
9914
11598
7824
5318
417
12305
7779
5448
12493



4038





287:
4532
4537
4535
4321
5690
3863
4040
5167
9368
6992
1071
1871



3307
1504
9777
11731
3677
930
7604
4057
11684
4610
4616
4007



2093
1382
8118
1103
4486
5467
5393
4515
4521
4523
4494
4498



4491
4501
4517
2428
10002
7721





288:
4532
4537
4535
4321
5690
3863
4040
5167
9368
6992
1071
1871



3307
1504
9777
11731
3677
930
7604
4057
11684
4610
4616
4007



2093
1382
8118
1103
4486
5467
5393
4515
4521
4523
4494
4498



4491
4501
4517
2428
10002
7721





289:
5602
4469
5419
5432
4637
10619
12255
11347
1232
1294
10091
12571



3340
7341
10614
3641
10384
2591
10195
6615
3382





290:
5602
4469
5419
5432
4637
10619
12255
11347
1232
1294
10091
12571



3340
7341
10614
3641
10384
2591
10195
6615
3382





291:
956
4465
4807
7960
12053





292:
956
4465
4807
7960
12053





293:
9995
10229
5629
4497
5478
1295
6535
7277
5314
5311
2845
2893



1590
3892
5403
9930
12093





294:
5961
4836
7630
4296
5666
7068
3635
8611
3090
1533
3559
10613



6581
2421
6383
11801





295:
8564
10036
10720
7580
12251
9922
5975
3210
4615
747
8228
10137



4889
11413
1687
7547
3357
10412
4397
4738
1304
8769
6626
4708



921
2843
10230
6198
10814
2304
9207





296:
10164
12268
7193
12156
12154
9486
8455
12552
5871
11173
2548
2542



5633
3141
3766
590
1082
3992
8267
6299
778
2533
1059
4146



7163
5256
11156
11648
11529
5921
8825
6682
6157
8241
1259
10579



11293
3172
3890
3244
1660
5461
9077
10417
11782
9241
4647
6085



5533
10786
11283
8864
7613
10145
3023
2254
11899
9693
4998
2249



6410
5641
7093
4052
4549
1355
3042
7495
9483
1005
6235
11042



9349
7772
11454
7077
2216
6433
7119
629
6578
12361
12367
12339



12304
1095
5688
9382
10369
3991
7244
3978
8632
6688
297
4237



8212
10490
8019
10723
6507
7628
10789
3579
7364
8000
1445
663



12144
9990
11984
1945
8030
3293
8031
2228
3137
5015
11472





297:
10164
12268
7193
9486
8455
12552
5871
11173
2548
2542
5633
3141



3766
590
1082
3992
8267
6299
778
2533
1059
4146
7163
5256



11156
11648
11529
5921
8825
6157
8241
1259
10579
11293
3172
3890



3244
1660
5461
9077
10417
11782
9241
4647
6085
5533
10786
11283



8864
7613
10145
3023
2254
11899
9693
4998
2249
6410
296
5015



11472
9171
5641
7093
4052
1355
4549
3042
7495
9483
6433
7119



6578
12361
12367
12339
12304
1095
5688
9382
10369
3991
7244
3978



8632
6688
8000
6631
2144
9990
11984
1945
8030
8031
3293
2228



3137





298
: 6538
1032
1988
11733
10816
4334
10053
7132
8765





299:
9629
10933
11170
4429
11119
10276
2041
7360
11044
10557





300:
8084
5326
12114
2801
859
5498
5501
5500
4097
2853
11026
1093



6864
7572
1322
1998
9312
3195
3212
9141
6500
7593
2695
5994



11381
2046
12450
1175
11496
10580
3308
10507
1359
766
482
7144



3680
12207
5610
4785
5099
837
3691
11589
4538
9550
8239
10350



4306
6253
8310
6929
7570
10029
6839
11665
12183
8699
10366
1752



4109
9684
10416
12239
2071
10593
11167
4792
8276
4032
1858
10979



11380
1446
7503
10114
1439
8461
3367
8284
8579
10447
5422
6013



11212
11985
10505
10684
1958
5243
5224
3420
5244
2666
3503
10830



7361
11291
3084
4658
1222
7043
833
2929
9358
7216
3236
4806



1737
1662
2206
10693
4204
2008
12168
9731
3859
8398
6959
5618



6121
10749
3974
1725
3083
9145
10401
3583
3584
3534
5237
11267



5317
1076
5918
5308
8214
7478
11067
7070
703
1013
6708
857



3213
6390
10358
1129
3328
11224
1067
2452
12064
7929
2677
12496



2669
11302
5579
9844
11950
6986
5851
9106
12319
3231
10187
11369



3962
2664
708
10537
8869
11611
10873
7664
9942
2756
11666
605



2372
2185
4657
12151
917
8091
1353
2942
12000
401
10695
9397



3623
4907
4103
2739
3833
8806
9107
5443
3374
578
2520
6380



9491
10688
783
3548
403
5055
8515
11236
7936
2002
8293
5277



1426
11734
9896
12360
3552
11263
4613
2881
873
969
7729
11390



10130





301:
8084
5326
12114
2801
859
5498
5501
5500
4097
2853
11026
1093



6864
7572
1322
1998
9312
3195
3212
9141
6500
7593
2695
5994



11381
2046
12450
1175
11496
10580
3308
10507
1359
766
482
7144



3680
12207
5610
4785
5099
837
3691
11589
4538
9550
8239
10350



4306
6253
8310
6929
7570
10029
6839
11665
12183
8699
10366
1752



4109
9684
10416
12239
2071
10593
11167
4792
8276
4032
1858
10979



11380
1446
7503
10114
1439
8461
3367
8284
8579
10447
5422
6013



11212
11985
10505
10684
1958
5243
5224
3420
5244
2666
3503
10830



7361
11291
3084
4658
1222
7043
833
2929
9358
7216
3236
4806



1737
1662
2206
10693
4204
2008
12168
9731
3859
8398
6959
5618



6121
10749
3974
1725
3083
9145
10401
3583
3584
3534
5237
11267



5317
1076
5918
5308
8214
7478
11067
7070
703
1013
6708
857



3213
6390
10358
1129
3328
11224
1067
2452
12064
7929
2677
12496



2669
11302
5579
9844
11950
6986
5851
9106
12319
3231
10187
11369



3962
2664
708
10537
8869
11611
10873
7664
9942
2756
11666
605



2372
2185
4657
12151
917
8091
1353
2942
12000
401
10695
9397



3623
4907
4103
2739
3833
8806
9107
5443
3374
578
2520
6380



9491
10688
783
3548
403
5055
8515
11236
7936
2002
8293
5277



1426
11734
9896
12360
3552
11263
4613
2881
873
969
7729
11390



10130





302:
7930
8544
10850
11315
1622
713
7552
12402
12054
2832
1378
7648



5146
2634
9070
7958
4361
8568
5530
3222
7766
9447
7141
3358



2648
3815
12564
7471
949
6651
11701
3772
8852
4184
7621
7652



9840
9038





303:
1087
3127
12531
11944
8119
5400
10714
2653
9713
6738
7171
7017



3271
304 3126
11365
6566
6841
4270
4954
5831
3493
3736





304:
9927
8180
9829
3960
3127
2849
1133
11944
7171
4954
3126





305:
4622
10899
8164
3782
5729
798





306:
5804
12016
7448
10738
10708
12014
10638
7423
7421
7417
309
10586



7444
7446
5047
10645
10646
12280
207
2096
11839
7072
9709
1612



8993
10037
6780
11613
9034
2004
8166
6931
7311
6922
8933
10494



3783
3081
2034
3781
9745
916
6666
9140
6285
9452
8035
12449



10356
10064
4275
2067
3934 11430
12246
9405
2987
9052
12318
6252



11326
8138
3397
9877
310 11058
8474
9105
11870
12047
3986
6725



1902
4332
4672
9408
4088
3842
2342
1701
10402
12181
8446
4050



6973
6860
7715
8601
0725 4578
862
7045
11785
4789
5465
10224



8088
10189
3553
9992
9964
3950
2793
6677
10001
3375
4200
10391



10676
11712
10682
4747
206
307





307:
12016
7448
9024
10738
10708
12014
7423
7421
7417
309
10586
7444



7446
5047
10646
12280
207
2096
11839
9709
1612
8993
9034
2004



8166
6931
7311
6922
3783
308
12034
3781
916
9745
9140
6285



12449
9452
8035
10356
4443
10064
8138
2067
3934
4275
11430
9052



12318
6252
12246
9405
2987
9728
11326
3397
9877
8474
310
11058



9105
6860
7715
860
2342
1701
10402
8446
4050
6973
3986
11870



12047
4332
6725
1902
9408
4088
3842
4672
10725
12181
1973
10224



3950
4578
862
7045
11785 4789
5465
8088
9992
3553
10189
9964



2793
6677
10001
3375
4200 10391
4747
206
306





308:
5804
12016
10678
10712
10735
7448
10738
10708
12014
10638
7423
7421



7417
309
10586
10589
10603
10584
7444
10644
7446
5047
10645
10646



12280
207
9710
2096
11839
9709
1612
8993
10037
8354
6780
11613



9034
306
307
2004
11103
8166
6931
7311
6922
8933
3783
11857



12034
3781
6666
9745
12449
10356
4275
12246
9405
2987
2067
3934



8138
11430
9052
12318
6252
7223
9728
410
6792
9877
3397
310



11058
9105
8474
8446
4050
6973
6860
7715
860
4332
6725
1902



2342
1701
10402
12181
9408
4088
3842
10725
11870
12047
3986
4672



6779
3950
862
7045
11785
4789
5465
10224
8088
3553
9992
10189



9964
4578
2793
6677
10001
3375
4200
10391
11712
4747
206





309:
5804
12016
10678
10712
10735
7448
10738
10708
12014
10638
7423
7421



7417
10586
10603
10589
10584
7444
10644
7446
5047
10645
10646
12280



207
9710
2096
11839
1612
8993
10037
6780
11613
9034
306
307



2004
8166
6931
7311
6922
8933
10494
3783
3081
2034
3781
9745



12449
10356
4275
2067
3934
9728
12246
9405
2987
8138
3564
2073



4786
9877
310
11058
8474
9105
6779
9408
4088
3842
4672
6725



1902
6860
7715
860
2342
8446
1701
4050
10402
6973
4332
11870



12047
3986
10725
10224
862
7045
11785
4789
5465
8088
3553
10189



9992
3950
4578
1468
10676
11712
10682
4747
206





310:
5804
2397
12016
7448
10738
10708
12014
10638
7423
7421
7417
309



7444
7446
10645
12280
207
9710
3151
3170
2096
11839
9709
1612



8993
10037
8354
6780
8499
11613
1088
9034
306
307
2004
8166



888
7311
3783
3081
2034
7362
6666
8344
7302
1234
10676
10741



10660
10641
10683
11712
10743
10575
10581
10682
4747
206
8474
9105





311:
10915
10878
10681
2529
8032
413
5270
2499
8936
5781
4938
5276



1252
892
4567





312:
8987
9785
7079
7212
7143
1975
6697
2771
8204
12195
8537
585



2367
8528
2778
10971
5848
3923
2481
10194
10765
6901





313:
9794
11709
6934
6911
3465
11447
8784
2016
8641
5611
8517
8671



3003
7544
6479
6231
563
8829
10089
2790
628
627
9649
1297



11694
5577
8598
9675
10148
4363
3836
4733
1188
3242
5221
11035



2914
8480
11016
4957
7466
6072
7775
10813
3443
7004
1031
12329



2384
8400
3441
6113
1400
10790
3796
7441
1736
6771
5928
2870



5451
8104
10128
10965
2791
9293
11843
11570
8042
1481
6529
11667



866
7292
6602





314:
12162
11631
3039
3335
1817
6144
11507
11509
10668
9931
7389
11289



3607
1332
7818
7488
11660
11565
11685
11567
11688
10617
5147
2492



1968
10962
3770
7759
8253
7833
2978
10138
9767
3688
11601
11695



4434
10033
407
4317
10372
540
8736
5135
6797
470
12257
7890



2547
9902
8793
1833
11410
5625
3866
10200
2909
10621
5905
11153



769
6607
7608
11014
10403
1714
1985
8277
11535
11659
11637
12345



12301
11505
11530
11656
11525
11606
12307
11634
12340





315:
712
11134
11581
8135
891
5866
7918
1721
10277
4963
7671
9567



512
10630
6458
3683
4951
8419
4724
5955
3114
1441
4439
8965



11628
9774
5184
10737
9308
6612
10159
5721
6759
12507
2586
7299



10335
9387
5504
6758
9577
5043
9868
6733
9951
5843
11373
4090



3481
2186
10450
10709
11672
6568
11882
5745
9469
9268
11804
10475



11196
6964
2129
10514
7931
8436
1370
7659
6865
1238
3006
635



7240
5350
6661
12111
9988
1853
1109
2594
12193
12188
1329
10264



11716
4872
347
4739
7259
3909
3596
6541
2688
2146
5708
10807



10781
10784
10777
9045
8986
8786
9839
11901
1929
1933
1935
10650



10654
7773
7801
7804
1143
2054
6917
1476
10477
4712
1561
10094



1078
1684
10485
2080
10545
2225
11028
8886
9355
2815
2957
3147



7080
5087
2577
11228
10228
4716
4719
8219
1623
5563
11698
4688



6802
7656
7655
11357
11544
11574
12191
9823
707
4304
11582
11993



11988
11991
12562
11182
11164
11162
10876
11184
2858
1541
9124
7770



11817
2155
12468
8830
10980
5410
8443
6061
2736
11463
8780
9125



11997
935
8250
9251
4203
9291
6598
4948
6065
2047
10171
7719



6540
3804
2670
3982
11540
11059
3392
10297
6763
9898
2286
6482



1045
7087
8619
7714
3117
7324
7301
7454
9151
10810
2165
1994



11179
11370
8371
7116
7222
9215





316:
10181
5990
406
6910
5922
9771
8885
1859
574
2867
532
1868



6925
10421
3134
12068
5705
2337
12241
9985
3554
11752
5564
2432



2463
1750
7099
9628
6813
6873
1600
1443
7309
12216
6438
10892





317:
2001
9411
1075
7903
8973
6228
11216
3706
9101
10886
2855
12572



10961
7464
2904
10516
4510
8333
8057
11958
4305
6046
1672
5230



11536
3762
2038
11435
2899
6559
5359
494
6709
9645
9316
8626



4344
943
5569
2274
12370
3372
2986
9817
2723
8355
5821
6502



9481
6030
1829
7862
8577
2818
10521
2507
1904
11531
2831
9309



8347
3705
6837
1942
529
3692
884
6075
11053
5261
1823
5521



5620
9741
5458
4209
10496
3133
10883
10748
11524
8416
6456
9739



10729
3716
1869
3943
10259
989
1566
9414
5570
3969
2061
12023



4834
7329
1599
12133
1298
997
3452
3409
7876
500
6317
10340



9615
5619
2025
11396
5304
1410
5125
11354
7934
11109
10205
11465



10315
7718
3708
12353
7369
4198
11754
9213
720
2565
4404
8816



2763
9750
3487
2107
2416
5876
1811
10553
2898
1699
11813
9078



839
6693
3694
2275
8945
6825
429
10377
3278
10269
9851
4308



3366
5469
4158
11942
10539
11281
4989
10437
11448
11023
4266
1399



5475
1474
3089
8937
752
8129
9624
603
6938
4302
6071
5887



8953
9754
11068
6539
11602
11856
11773





318:
1808
1810
1809
1815
8197
7925
3733
9562
9559
8735
9493
11825



7039
2571
4406
1717
4426
11479
5470
5490
5468
12179
12073
9263



1882
6962
8737
5554
454
6331
9197
7474





319:
1608
435
1810
1809
1808
8197
9562
9559
8735
9493
4045
7039



2571
4406
1717
4426
11479
5470
5490
5468
6962
8737
5554
10895



10799
10893
10845
10872
10869
10868
1277
1036
7857





320:
11284
3835
1257
7050
4894
995
10631
1387
3315
5206
2848
2458



5893





321:
1992
7276
11661
3904
3713
8363
12462
7790
8181
11322
1115
2876



4777
11426
5331
3812
11811
10448
730
1688
10292
8788
10266
7189



7105
5338
7555
6641
12172
10702
3961
2554
10739
3771
10525
11295



10175
3346
9422
3617
1340
3652
8834
1785
10107
6885
9797
2092



7460
8036
1518
4343
9541
10966
8739
7343
7970
1357
7692





322:
7998
11945
3324
2518
2605
12395
12415
6120
4228
1728
6481
9287



8237
7203
4544
11071
6485
7597
3710
4975
7397
5640
5151
10017



11392
8033
6793
5938
12275
2260
11004
9055
4389
391
2053
9786



5557
7782
1275





323:
2163
12492
12513
2433
12362
5815
6948
1690
4436
11925
10565
3671



12009
5590
2338





324:
2163
12492
12513
2433
12362
5815
6948
1690
4436
11925
10565
3671



12009
5590
2338





325:
5223
7733
3595
6743
8171
1884
4936
7342
5441
1333
4021
10203



1099
788
10465
1185
6579
12206
11278
12277
7727
3862
11362
6398



11319
5259
1270
11110
3045
511
3792
5551





326:
4483
7102
12574
11511
5281





327:
5332
5927
4548
5709
11543
8482
3822
5041
9863
838
4020
11868



5102
9911
4642
10599
1012
6488
4691
9525
1062
7489
6816
2714



8445





328:
11721
5605
2086
4366
1269
3758
7461
3682
4125
10030
11534
7537



8615
11301
4300
9716
7707
7358
12567
10049
7574
2467
8459
7101



2732
4569
7261
7972
12098
982
5952
3290
953
12385
11696
9296



5713
11495
9981
6322
6795
8719
8387
6978
9584
7285
810
8024



596
10008
7197
4265
3603
4391
9425
12253
390
9350
6547
3679



7413
11860
8874
476
4966
11483
10611
5073
8720
6724
8818
4326



8743





329:
2805
11466
10817
12063
4835
12061
4262
10839
12227
4562
4636
4607



4586
4609
3893
7911
2164
1352
7322
5134
2955
2878
5825
10270



10747
6822
6782
10822
7599
8525
8453
2918
1122
11630
4524
9768



6459
5336
11488
10000
1807
9627
2250
5726
2230
3561
10425
1547



3423
6893
7821
7482
4962
1100
1663
10881
6320
8875
1487
3299



6493
7820
973
4224
6789
7146
11806
10590
8431
11300
1913
9775



7743
2113
3428
5019
11401
5529
1903
7592
3655
8165
11845
5638



6858
11376
7403
824
7304
8472
3295
8136
7078
2556
2691
4804



4179
11583
11575
9102
11213
3074
11867
3761
9059
4156
6311
10457



12201
3400
662
7056
8999
9787
1318
7425
1235
9162
462
11826



2887
1846
8604
871
9612
9641
8005
6947
8418
6650
8835
2217



1607
587
4853
4851
2261
11405
5131
3440
3463
8753
7505
1693



2532
7018
7816
2862
2859
5792
2825
11560
2464
7947
11222
8549



250
249
1118
1532
12578
6821
1665
5514
5491
5464
5495
5457



5437
5435
4797
3327
2871
1883
1886
8888
3837
11290
3378
9236



3257
8982
7124
9026
11772
12359
12060
9068
9120
5737
9856
6932



5948
7673
4368
9281
2134
3824
10371
2540
4223
2694
10633
2639



11261
9978
5068
7848
774
7835
5894
6079
11670
8244
10750
10141



2381
9058
6257
6588
3394
6012
1778
11268
11462
8660
2158
12387



10746
9187
4432
7406
10647
1146
7316
6100
1698
4358
879
1727



12205
7170 12545
6117
10722
12516
7294
12005
11165
1857
12042
6879



3473
4353
2798
10096
2424
7595
9288
3396
4644
7051
6749
4932



1417
11847
8676
2675
3149
4493
8041
2231
10890
2301
3232
9139



3530
7139
7836
3718
12250
881
2373
3614
4126
9707
5779
9630



2905
11956
10260
8176
8370
1834
1301
5330
2572
10162
3878
8872



7166
12030
9648
2689
10149
10973
9109
4471
11920
685
6584
2239



10680
5472
5665
3253
2889
12470
8726
4199
6034
6623
4362
12405



6411
10429
12497
9570
1214
1030
617
829
10859
11229
1603
3932



1255
12084
10987
900
11188
2018
616
10866
6138
5522
1003
7084



10459
1656
9217
4190
10206
4395
11017
2310
3027
3199
8196
12409



1333
1930
7140
8939
3081
5939
1360
6958
10063
5908
2324
5587



735
1173
7035
8162
10945
7665
8546
4249
8439
4095
10156
10177



10176
931
2302
2377
8634
420
11000
2894
3098
4069
5285
1311



9272
6242
7611
3944
3947
5722
5719
5695
5720
5753
5727
5731



12515
9999
6710
9394
9395
4022
4024
10165
3990
10801
3995
10163



1553
3993
11441
10846
11136
7843
10491
4725
11489
4723
10823
5021



10914
3017
7338
10498
7898
10615
3506
626
4799
10409
11339
1805



7639
10281
10034
8405
11038
3492
8645
12001
5800
7175
4668
11480



9467
3156
11075
2995
7905
1423
5037
7870
7748
2283
9865
11865



5561
8231
8097
6110
8686
7829
8871
5715
1804
5644
4423
2259



11914
11250
8485
9933
716
6323
6799
3509
12565
7764
5263
9011



6246
4504
2358
8877
2182
11148
10158
5262
5258
4660
3899
6021



10821
10978
1801
8831
1936
6826
9977
3546
5982
3472
8460
3460



12528
5242
9347
8527
8657
8552
7744
6286
2066
9201
506
6016



5456
399
481
11107
9066
4390
6748
11573
5819
5182
9176
11244



8029
3399
7013
10161
10468
11469
5983
9301
5544
7268
5412
8121



3720
9353
2299
6358
3224
11486
2423
1330
12174
3550
4953
2783



11429
8828
8602
1300
9104
7287
8658
1986
5677
8336
12262
3449



4980
9514
7606
2388
1177
110820
1780
11551
2392
10995
9489
2737



8454
10493
975
1824
7713
12036
7172
8395
6062
4409
8222
5608



5031
12363
11455
2661
2189
5632
6561
3215
11858
2652
9866
8620



11816
2701
10674
568
11663
11649
9706
12317
12525
2916
8590
7129



9310
11073
7694
1472
5767
7178
8963
4159
3109
8186
2200
8688



5114
9659
6461
6519
5873
668
11777
10392
4625
10853
6210
3001



4310
1966
1885
7538
5702
8513
9937
10901
11642
2005
4671
9435



3667
4480
5740
6785
4971
10956
8452
11464
10848
11438
10851
10769



10766
10764
10763
3757
4574
11739
6869
8373
8666
10481
9606
12245



3756
3197
10861
6465
3593
6775
5984
599
7355
6537
7494
10728



12397
9341
2226
6185
10343
1288
4414
6983
8412
11161
11579
7999



8479
4489
1371
4138
5186
5969
6473
8915
8236
2240
2531
11898



4870
5512
1564
12165
5524
8233
5143
5631
5607
4034
2935
2934



12500
5110
8078
5324
762
823
10079
11491
8938
11159
11132
6131



11124
11129
11122
11440
6280
2750
8169
7635
7631
5372
5348
9233



9231
9221
9240
9235
9220
2122
3029
7040
12560
7016
8158
8759



8762
8163
7037
7822
8767
7066
7061
11467
942
6314
7384





330:
12032
12416
9702
8311
9871
9085
3041
8757
2659
10930
4428
11833



11792
681
10543
7911
9410
8467
8008
9867
1772
8996
7033
11906



10828
7889
12234
1084
3276
8149
11266
8572
1344
7106
7107
4195



4547
11422
9561
4650
4648
2144
2142
2148
4680
4656
4653
633



5402
409
6305
10014
6859
12364
7575
5289
3907
7452
3669
11548



2333
4742
6830
2981





331:
10160
10640
8343
4802
1528
8856
515
677
952
7450
6251
4755



8449
10473
7390
6576
11718
2615
7103
10211
10977
4800
4314
7867



9639
7932
11248
3355
7617
2525
10518
5743
1589
8208
9668
5774



5974
5814
2961
9399
11092
5321
5264
1080
6145
7689
3942
7442



2483
11748
12331
12214
5980
5480
7320
5440
10776
4781
9666
3971



7979
3468
8146
4220
4413
3920
5416
8390
1957
5313
2735
11318



4437
9259
8429
11015
7585
7435
4475
12123
4830
7053
7352
3938



7110
6593
10656
966
3928
10099
12555
8109
11578
870
5664
6989



1416
12103
11181
5195
3488
8294
9944
970
7199
2188
8851
11185



6333
10583
8715
828
11105
2300
1272
4605
6204
7241
4961
932



1479
3941
6155
6654
2411
10311
3132
10779
6695
9113
4382
4370



3238
9765
5394
7378
8693
4023
3953
8976
2263
7064
10047
461



9468
1101
4079
4728
5158
8968
12479
5828
4916
9417
3032
2685



9018
10135
7048
897
10841
6006
3968
7120
6124
3102
7921
2064



9239
11783
2698
7415
5823
5635
11864
4640
593
4046
5343
6406



2792
8092
11513
1919
11764
10026
8691
2679
7600
10399
2289
5567



9801
2125
6284
9433
2993
427
11366
3581
3097
4014
12532
10913



8020
4751
4316
6734
1442
674
6025
5541
2179
7168
12170
805



3080
12469
11468
11287
5842
3282
9440
4309
12511
12508
2063
10517



6891
9594
11087
4606
8366
12400
7712
4288
6764





332:
10160
10640
8343
4802
1528
8856
515
677
952
7450
6251
4755



8449
10473
7390
6576
11718
2615
7103
10211
10977
4800
4314
7867



9639
7932
11248
3355
7617
2525
10518
5743
1589
8208
9668
5774



5974
5814
2961
9399
11092
5321
5264
1080
6145
7689
3942
7442



2483
11748
12331
12214
5980
5480
7320
5440
10776
4781
9666
3971



7979
3468
8146
4220
4413
3920
5416
8390
1957
5313
2735
11318



4437
9259
8429
11015
7585
7435
4475
12123
4830
7053
7352
3938



7110
6593
10656
966
3928
10099
12555
8109
11578
870
5664
6989



1416
12103
11181
5195
3488
8294
9944
970
7199
2188
8851
11185



6333
10583
8715
828
11105
2300
1272
4605
6204
7241
4961
932



1479
3941
6155
6654
2411
10311
3132
10779
6695
9113
4382
4370



3238
9765
5394
7378
8693
4023
3953
8976
2263
7064
10047
461



9468
1101
4079
4728
5158
8968
12479
5828
4916
9417
3032
2685



9018
10135
7048
897
10841
6006
3968
7120
6124
3102
7921
2064



9239
11783
2698
7415
5823
5635
11864
4640
593
4046
5343
6406



2792
8092
11513
1919
11764
10026
8691
2679
7600
10399
2289
5567



9801
2125
6284
9433
2993
427
11366
3581
3097
4014
12532
10913



8020
4751
4316
6734
1442
674
6025
5541
2179
7168
12170
805



3080
12469
11468
11287
5842
3282
9440
4309
12511
12508
2063
10517



6891
9594
11087
4606
8366
12400
7712
4288
6764





333:
1001
4906
8800
3344
2015
2020
4318
7710
10721
2563
3717
1228



4603
9718
1317
2819
8797
6896
9688
6275
6022
6023
6010
1908



12491
3275
4299
8601
4383
7942
5268
10515
3747
558
7924
8917



7861
7946
3744
1396
12348
7923
10606
2285
5758
7667
5463
5546



7922
5549
12374
2282
4005
11378
11112
7984
8811
12299
4713
3333



5889
7864
7940
1761
11398
3821
2238
4004
12159
9680
8705
9007



3972
10492
1765
8840
7860
1405
6159
11243
3817
1502
4711
9800



3945
8082
664
4003
6437
7684
4102
3973





334:
1523
2933
4956
6234
6928
5998
10172
7536
3631
3520
11142
5900



1996
8969
9226
7768
10920
10831
3174
10390
6829
6832
8422
3388



1617
5714
4375
10999
8464
2255
5214
4427
1955
4279
11633
594



3168
10884
6049
6631
6194
6223
5917
1368
1418
1351
5670
5697



1491
7354
7180
7371
6553
6011
928
10117
12297
3664
5929
4043



10992
1144
3217
7021
5189
4788
7603
5872
1107
10072
6527
5109



4881
9852
4108
7739
6628
8123
1613
4323
7377
1697
9620
11880



7781
3078
12259
3551
12426
10058
8744
1061
5971
584
4219
12527



954
11627
2114
1581
4135
3267
8356
9499
5531
7817
653
5065



6344
8377
12512 10041
10082
9401
6854
3502
5742
5954
4072
6097



3479
7398
11510
2184
11738
9872
6915
6429
1743
9416
9586
5241



9345
2234
6173
3646
4997
10420
10452
10367
5827
8145
11490
8669



4217
10730
2926
9796
6632
5532
4988
10910
8890
9229
10771
12439



6960
5406
1309
7523
7626
4222
6737
8760
1394
2420
1149
7297



8017
7952
5653
1150
738
4811
6665
8704
6846
5297
11123
11135



11027
11963
4709 11761
3739
2835
10287
6587
9001
1595
1283
9529



8087
10291
8801
8105
7255
2212
8972
5764
10625
3266
1263
4582



1874
10424
10061
6256
2767
6798
11099
7366
6400
2490
890
1425



9601
2202
4027
2609
8582
2990
3014
11219
545
1065
2693
3848



11452
768
7539
6889
5039
3505
11776
4037
10554
2960
5723
8927



2765
6091
11885
2884
8635
1971
800
7345
6787
9790
8855
2143



10288
4846
12471
3707
4833
11065
8698
10819
2897
1946
1486
3365



4763
2908
8774
3723
9111
8259
8421
8420
1073
1243
1671
2441



5303
941
11089
1314
10431
4320
598
6379
7019
10113
10060
4886



8623
840
8916
8438





335:
2809
1347
3070
5519
6353
4683
10278
7995
11147
4915
4817
7113



11420
1517
6416
864
2738
9453
8524
6360
1213
5208
9694
8994



10342
4151
9222
923
12313
3570
12419
12544
5536
8592
12258
1951



2817
1282
3183
945
10906
11904
5014
9906
9939
9963
1814
12017



11152
11151
10075 10440
8950
4508
1999
4019
10028
5341
5555
6544



4470
5111
2582
5095
8529
9270
10532
2603
6266
5183
10616
12434



8392
9934
8028 11427
6678
10220
9984
10875
11154
2840
1899
1022



10969
3615
6536
4357
11961
3073
9159
4192
8746
6211
7321
6531



7520
7943
11246
661
8912
7676
3024
8161
6508
3996
5054
10071



12039
2298
9149
9126
9123
9751
9200
7546
2175
9419
9670
3977



8562
7711
4388 11106
10681
1738
3580
7344
5299
8466
1572
1735



543
562
9152
9147
2211
2353
11077
8007
12109
11282
8761
1917



10666
2558
2560
9258
6729
10691
10570
8130
10658
11009
1060
2523



12128
11669
1851
3077
10021
8747
3062
7751
8521
8185
10968
7149



4920
5826
9879
6009
4918
6638
6614
4899
6609
9959
9996
6005



9882
6007
9936
9970
9880
9915
9993
4923
5794
9941
6610
9912



9935
9962
9991
6637
9908
9957
9998
4974
5931
5857
5830
5852



5865
5903
5833
5862
5007
11889
5093
5096
5098
4978
4892
6002



5934
5788
5751
5785
5958
5985
5981
5822
6640
6671
6643
6645



5227
12542
2875
1909
2273
10016
12407
9117
9178
9210
9182
9211



1910
9186
9184
9148
12431
8650
2612
6985
991
8849
3562
3545



10129
11329
3522
3568
3590
422
3516
8470
3541
3587
3515
3566



1261
11303
11387





336:
1608
435
1809
1808
1819
1810
1815
9824
7252
398
2455
9562



9559
9493
5003 10119
12283
9948
9836
733
7039
4426
11479
5470



5490
5468
8773
3533
7619
7474
9197
6331
8737
6962
6914
5554



10872
10869
10868 10799
10895
10845
10893
3095
11702
12076





337:
6292
6296
2925
9234
4245
4030
8504
3729
1278
1276
2356
11921



6564
9267
7681
6571
6315
4473
7249
6569
1545
1549
8359
8695



6567
8697
1550
6294
5078
11515
1009
9626
6313
8442





338:
9269
4225
5257
2039
4327
4244
3256
9569
11115
2874
10078
11414



2797
1571
3740
5525
4757
2614
4167
2496
7866
1249
5672
2395



4801
11979
7313
3495
4528
7535
5017
5728
2539
3381
9306
1978



4272
8853
5847
7159
9691
3906
6563
1506





339:
9269
4225
5257
2039
4327
4244
3256
9569
11115
2874
10078
11414



2797
1571
3740
5525
4757
2614
4167
2496
7866
1249
5672
2395



4801
11979
7313
3495
4528
7535
5017
5728
2539
3381
9306
1978



4272
8853
5847
7159
9691
3906
6563
1506





340:
9784
5190
4849
6165
8502
4479
10406
10268
5977





341:
9784
5190
4849
6165
8502
4479
10406
10268
5977





342:
647
2051
8014
3393
10620
7556
1770
6506
9947
5875
5960
5682



2115
7965
1026
4342
9448
12338
2530
2052
2057
9802
4635
6263



6250
6265
648
7349
7090
4593
1421
11800
7799
10710
6823
12510



6930
3206
10032





343:
6115
8689
3274
2618
8107
4944
6200
8541
802
2608
8397
6422



7563
3305
10923
2865
2164
4187
4295
4903
10152
6888
2980
11640



4652
592
4424
7353
9920
9891
11011
11040
1231
8681
10778
1227



8900
4843
9156
2011
1415
8510
869
3034
3801
11645
10469
10547



455
693
2502
3309
12029
12320
1471
7941
1465
11436
4387
1876



7757
4591
2992
12535
5012
1066
5511
7220
6287
9982
639
5884





344:
6115
8689
3274
2618
8107
4944
6200
8541
802
2608
8397
6422



7563
3305
10923
2865
2164
4187
4295
4903
10152
6888
2980
11640



4652
592
4424
7353
9920
9891
11011
11040
1231
8681
10778
1227



8900
4843
9156
2011
1415
8510
869
3034
3801
11645
10469
10547



455
693
2502
3309
12029
12320
1471
7941
1465
11436
4387
1876



7757
4591
2992
12535
5012
1066
5511
7220
6287
9982
639
5884





345:
6421
3565
10219
3371
7840
1723
6161
8243
1865
1827
11869
623



11423





346:
4514
1219
10858
6672
3259
7266
4215
8062
4171
9227
9633
8002



12033
8080
11367
8440
6700
1911
6590
9230
12194
6068
7562
11521



11587
4044
9133
6736
1178
4773
9782
5388
3122
8821
6226
3789



3527
8952
6047
7411
5290
6426
6216
10419
4816
7615
2761
9079



11600
4502
9850
8065
6902
1436
5686
10898
8152
8155
4230
5104



1659
7568
8560
5585
5128
6679
9332
9329
2095
6346
6659
5701



4884
9654
8034
10115
8557
9587
3182
7231
9717
11375
6070
2404



1767
7075
7455
2457
5255
7959
6350
5750
1414
903
2341
7578



10703
927
2248
12132
863
9883
618
3678
12480
8396
7847
9558



11682
2469
7373
10386





347:
712
11134
11581
8135
891
5866
7918
1721
10277
4963
7671
9567



512
10630
6458
3683
8419
4724
5955
3114
1441
4439
11628
5184



10737
9308
6612
10159
5721
6759
12507
7299
10335
5504
6758
9577



5043
4852
9868
1887
6733
9951
5843
11373
4090
3481
10450
10709



11672
6568
11882
3797
5745
9469
9268
11804
10475
11196
6964
2129



10514
1370
7659
6865
3006
7240
6661
9988
1853
1109
2594
12193



12188
1329
10264
9045
8986
1929
1933
1935
10650
10654
7773
7801



7804
10477
8219
11698
7655
11574
11544
11582
12562
11164
10876
11182



11162
11184
2858
7770
11817
2155
8830
5410
2736
6061
6540
2047



6065
10171
3804
3392
10297
3117
315
8052
9815
7301
7324
7454



9151
2165
1994
11179
11370
7116
7222
9215





348:
2559
10307
2499
8094
9328
6121
1307
6139
3619
3556
2873
5711



1391
1177
10048
10133





349:
2559
10307
12499
8094
9328
6121
1307
6139
3619
3556
2873
5711



1391
1177
10048
10133





350:
6170
10387
820
4182
9177
11720
535
1444
1262
10488
10083
6092



11526
11371
6812
8205
9677
11325
10718
2183
531
3846
7492
6927



3466
4554
2717
6059
7927
9446
9471
9470
9476
9478
9497
9473



4854
7761
2526
10504
7846
1389
4350
1888
4581
4583
4560
4564



1751
8487
8489
11499
9701
5856
8745
2880
1803
1156
3107
8710



3704
3010
2932
6861
2743
4442
4774
3639
1620





351:
6170
10387
820
4182
9177
11720
535
1444
1262
10488
10083
6092



11526
11371
6812
8205
9677
11325
10718
2183
531
3846
7492
6927



3466
4554
2717
7927
9446
9471
9470
9476
9497
9478
9473
4854



7761
2526
7846
10504
1389
4350
1888
4560
4583
4581
4564
1751



8489
8491
8487
11499
9701
5497
1579
5856
8745
6856
6470
11959



10131
827
11101
1374
5291
940
6870
10411
4058
11708
1247
2414



4133
2045
6039
6478
9442
3602
2111
438
1381
10648
6711
3008



11169
8555
7810
1872
10183
6946
2555
12266
6834
5375
7465
11021



2915
644
9326
3230
9185
11781
6084
7725
8511
12308
7518
6096



8053
10529
4914
11994
2145
11924
1386
1880
7453
1927
8819
1341



2473
11742
8710
3107
3704
10948
9928
3010
2932
6861
2743
4442



4774
3639
3165





352:
2857
10800
6701
7881
9041
3658
3547
9249
12438
6098
7560
8334



2860
10885
3337
6907
1104
98959
5754
5088
12031
10458
6468
3887



3163
9860
9548
487
8326
1271
5539
9371
9340
11769
1153
11238



11180
10497
10116
1083
7915
11006
5436
5438
5434
1342
3075
9664



9905
8539
2635
2390
1771
7095
11918
3829
6122
9096
11562
7609



773
12429
11502
1670
1652
9013
9009
9012
5992
1460
3254
5360



3832
8714
4271
11931
11928
10964
8362
12312
7680
8286
9295
4400



11687
9265
8142
8140





353:
1313
51971
2526
7194
4127
10569
10567
3130
11756
3924
11824
5150



1597
7330
7336
5733
1840
8995
10023
5309
9183
3811
2799
3176



1007
2780
10768
11917
12044
4188
1537
9091
4172
1215
11954
5210



11001
6054
396
6093
789
7265
10056
5622
7269
2665
1409
1402



5885
10020
10587
2719
6657
10054
6174
9953
8025
2252
4474
1348



5691
2034
9180
3591
10519
5492
4422
2710
2076
8465
12482
7571



11887
6428
3260
11018
10323
834
11437
5486
604
7553
388
11872



9188
4081
6905
11306
7202
8348
5018
9023
9484
9512
4553
11385



2233
1463
8789
7834
11916
4286
2350
11883
8565
1749
1023
10744



4181
6476
5850
1090
11086
5178
2911
2349
5771
610
2885
5427



3735
3349
649
847
11740
439
4459
10523
846
4315
7823
8415



6975
9073
10143
8957
2315
2292
6603
1321
8167
11331
9757
6755



2327
2730
11943
11848
5411
5103
10812
8103
4922
9555
12323
9526



3046
4303
9846
9636
10415
2376
7618
90491
18631
2452
9813
8070



10257
3030
4031
4065
17161
2281
6543
5890
6492
3741
8608
6220



3053
9086
637
6653
8593
11408
12357
6247
4629
2842
5476
10303



2032
8190
1284
12440
9307
3477
2901
4407
5191
10111
4218
4412



11723
7627
1891
7522
2323
8023
4766
8763
3951
8643
2501
5759



1647
1794
11762
5216
5233
8857
11939
11126
5668
5621
11780
2443



5526
448
7298
6966
8734
1104
5647
2321
12229
10556
1362
7312



5089
4558
784
7286
2999
10921
10659
6804
659
6020
7233
6496



4454
10299
11650
6596
4378
2529
10338
1375
573
2224
12213
1763



1605
830
5001
10446
3830
4701
776
9314
6716
7514
3121
8862



3508
8463
1757
6913
8530
5097
7740
2770
459
4180
2049
3855



9103
6909
2972
4374
2939
12517
6215
6073
6945
11644
2408
8583



12484
6919
5474
3709
3313
12163
3116
9475
8417
10673
6369
4831



1516
1241
7797
6820
8998
1997
1768
2328
7424
11978
8750
7780



11894
3142
12577
12293
11312
2772
11537
10690
1718
8646
8086
4294



9402
9400
4982
4149
8342
12024
2655
10289
6995
8495
7186
9136



9600
4718
3389
4542
519
4041
992
7372
1002
11226
2528
12519



1542
11389
1514
6818
3426
4183
9065
7662
8073
521
1525
6163



861
8690
2566
11361
9685
12230
8817
4888





354:
5626
2966
4663
4805
5637
8787
12445
11680





355:
9746
2454
2820
6126
9527
11327
4206
1124





356:
3803
2159
11265
10262
1208
2265
6548
4559
9949
8892
1253
5869



6212
6017
11175
3155
5749
2919
12006
2161
7594
10558
12270





357:
11897
12310
11976
5165
7935
565
11277
908
12483
7089
11639





358:
7374
4134
5499
4481
11052
4793
5466
6747
3954
6213
640
4867



12055
11571
3592
1079
5345
10097
11174
7895





359:
10455
9279
2524
4394
10985
4178
3240
6391
10552
3567
2029
1042



1797
11402
7449
8268
2462
865
5988
3908
14041
1416
5916
7278



7325
12549
7885
7883
6455
11569
6302
12413
9181
1962
2013
3143



8399
10462
7807
7806
3136
3131
11003
1251
7387
2412
10649
10077



4839
7683
6752
8353
3902
11971
9700
7909
1974
1145
11946
8178



8457





360:
243
8836
3558
6739
5558
11923
11784
11730
10397
3528
7134
8772



7228
2453
8340
7839
1256
10038
12184





361:
10213
10215
12148
10197
1692
10198
10202
12341
3385
2836
6484
11717



10618
3411
10927
6460
1921
10241
1907
12389
7827
9025
5807
6681



12391
12411
6550
974
5415
9578
5213
4987
4080
12522
2369
12124



4767
6352
7944
10217
10216
3413
9071
3511
11013
10218
7981
8298



9862
2132
530
3844
6662
6625
4550
6341
1722
7027
9323
5094



3611
2266
4530
7763
7290
11753
2081
4242
11360
1239
2673
4531



8677
4930
2570
7994
6309
4476
9282
6794
3851
3634
3637
10242



10245





362:
922
10181
10184
6562
3258
6528
6629
1180
9451
406
6910
5922



8885
9557
3599
7579
7047
2882
10405
3975
532
1868
2867
574



1859
6925
6880
950
10421
6722
1464
1500
5038
12068
3134
12241



9985
5705
3554
11752
2337
1748
4287
7838
8011
5651
5941
9051



5564
4621
7863
2536
5059
5773
5837
12335
6680
7099
7118
10998



2432
2463
1750
9628
6813
3628
9033
5836
10449
5420
5207
3387



7412
3524
394
11949
8547
4036
6873
1600
1443
5349
4233
9783



7318
2864
11057
1323
3052
10007
2599
6329
9359
7436
7657
11879



1025
12197
9682
10707
9968
4445
801
8656
6142
2948
7184
4255



10302
10364
12386
73091
2216
6438
2050
3050
2920
5965
11072
9831



3854
5662
12003
3011
2728
9738
1017
8134
526





363:
6176
8639
1152
1522
8352
6375
10201
5139
8072
2308
4150
3445



7428
2024
4633
4866
2581
12337
12476
10035
8153
11036
3036
7174



5414
3759
9595
1795
7561
5236
11547
1813
1163
4779
3695
4760



6556
8661
11299
11986
8914
10050
11070
4068
809
4568
3229
10263



4659
10993
8382
1047
2931
9895
4478
1570
7237
4269
3838
1016



4137
11183
12276
11482
9854
11264
3433
7046
8216
3513
9383
8148



1602
6058
2215
1842
5999
10212
8258
6591
4686
9520
8497
6648



3088
6786
5986
4715
7335
6510
1839
5658
2103
11352
7577
4634



7828
9426
11791
11970
560
12269
10454
3529
7253
5891
880
4009



2760
7540
9015
8638
3356
5775
10574
1338
12117
3249
7644
9762



3751
7042
3672
4202
5589
6019
9835
7229
7693
3086
10296
9608



11707
2588
6425
9954
7071
10204
7525
6469
3192
5805
6230
4385



2180
6991
11841
9662
5353
2773
10791
3059
6304
7745
5886
6518



1536
1863
1385
5022
6003
8904
7257
9755
11607
11221
6807
4696



8329
9798
1221





364:
4714
6552
6036
9637
11177
7157
2425
8841
4455
8468
3444
8404



3936
763
10942
1668
885
1786
10802
7271
8055
4969
11623
3054



11828
2575
5685
5924
5460
4819
9989
11834
10380
5520
9589
3334



4912
9894
7974
8700
12342





365:
4543
9647
3507
1211
3246
10549
2019
2094
4177
4338
9238
5770



4772
6343
4048
12231
10905
12008
4926
12442
2270
5780
11506
7565



1094
12147
1451
473
3294
11314
9173
2035
2593
12094
5494
5488



3087
2026
8206
9878
4705
10472
4746
6642
5937
8790
11896
2244



5026
5835
7953
11936
10110
7133
3785





366:
10341
5696
6298
2325
2938
8027
1580
7429
589
12057
10353
3976



3860
1646
9225
842
5818
4573
1901
8803





367:
4208
3058
2394
8507
2917
6904
1345
10919
4336
1202
7187
1114



3353
3660
2387
8437
9496
9413
11082
8079
12040
2841
4934
12221



8040
4875
7674
11844
10774
6033
11664
5283
5192
1085
3967
2564



3007
11334
11393
9940
872
2508
12169
3721
6130
1306
5401
10879



883
9814
5802
10180
6895
7491
3952
4386
8159
1106
5271
6278



4124
11612
6546
556
9556
5366
11798
6295
10902
3531
3572
3574



7418
3765
2343
7356
6349
9808
3624
9583
6431
3128
8098
3871



2494
1319
2271
4787
1838
1456
5064
6878
9972
8908
6774
3809



8730
11094
670
1496
5212
3588
9459
8518
6963
10018
7791
8264



2418
6442
11211
1636
6014
5278
4155
11100
10528
11481
10313
7126



8887
2600
11160
3425
5846
4898
4527
6393
12267
1747
10239
10330



3670
10329
10327
11203
10715
8883
10249
1046
11155
5228
2070
2128



7076
6412
6875
5853
8795
564
9262
2640
5083
1875
6898
6951



12373
7127





368:
6754
10585
6689
9826
964
4693
8822
6462
691
2410
9712
9884



3219
7232
12539
1991
11008
9322
8725





369:
1461
7305
10596
7966
8323
9036
4856
433
2663
8335
8509
11775



10231
5820
8056
12556
5630
11866
9292
2220
509
12153
7303
12393



7926





370:
1200
12300
576
5306
8372
2320
7732
6788
3633
10013
657
1403



10074
7663
6585
8051
2569
2722
8325
1121
11616
4248
6146
4276



2647
5766
9625
10767
6273
4186
6188
3988
4877
3998
8151
6018



2040
595





371:
1200
12300
6283
5306
1573
8372
9432
1142
533
2320
7732
370



1267
595
3852





372:
7477
1676
4448
2400
6045
6940
9923
11995
8913
10513
634
7969



11746
6446
4371
1018
4026
10874
11604
5505
9219
4140
6427
12025



1669
3605
5027
10847
11128
1483
9362
2044
12343
3560
430
11220



12146
10479
7769
4704
5385
12424
3286
1435
12461
10990
7985
5652



6086
12067
2785
6367
3470
2598
10591
4756
2959
10900
11878
12536



5795
12559
5450
8391
10046
7073
3157
2834
8144
2236
2782
1926



9617
1987
2822
2279
2196
10312
5369
10124
11903
12289
4170
12092



8540
2362
12010
5204
9431
6620
3500
9585
7989
1508
4885
877



6119
3807
2585
12330
4380
3820
5302
3056
6337
2060
3096
202



4492
1604
11737
710
8574
11646
3171
9030
765
5680
10955
6592



2624
9114
5576
5196
5912
1980
11275
1119
3929
9810
12099
11930



4546
3504
1950
7696
374
1703





373:
7477
1676
4448
2400
6045
6940
9923
8913
10513
6341
1746
6446



4371
1018
4026
11604
5505
9219
4140
6427
12025
3605
11128
9362



1483
5027
10847
2044
12343
3560
430
11220
12146
12424
3286
12461



10479
10990
5652
5385
6086
4704
7769
7985
2785
6367
10591
10900



11878
12536
12559
12067
10046
3157
5450
8144
9617
1987
2822
10312



2196
5369
10124
11903
12289
2362
12010
6620
5204
7989
4885
877



4170
2585
8540
4380
12092
3820
1508
3056
6337
5302
3096
2060



202
4492
1604
11737
710
8574
11646
3171
9030
765
5680
2624



9114
6592
10955
5196
5912
1980
11275
9810
12099
4821
10994
8060



1531
6262
4632
1058
2716
7317
4825
3731
5786
414
5576
1000



9714
1854
2489
4638
4485
11930
3504
1950
7696
374
372
1703





374:
7477
1676
4448
2400
6045
6940
9923
11995
8913
10513
634
7969



11746
6446
4371
1018
4026
10874
11604
5505
9219
4140
6427
12025



3605
1669
10847
5027
11128
9362
1483
2044
12343
3560
430
11220



12146
10479
4704
7769
5385
12424
3286
12461
10990
7985
5652
6086



1435
12067
2785
6367
3470
10591
2959
10900
2598
11878
12536
12559



5450
10046
7073
3157
2834
5795
8144
9617
10146
1987
2822
2279



2196
10312
5369
10124
11903
12289
4170
2362
12010
5204
6620
12092



8540
9585
9431
3500
7989
1508
4885
877
2585
4380
3820
3056



6337
5302
2060
3096
202
4492
1604
11737
710
8574
11646
3171



9030
765
5680
6592
10955
2624
9114
5196
5912
1980
11275
5576



9810
12099
11930
4546
3504
1950
7696
372





375:
2393
3407
11789
2984
10140
7809
9834
6717
6156
10608
6364





376:
6589
11497
6836
11332
11382
5877
2213
2951
8215
1064
1057
8227



8249
10551
3319
8195
8218
8221
9142
9661
8198
6116
10889
10520



7399
3659
1734
5077
3510
5010
8351
9403
9244
483
4466
12167



7031
4216
6477
4107
12150
6828
5305
12404
1567
7248
11614
7445



3482
5079
2734
11033
3311
7402
4221
2223
1040
9289
2902
4438



4600
4324
9168
2576
10382
7057
4976
1719
10894
10483
3361
9016



5634
7496
1784
9760
12134
7188
8533
10833
1303
9336
4810
10290



3800
11192
6040
852
586
9907
11699
8192
7242
2963
10418
12069



9588
10604
2330
9242
6800
10782
7530
6261
8220
8962
7198
7306



7697
2102
2085
9372
5757
3700
11432
3755
11635
3376
11831
9573



10934
12553
9010
12441
2757
3093
11913
9725
3144
5892
10167
7130



5337
3872
1625
4143
7507
3179
7982
2590
1203
1932
1225
6260



1044
9032
498
499
9053
7023
8322
4927
3331
10393
8132
11728



8655
7771
988
8909
1791
5413
2157
10976
1365
2511
3200
7167



9986
11603
1041
6238
10166
11045
9704
9621
7669
2014
3281
11206



2697
4067
5118
12401
5368
12284
9430
7136
12412
6387
9543
2522



572
5119
1606
8394
10248
11146
10285
11719
6776
11309
11139
10439



9245
11197
11729
2036
4759
9773
6077
5571
11810
10084
10857
8191



9597
8037
3279
8225
797
976
977
979
999
5185
4166
9598



4901
7135
2944
10328
8189
6781





377:
10527
6513
5978
2596
1034
5101
1637
6141
6160
5334
12110





378:
11873
5442
7939
7815
10258
11591
11595
4116
4129
9663
4114
11588



11586
11585
9690
11556
4111
11550
9687
4264
11554
5405
4130
3884



9667
3491
11545
3879
11546
3875
9646
3873
4105
3881
4101
4086



4084
3850
4082
4078
8588
8545
8589
9271
8300
5033
5035
5058



1832
5005
9380
5056
2097
1720
7704
10811
2733
5138
3490
8251



3805
2314
3573
5858
2753
2629
7295
557
3786
8599
9153
2012



5249
12190
6141
5334
6162
7529
1731
10108
463
12105
5048
660



7731
10191
9632
11189
6866
10706
4292
7977
437
10106
5124
1552



2131
7651
11225
8644
1923
3585
6432
3532





379:
8061
8064
7961
7964
404
3270
11215
3265
10192
11241
2078
11168



7871
12087
4499
1544
1412
6268
8820
11677
914
5507
4996
4991



4416
4419
1981
4347
3401
10092
11767
11031
12403
9799
8861
3101



12558
10974
1155
1157
1162
1171
1167
10984
5609
5612
5156
5809



5813
2069
10182
4042
3226
7512
6791
5053
6674
11820
11674
10970



9466
11069
10506
2468
2442
2444
2291
2435
2288
2294
2296
1196



12392
12414
12417
12418
12430
12435
12437
12453
8217
3323
4516
10500



12038
2221
5834
3035
7400
2413
1207
2833
2850
4552
4556
3578



5581
555
7183
552
7176
553
7179
549
7185
4518
4522
4539



4541
3889
12474
5841
9042
5812
8199
8200
8494
469
4590
6355



711
9845
9847
4984
7919
7432
7433
4285
11121
4503
7100
5439



2561
5559
1944
1237
10062
2402
4735
6583
3891
5718
5725
5746



9737
2946
2949
7280
5538
2658
2674
9057
8712
9135
5144
6967



11626
10759
9277
11254
11258
10005
400
1615
4506
2137
6636
12186



843
8021
3464
4335
12045
3009
6698
7468
1733
3239
4185
12228



1011
4131
5279
11790
5453
5452
9366
10461
6840
5340
4790
9069



4421
767
6182
2807
11421
6683
6090
4254
11473
4256
7225
11457



6361
5623
1560
2751
6147
6148
6151
11409
11411
11415
9097
1310



3111
4301
9508
7650
1796
11061
11104
11934
6530
9063
10105
4959



7479
8137
11271
4864
11951
8624
8110
5704
4119
6365
9492
7963



10912
2447
3204
3317
2521
2451
2450
2546
2514
3202
2487
2365



3205
2363
3148
2396
3354
2480
4047
3352
3203
3175
3243
2484



3262
3173
2419
2335
3380
3316
4051
3164
9189
11975
11977
12013



7351
6499
6517
11125
10880
9640
9651
5762
5769
11996
11736
6987



8226
3336
8224
1210
722
7083
11418
5972
9384
11424
6600
7623



7528
10940
10803
8430
3662
3099
4359
5542
1686
11972
8902
2017



2110
6669
6692
11541
4284
1473
4147
8879
8882
4376
8535
9364



10522
7701
8652
11989
10456
4561
12185
1501
3769
9669
5220
5218



9616
2405
12056
491
492
8338
819
2222
6325
1906
9158
6199



421
5392
2403
3750
694
697
699
724
728
6340
3693
3696



3955
7148
1166
2645
2409
8777
4990
8278
8279
8281
8304
8306



8308
8312
947
4453
1206
10609
10755
11735
11539
11786
1546
10196



7632
3082
3037
3110
3106
6524
3289
12083
12085
12082
490
6197



12080
12079
2219
8066
6405
8894
7333
6385
10897
8930
1223
3912



11910
1912
8891
3475
4698
2662
901
1194
1503
1507
8696
9203



6471
566
6133
3248
11892
5459
3302
8553
4703
8621
851
4337



4341
3675
2970
5601
10607
9524
12425
7307
9223
3918
736
729



961
10464
6196
1543
2758
2971
5700
12211
2578
10438
3880
1539



8865
8981
3738
12457
445
3540
11456
5703
4762
8680
2839
583



4627
8732
5599
2623
6321
5659
10004
10168
8741
6218
2194
2214



6554
6244
6555
2191
7472
8949
2896
6699
6703
3469
4902
9719



1995
5537
3957
3964
11679
3719
424
8848
3586
11832
7055
10785



9507
7643
10467
7642
10395
8808
9495
8628
9050
12192
9591
3681



7246
11257
10605
9721
2379
1187
1674
10009
1108
6522
3363
3360



1049
1051
1056
7756
7738
8897
2974
8924
2988
7438
832
4666



11859
4702
2991
4355
8867
4968
8868
3897
8895
2967
4669
4697



4674
4700
9415
6838
6549
2617
621
1831
10829
10808
4794
6627



4776
7605
8694
12200
11056
11002
7868
3699
2610
419
418
10435



936
2345
6762
12543
9549
10661
10689
10699
10719
1190
1165
1161



1170
11929
11419
7988
3798
1218
1220
2721
1800
6167
1268
3178


380:
7583
12223
3882
6192
10967
5287
11700
9299
12204
3071
9116
6233



3626
6939
5957
2854
2852
10080
6245
9582
11285
9334
2429


381:
611
12004
6814
5320
1380
5991
7802
5112
6551
402
7832
382



11138


382:
611
12004
5991
6551
7832


383:
4837
10247
4513
8974
9193
3250
11577
10663
2910
9363
1186


384:
11191
6118
591
9506
9370
8717
1055
9504
10360
6606
575
5878



5911
3404
1764
7501
4369
4367
12240
12238
2227
7439
2003
7437



7440
7521
11862
2334
12466
12137
5673
11590
12090
11766
7515
5121



3935
6239
6232
836
6307
6289
6328
6310
9157
8674
2257
2828



2851
6282
1990
10944
5126
5127
905
3876
907
8578
912
8514



8899
12309
12059
10972
11683
4862
4099
11900
9518
9521
4985
9517



6702
960
9819
958
965
963
2731
11043
10487
10486
11010
7682



1759
9618
9619
5901
10142 7649
753
755
4752
6402
11686
1413



656
5951
9563
795
8523 4826
11233
3115


385:
12282
3816
6979
4487
8194 4174
1027
3606
9593
8612
10293
4967



3304
6074
6908
8506
6658 7332
8682
9519
4399
4231
3446
3597



11520
11676
11673
11704
11678
11714
11703
5090
10122
4379


386:
3874
2573
7549
7517
9650
3332
1953
4431
11909
3497
10045
2551



2545
9861
8988
4509
11527
10422
4863
8961
11568
5627
2724
9699



5675
8512
2715
4144









Example 6

This example illustrates the preparation and identification by screening of transgenic seeds and plants having enhanced agronomic traits using DNA encoding homologs identified in Example 7. Transgenic corn, soybean or cotton seed and plants with recombinant DNA encoding each of the homologs identified in Example 5 are prepared by transformation. The transgenic seed, plantlets and progeny plants are screened for nitrogen use efficiency, yield, water use efficiency, growth under cold stress and seed composition change. Transgenic plants and seed having at least one enhanced agronomic trait of this invention are identified.


Example 7

This example illustrates the identification of consensus amino acid sequence for the proteins and homologs encoded by DNA that is used to prepare the transgenic seed and plants of this invention having enhanced agronomic traits.


ClustalW program was selected for multiple sequence alignments of the amino acid sequence of SEQ ID NO: 371 and 11 homologs. Three major factors affecting the sequence alignments dramatically are (1) protein weight matrices; (2) gap open penalty; (3) gap extension penalty. Protein weight matrices available for ClustalW program include Blosum, Pam and Gonnet series. Those parameters with gap open penalty and gap extension penalty were extensively tested. On the basis of the test results, Blosum weight matrix, gap open penalty of 10 and gap extension penalty of 1 were chosen for multiple sequence alignment. Attached are the sequences of SEQ ID NO: 371, its homologs and the consensus sequence at the end. The symbols for consensus sequence are (1) uppercase letters for 100% identity in all positions of multiple sequence alignment output; (2) lowercase letters for >=70% identity; symbol; (3) “X” indicated <70% identity; (4) dashes “-” meaning that gaps were in >=70% sequences.











SEQ ID NO:




371
MDIFDNSDLEYLVDEFH--ADFDDDEPFGEVDVTSESDSDFMDSDFDFELSESKTNNETS


12300
MDIFDNSDLEYLVDDFHGFSDSEDDEPFGEFDHKSEADSDFEDDLDPTQESD------TS


6283
MEHFNNDDLEYVVDEYYDVPDFAVEDTS---SDIVPELTSDVDSDFEDEFPTSNAKTDTT


1573
MEHFNNDDLEYVVDEYYDVPDFAVEDTS---SDIVPELTSDVDSDFEDEFPTSNAKTDTT


8372
MEHFNNDDLEYVVDEYYDVPDFAVEDTS---SDIVPELTSDVDSDFEDEFPTSNAKTDTT


5306
MEHFNNDDLEYVVDEYYDVPDFAVEDTS---SDIVPELTSDVDSDFEDEFPTSNAKTDTT


9432
------------------------------------------------------------


533
------------------------------------------------------------


2320
------------------------------------------------------------


1142
-------------------------------------------------MTISNTSSTSK


1200
------------------------------------------------------------


7732
-----------------MAHDLHDDLEFVSGDDDDYYLEFDHDPGHGFHTSAATSASQTL


consensus
xxxxxxxxxxxxxxxxxxxxxxxxxxxx---xxxxxxxxxxxxxxxxxxxxxxxxxxxxx






ALEARNGKDIQGIPWESLNYTRDRYRENRLLHYKNFESLFRSREELDKECLQVEKGKNFY



ALEARNGKDIQGIPWERLNYSRDQYRYKRLQQYKNFEILFRSRQDLDKECLQVEKGKHFY



ASEARNGKDIQGIPWERLNYSRDKYRETRLKQYKNYQNFSRSRHDLRKECLEVQKGETFY



ASEARNGKDIQGIPWERLNYSRDKYRETRLKQYKNYQNFSRSRHDLRKECLEVQKGETFY



ASEARNGKDIQGIPWERLNYSRDKYRETRLKQYKNYQNFSRSRHDLRKECLEVQKGETFY



ASEARNGKDIQGIPWERLNYSRDKYRETRLKQYKNYQNFSRSRHDLRKECLEVQKGETFY



-----------GIPWERLNYSRDKYRETRLKQYKNYQNFSRSRHDLRKECFEVQKGETFY



-----------GIPWERLNYSRDKYRETRLKQYKNYQNFSLSPHHLHKECFQVQKGQTFY



-----------GIPWERLNYSRDKYRETRLKQYKNYQNFSRSPHHLRKECFQVQKGQTFY



TIFRRNGKDIQGIPWERLNYSRDKYRETRLKQYKNYQNFSLSPHHLHKECFQVQKGQTFY



------------IPWERLQITRKDYRKARLEQYKNYENFPQSGELMDKLCKQVESSSKYY



IGALYFRTSRWTIPWERLNYSRNQYREMRLRQYKNYENLTMPRDGLEKECKQVERKDTFY



xxxxxxxxxxxgIPWErLnysRdxYRexRLxqYKNyxnfxxsxxxlxKeCxxVxkgxtfY






DFQFNTRLVKSTIAHFQLR----------------NLVWATSKHDVYFMNNYSLMHWSSL



DFQFNTRLVKSTIAHFQLR----------------NLLWATTKHDVYFMKNYSLMHWSSL



DFFFNTRLVKSTIVHFQLR----------------NLLWATSKHDVYFMQNYSVMHWSAL



DFFFNTRLVKSTIVHFQLLRQVXVSSLAGPNIMLRNLLWATSKNDVYFMQNYSVMHWSAL



DFFFNTRLVRXTLAGPNIMLR--------------NLLWATSKHDVYFMQNYSVMHWSAL



DFFFNTRLVKSTIVHFQLRPN----------IMLRNLLWATSKHDVYFMQNYSVNHWSAL



DFFFNTRLVKSTIVHFQLR----------------NLLWATSKHDVYFMQNYSVMHWSAL



DFFFNTRLVKSTIVHFQLRN----------------LLWATSKHDVYLMQNYSVMHWSAL



DFFFNTRLVKSTIVHFQLQLGRTX-------IMLRNLLWATSKHDVYLMQNYSVMHWSAL



DFFFNTRLVKSTIVHFQLLXRWNMSSLAGPYIMLRNLLWATSKHDVYLMQDYSVMHWSAL



EFQYNTRIVKPSILHFQLR----------------NLLWATSKHDVYFMSNSTVGHWSSL



DFHLNTRLVKSTTVHFQLR----------------NLLWATSKHDVYLMQNYSVMHWSSL



dFxfNTRlVkstixhfglxxx----------xxxxnLlWATsKHDVYxMqnysvmHWSxL






LQRGKEVLNVAKPIVPSMKQHGSLSQSVSRVQISTMAVKDDLKLREGSKESLSVRKSTNL



LQRSKEVLNVAKPIVPTMKQPGLLSQSISRVQISTMAVKDDLIVAGGFQGELICKRINEP



LRRGKEVLNVAKPIIPTLKRPGFLAQPVSRVQISTMTVKENLMVAGGFQGELICKNLKHP



LRRGKEVLNVAKPIIPTLKRPGFLAQPVSRVQISTMTVKENLMVAGGX-SRVSLYNLKHP



LRRGKEVLNVAKPIIPTLKRPGFLAQPVSRVQISTMTVKENLMVAGGFQGELICKNLKHP



LRRGKEVLNVAKPIIPTLKRPGFLAQPVSRVQISTMTVKENLMVAGGFQGELICKNLKHP



LRRGKEVLNVAKPIIPTLKRPGFLAQPVSRVQISTMTVKENLMVAGGFQGELICKNLKHP



LQRSKEVLNVAKPIIPTLTHPGFLAQPVSRVQISTMTVKENLMVAGGFQGELICKNLKQP



LRRGKEVLNVAKPIIPTLKRPGFLAQPVSRVQISTMTVKENLMVAGGFQGELICKNLKHP



LQRSKEVLNVAKPIIPTLTHPGFLAQPVSRVQISTMTVKENLMVAGGFQGELICKVGLII



SHKMTDVLDFSGHVAPAKKHPGCALEGFTGVQVSTLAVNEGLLVAGGFQGELVCKSLGER



LQRGKEVLNVAGQLAPSQNVR--GAMPLSRVQISTMAVKGNLMVAGGFQGELICKYVDKP



lxrxkeVLnvakpixptxkxpgxlaqpvsrVQiSTmxVkenLmvagGfqgelickxxxxp






RLLSALN-----------------------------------------------------



GVAFCTVLHRFX-NDITNSVDIYNAPSGSLRVITANNDCTVRVLDAXNFAFLNSFTL---



GVLFCGKITTDDNAITHAV-DVYSNPAGSLRVITANNDFQGRVFD---------------



GVLFCGKITTDDNAITNAV-DVYSNPAGSLRVITANNDFQVRVFDAENFASLGWFKYDWS



GVLFCGKITTDDNAITNAV-DVYSNPAGSLRVITANNDFQVRVFDAENFASLGCFKYDWS



GVLFCGKITTDDNAITNAV-DVYSNPAGSLRVITANNDFQVRVFDAENFASLGCFKYDWS



GVLFCGKITTDDNAITNAV-DVYRNPAGSEGNPA--------------------------



GVLFCGKITTDGNAITNAVXDVYRNPAGSLRVITAXNDSQASGFDAENFAS---------



GVLFCGKITTDDNAITNAV-DVYSNPAGSLRVITANNDFQVRVFDAENFASLGCFKYDWS



ISYFHSI-----------------------------------------------------



DVKFCTRTTLSDNAITNAM-DIHRSTSGSLRITVSNNDSGVREFDMERFQLLNHFRFNWP



GVAFCTNLTGNNNSITNAV-DIYQAPNGGTRITTANNDCVVRTFDTERFSLISHFAFPWS



gvxfcxxxtxxxnxitxax-dxyxxpxgsxrxxxxxndxxxxxxdxxxxxxxxxxxxxxx






------------------------------------------------------------



------------------------------------------------------------



------------------------------------------------------------



VNNTSVSPDG--------------------------------------------------



VNNTSVSPDGKLLAVLGDSTECLIADANTGKITGSLKGHLDYSFSSAWHPDGQILATGNQ



VNNTSVSPDGKLLAVLGDSTECLIADANTGKITGSLKGHLDYSFSSAWHPDGQILATGNQ



------------------------------------------------------------



------------------------------------------------------------



VNNTSVSPDGKLLAVLGDSTECLIADANTGKITGSLKGHLDYSFSSAWHPDGQILATGNQ



------------------------------------------------------------



VNHTSVSPDKKLLAVVGDDRDALLVDSRNGKVTSTLVGHLDYSFASAWHLDGVTFATGNQ



VNNTSVSPDGKLLAVLGDSSDCLIADSQSGKEMARLKGHLDYSFSSAWHPDGRVVATGNQ



xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx






------------------------------------------------------------



------------------------------------------------------------



------------------------------------------------------------



------------------------------------------------------------



DKTCRLWDIRNLSQSMAVLKGRMGAIRALRFTSDGRFLAMAEPADFVHIFDSHSGYEQGQ



DKTCRLWDIRNLSQSMAVLKGRMGAIRALRFTSDGRFLAMAEPADFVHIFDSHSGYEQGQ



------------------------------------------------------------



------------------------------------------------------------



DKTCRLWDIRNLSQSMAVLKGRMGAIRALRFTSDGRFLAMAEPADFVHIFDSHSGYEQGQ



------------------------------------------------------------



DKTCRVWDIRNPSTSLAVLRGNIGAIRCIRYSSDGRFLLFSEPADFVHVYSTAECYRKRQ



DRTCRVWDVRNMSRSVAVLEGRIGAVRGLRYSPDGRFLAASEPADFVHVYDAAAGYADAQ



xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx






------------------------------------------------------*



------------------------------------------------------*



------------------------------------------------------*



------------------------------------------------------*



EIDLFGEIAGISFSPDTEALFVGIADRTYGSLLEFNRKRHYNYLDSF-------*



EIDLFGEIAGISFSPDTEALFVGIADRTYGSLLEFNRKRHYNYLDSF-------*



------------------------------------------------------*



------------------------------------------------------*



EIDLFGEIAGISFSPDTEALFVGIADRTYGSLLEFNRKRHYNYLDSF-------*



------------------------------------------------------*



EIDFFGEISGISLSPDD------ESLFVGVCDRVYASLLNYRLVHANGYLDSYM*



EIDLFGEIAGVAFSPAGNNGGGGEALFVSIADRTYGSLLEFHRRRRHGYLDCYV*



xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx-------*






The consensus amino acid sequence can be used to identify DNA corresponding to the full scope of this invention that is useful in providing transgenic plants, e.g., corn, soybean and cotton plants with transgenic cells expressing protein encoding DNA that impart an enhanced agronomic traits. For example, enhanced nitrogen use efficiency, enhanced yield, enhanced water use efficiency, enhanced growth under cold stress and/or improved seed compositions are imparted by the expression in the plants of DNA encoding a protein with amino acid sequence identical to the consensus amino acid sequence.


Example 8
Identification of Target Genes of Transcription Factors ABF3 and CBF3
Chemical Kinetics Models to Identify Regulator-Target Relationships.

It has been shown both in mRNA blotting and microarray experiments that activation of regulators under stress conditions usually occurs earlier than that of its targets (Haake, 2002, Seki, 2002a). In eukaryotic cells, the effect of a regulator is usually achieved in multiple steps, including transcription of the regulator genes, transportation of the regulator mRNA(s) out of the nucleus, translation of the transcript(s), transportation of the regulator protein back to the nucleus, and the binding of the regulator protein to the promoter regions of its target genes to achieve transcriptional regulation. Noticeable timing difference exists among changes in concentrations of the regulator mRNA, the regulator protein, and the mRNAs of its targets. A chemical kinetics model naturally fits this context by taking into account of the time lags among these events.


Because the active level of the regulator protein is not measured directly in microarray experiments, the regulator protein concentration is treated as a hidden variable in our model to serve as the link between the measurable mRNA concentrations of a regulator and its target(s). More specifically, the regulator protein concentration can be modeled by the following chemical kinetic equation without considering post-translational regulation:













R
p




t


=


K
tran



R
m



K
p



R
p






equation






(
1
)








where Rp is the regulator protein concentration; Rm is the regulator mRNA concentration; Ktran is the apparent rate of mRNA translation, and Kp is the turnover rate of the regulator protein. Accordingly, the time course of the target mRNA concentration can be modeled with the following equation













T
m




t


=


B
t

+

f


(

R
p

)


-


K
t



T
m







equation






(
2
)








where Tm is the concentration of the target mRNA; Bt is the basal transcription rate of the target gene; and Kt is the turnover rate of the target mRNA; f(Rp) measures the regulated transcription rate, which is different for activators and repressors. For activators, it has the following Taylor first order approximation when Rp is small (Chen et al., 1999).










f


(

R
p

)


=



f


(


R
p

=
0

)


+




(

f


(

R
p

)







R
p






|

Rp
=
0




R
p






equation






(
3
)








f(Rp=0) is equal to zero, assuming target gene transcription should not be activated when there is no regulator protein.










(

f


(

R
p

)







R
p





|

Rp
=
0






is the activation rate of regulator protein on the target gene. If it is replaced by parameter Kact for simplicity, f(Rp) takes the following form:






f(Rp)=KactRp  equation (4)


The basal level target transcription rate should satisfy the following condition:






B
t
+f(Rpbasal)−KtTmbasal=0  equation (5)


Where Rpbasal and Tmbasal are the basal concentrations of the regulator protein and target mRNA, respectively.


Usually, what is reported in transcription profiling experiment is not the absolute concentration of mRNA, but rather a fold change compared to basal transcription level of that gene. Thus, we define relative changes of Rm and Tm as Rm′ and Tm






R
m
′=R
m
/R
basal−1  equation (6)






T
m
′=T
m
/T
mbasal−1  equation (7)


Combining equation (1), (2), (4), (5), (6) and (7), and considering the fact that KtranRmbasel−KpRpbaseal=0, leads to the following second order ordinary differential equation:














2



(

T
m


)





t
2



+


(


K
t

+

K
p


)






(

T
m


)




t



+


K
t



K
p



T
m




=

γ






R
m







equation






(
8
)








Where γ=KactKtranRmbasal/Tmbasel

Given all the model parameters, the relationship between the relative mRNA levels of regulator and its target, Rm′ and Tm′, is defined by Equation (8). In other words, for the target gene of a regulator, its relative mRNA level Tm′ has to satisfy equation (8), given the model parameters and the relative regulator mRNA level Rm′. It is interesting to note that the regulator protein concentration, a key variable in the original model equations, is not involved explicitly in the final equation relating the relative mRNA levels of regulator and target. To predict the target of a specific regulator, we can solve equation (8) to obtain the theoretical target behavior curve, and then find the genes with mRNA levels similar to the theoretical curve, which will be identified as the potential targets of that regulator.


In the case of transcript expression profiling experiments under stress conditions, the initial conditions should be the following:











T
m




|

t
=
0



=
0




equation






(
9
)












(

T
m


)




t




|

t
=
0



=
0




equation






(
10
)








Because the target gene mRNA and the regulator protein should be at their basal levels at the onset of stress condition (t=0). It is apparent from equations (2) and (5) that initial condition (10) should be true.


To approximate Rm, a stepwise linear model can be fit as follows:






R
mi(t)=αiit ti≦t≦ti+1 i=0, . . . , n−1  equation (11)


Where ti is ith time point; and αi and βi are the parameters of stepwise linear function in each time interval, which are determined by the measured regulator mRNA levels at the two adjacent time points. Equation (8) has analytic solution:






Tm
i(t)′=Aie−Ktt+Bie−Kpt+Ci+Dit ti≦t≦ti+1, i=0, . . . , n−1  equation (12)


Where Diiγ/KpKt and Ci=[αiγ−(Kp+Kt)Di]/KpKt

The contiguous restrictions on Tm′ are stated in the following equations:












Tm
i




(
t
)


=


Tm

i
+
1





(
t
)



,






when





t

=



t
i






i

=
1


,





,

n
-
1.





equation






(
13
)












(


Tm
i




(
t
)


)




t


=




(


Tm

i
+
1





(
t
)


)




t



,






when





t

=



t
i






i

=
1


,





,

n
-
1.





equation






(
14
)








After substituting equation (12) into equations (9), (10), (13) and (14), Ai and Bi can be obtained by solving sets of linear algebra equations, and are functions of αi, βi, γ, Kt and Kp.


Learning model parameters. For each regulator and target pair, there are three parameters involved in equation (8), the target mRNA turnover rate K1, the active regulator turnover rate Kp, and γ, which is equal to KactKtranRbasal/Tbasel. Kact represents the strength of regulator protein effect on the target gene; Ktran is the translation rate of regulator mRNA. They lump together with the ratio of basal mRNA concentrations of regulator and target to form parameter γ, which determines the magnitude of the relative target mRNA level but not its shape. It is the parameters Kt and Kp that determine the shape of the relative target mRNA level, such as how fast the target gene responds to the regulator.


For gene expression experiments under stress conditions in plants, the kinetics model can be trained with known regulator-target pair reported in the literature (e.g., CBF and RD17 in Arabidopsis under cold stress) with a non-linear regression model. When the normalized expression profile of a target gene with its maximal response is considered, there is no need to keep γ as a free model parameter (γ1=nγ2 leads to Tm1′=nTm2′ when other parameters are kept the same in equations (8), (9) and (10)). Therefore, only two parameters Kt and Kp are estimated from the non-linear regression model, and are used to predict other regulators and their targets in plant stress response. The theoretical target mRNA expression profiles are calculated for all the genes annotated as transcription factors, and Pearson correlation coefficient is computed for each theoretical target profile and each observed expression profile in each stress condition. When high correlation in one or several stress conditions is found, the transcription factor could be one of the putative regulators of the corresponding gene.


Target gene prediction using promoter motif analysis. As an additional line of evidence for regulator-target pair prediction, we used promoter motif analysis to correlate regulators and their potential targets. Differentially expressed genes under stress conditions measured in microarray experiments can be partitioned into certain number of clusters based on the similarity in their expression profiles. All known promoter motifs within 1500 base-pairs distance to the starting codon were extracted from AGRIS database (Davuluri, 2003) for each gene. The frequency of each promoter motif in each cluster is computed, and Fisher's Exact Test is conducted to test the over-representation of certain promoter motifs. Enriched promoter motifs for a given cluster are selected as putative regulator motifs when statistical significance meets certain cutoff value (e.g., p-value 0.05). When a transcription factor (or a family of transcription factors) is known to bind to the putative regulator motif, the transcription factor(s) should be the putative regulators of target genes with the regulator motif in that cluster.


Combining evidences from kinetics models and promoter analysis. Kinetics models and promoter analysis independently predict putative regulator-target pairs, we attempted to combine their results to enhance our ability to detect true regulator-target pairs. In our kinetics models, for each target gene only the transcription factors with a Pearson correlation coefficient higher than certain cutoff in at least one stress condition are considered as its potential regulators. It is possible that the same regulator regulates its target genes in different stress conditions. Therefore, it is reasonable to give a higher ranking for a regulator if its theoretical target profiles are correlated to those of certain gene in multiple conditions. Based on these ideas, a ranking score for each possible regulator-target pair is derived as follows:










score


(


r
i

,

t
j


)


=



k





R
k



(


r
i

,

t
j


)


/
N






equation






(
15
)








Where Rk(ri,tj) is the rank of Pearson correlation coefficient of the theoretical target profile of transcription factor ri to that of gene tj in stress condition k; N is the total number of transcription factors on DNA chip.


The rank of the scores for putative transcription factors should represent the likelihood of them being the true regulator for a specific gene. Similarly, the rank of p-value of motif enrichment is the indicator of the likelihood of a transcription factor(s) being the true regulator for a specific target. Lastly, we combine both rankings from kinetics model prediction and promoter analysis by defining a score for a given regulator-target pair as following:











L


(


r
i

,

t
j


)


=



m





rank
m



(


r
i

,

t
j


)


/
N














m
=
1

,
2





equation






(
17
)








Where L(ri,tj) can be viewed as the strength of transcription factor ri to be the regulator of gene tj; rank1(ri,tj) and rank2(ri,tj) are the rank of score(ri,tj) from kinetics model prediction, and the rank of p-value of regulator ri binding motifs enrichment for the cluster with gene ti, respectively.


This method was applied to an Arabidopsis gene expression dataset measuring responses to various stress conditions (Seki et al., 2002a; Seki, et al., 2002b). In this experiment, wild-type Arabidopsis plants were subject to stress treatments for various periods (1, 2, 5, 10 and 24 hours), and extracted mRNA samples were hybridized to a cDNA microarray with ˜7000 full-length cDNAs. 493 genes were chosen for the analysis, as each of these genes was differentially regulated in at least one of the stress conditions.









TABLE 8







The evidence of the predicted target genes of CBF3.


This table shows the evidence strength,


whether evidence from kinetics model or


enriched promoter analysis exists for each predicted target.













Evidence
Kinetics
Promoter


SEQ ID NO
Target
strength (10−5)
model
Analysis














/
At1g01470
2.13333
yes
yes


/
AtGolS3
2.13333
yes
yes


/
RD17
2.13333
yes
yes


/
ERD10
2.13333
yes
yes


175
At1g21790
2.13333
yes
yes


/
ERD7
2.13333
yes
yes


/
cor15A
2.13333
yes
yes


/
FL3-5A3
4.26667
yes
yes


/
kin2
4.26667
yes
yes


/
cor15B
6.4
yes
yes


176
ERD4
26.66667
yes
no


/
RD29A
26.66667
yes
no


/
At1g16850
53.33333
yes
no


177 and 178
At1g78070
800
no
yes


/
kin1
800
no
yes
















TABLE 9







The evidence of the predicted target genes of ABF3.


This table shows the evidence strength,


whether evidence from kinetics model or


enriched promoter analysis exists for each predicted target.













Evidence
Kinetics
Promoter


SEQ ID NO
Target
strength (10−5)
model
Analysis





179, 180 and 181
At3g47340
1.26222
yes
yes


182
At5g13170
1.26222
yes
yes


183
At2g19900
1.26222
yes
yes


184 and 185
At5g09530
2.52444
yes
yes


186
At2g42790
2.52444
yes
yes


187
At3g56200
2.52444
yes
yes


188 and 189
At5g01520
2.52444
yes
yes


190
At5g66780
3.78667
yes
yes


191
At5g59320
3.78667
yes
yes


192
AtHB7
5.04889
yes
yes


/
RD29B
7.57333
yes
yes


193
RD20
7.57333
yes
yes









It has been shown that ABF3 and CBF3 confer stress tolerance to transgenic plants. Thus, the target genes of ABF3 and CBF3, identified by this invention, including SEQ ID NO: 368 through SEQ ID NO: 386, and their homologs, are particularly useful for producing transgenic plant cells in crop plants with enhanced stress tolerance.


Example 9
Identification Of Amino Acid Domain by Pfam Analysis

The amino acid sequence of the expressed proteins that were shown to be associated with an enhanced trait were analyzed for Pfam protein family against the current Pfam collection of multiple sequence alignments and hidden Markov models using the HMMER software in the appended computer listing. The Pfam protein families for the proteins of SEQ ID NO: 194 through 386 are shown in Table 10. The Hidden Markov model databases for the identified patent families are also in the appended computer listing allowing identification of other homologous proteins and their cognate encoding DNA to enable the full breadth of the invention for a person of ordinary skill in the art. Certain proteins are identified by a single Pfam domain and others by multiple Pfam domains. For instance, the protein with amino acids of SEQ ID NO: 194 is characterized by three Pfam domains, i.e. PPDK_N, PEP-utilizer and PEP-utilizer_C.















TABLE 10





PEP








SEQ


ID

Pfam domain


NO
GENE ID
name
begin
stop
score
E-value





















194
PHE0003351_PMON81242.pep
PPDK_N
99
464
710.9
7.90E−211


194
PHE0003351_PMON81242.pep
PEP-utilizers
500
601
182.3
1.10E−51


194
PHE0003351_PMON81242.pep
PEP-utilizers_C
613
969
723.9
1.00E−214


195
PHE0003351_PMON83625.pep
PPDK_N
99
464
710.9
7.90E−211


195
PHE0003351_PMON83625.pep
PEP-utilizers
500
601
182.3
1.10E−51


195
PHE0003351_PMON83625.pep
PEP-utilizers_C
613
969
723.9
1.00E−214


196
PHE0000207_PMON77878.pep
Pkinase
1
259
343.1
4.40E−100


197
PHE0000208_PMON77879.pep
Pkinase
1
259
353.4
3.30E−103


198
PHE0000209_PMON77891.pep
Pkinase
1
259
354.9
1.20E−103


199
PHE0000210_PMON77880.pep
Pkinase
1
259
359.4
5.40E−105


200
PHE0001329_PMON92878.pep
Pkinase
12
266
354.3
1.80E−103


200
PHE0001329_PMON92878.pep
NAF
311
371
123.6
5.10E−34


201
PHE0001425_PMON79162.pep
CAF1
19
252
368.1
1.30E−107


202
PHE0001573_PMON92870.pep
GATase_2
2
162
55.5
3.10E−15


202
PHE0001573_PMON92870.pep
Asn_synthase
210
451
329.6
5.00E−96


203
PHE0001664_PMON99280.pep
FAD_binding_4
69
213
83.4
6.30E−22


204
PHE0001674_PMON79194.pep
Myb_DNA-binding
25
70
36.3
9.90E−08


205
PHE0002026_PMON96489.pep
Ammonium_transp
36
459
628.5
5.10E−186


206
PHE0002108_PMON92821.pep
CSD
1
65
155.1
1.60E−43


207
PHE0002109_PMON93856.pep
CSD
1
67
144.8
2.10E−40


208
PHE0002508_PMON92607.pep
CBFD_NFYB_HMF
24
89
130.9
3.20E−36


209
PHE0002650_PMON81832.pep
SRF-TF
9
59
106.9
5.50E−29


209
PHE0002650_PMON81832.pep
K-box
73
172
118.4
1.90E−32


210
PHE0002989_PMON95630.pep
Miro
10
126
74.3
3.40E−19


210
PHE0002989_PMON95630.pep
Ras
11
173
288.8
9.30E−84


212
PHE0003300_PMON95106.pep
MtN3_slv
12
99
131.1
2.80E−36


212
PHE0003300_PMON95106.pep
MtN3_slv
133
219
134.9
2.00E−37


214
PHE0003389_PMON94682.pep
p450
48
527
286.5
4.60E−83


215
PHE0003614_PMON95111.pep
Pyridoxal_deC
33
381
531.8
6.80E−157


216
PHE0003684_PMON92807.pep
Myb_DNA-binding
118
168
47.9
3.00E−11


217
PHE0003684_PMON93378.pep
Myb_DNA-binding
118
168
47.9
3.00E−11


218
PHE0003853_PMON92602.pep
Cyclin_N
46
171
72.6
1.10E−18


219
PHE0003903_PMON98271.pep
TPP_enzyme_N
44
220
302.9
5.50E−88


219
PHE0003903_PMON98271.pep
TPP_enzyme_M
241
390
157.3
3.70E−44


220
PHE0003905_PMON99283.pep
Aldedh
30
492
514.4
1.10E−151


221
PHE0003907_PMON98066.pep
Ribosomal_L12
124
191
62.6
1.20E−15


222
PHE0003908_PMON98064.pep
DnaJ
31
93
128.9
1.30E−35


223
PHE0003960_PMON95079.pep
CTP_transf_2
56
186
142.9
7.70E−40


224
PHE0003967_PMON95088.pep
GST_N
11
84
43.3
7.40E−10


228
PHE0004023_PMON92446.pep
PHD
198
248
54.9
2.40E−13


229
PHE0004026_PMON93885.pep
Aa_trans
44
438
409.4
4.80E−120


230
PHE0004027_PMON93860.pep
FAD_binding_4
64
218
83.9
4.60E−22


231
PHE0004028_PMON94697.pep
Alpha-amylase
10
426
−62.1
4.30E−06


232
PHE0004034_PMON92631.pep
DUF1336
236
478
491.8
7.30E−145


234
PHE0004047_PMON92619.pep
LIM
11
68
53.4
7.00E−13


234
PHE0004047_PMON92619.pep
LIM
110
167
63.9
4.70E−16


235
PHE0004047_PMON93388.pep
LIM
11
68
53.4
7.00E−13


235
PHE0004047_PMON93388.pep
LIM
110
167
63.9
4.70E−16


236
PHE0004068_PMON93663.pep
AWPM-19
1
125
287.6
2.20E−83


237
PHE0004071_PMON93311.pep
RRM_1
105
174
77.3
4.40E−20


238
PHE0004072_PMON93654.pep
MMR_HSR1
214
324
65.7
1.40E−16


239
PHE0004072_PMON93669.pep
MMR_HSR1
214
324
65.7
1.40E−16


241
PHE0004075_PMON92851.pep
MtN3_slv
15
104
75.5
1.50E−19


241
PHE0004075_PMON92851.pep
MtN3_slv
137
223
97.2
4.50E−26


242
PHE0004080_PMON93321.pep
peroxidase
19
227
241
2.40E−69


243
PHE0004084_PMON95141.pep
Phi_1
35
314
691.3
6.40E−205


244
PHE0004093_PMON93332.pep
Dimerisation
40
100
105.7
1.20E−28


244
PHE0004093_PMON93332.pep
Methyltransf_2
104
350
317.5
2.20E−92


245
PHE0004093_PMON94155.pep
Dimerisation
40
100
105.7
1.20E−28


245
PHE0004093_PMON94155.pep
Methyltransf_2
104
350
317.5
2.20E−92


247
PHE0004144_PMON93842.pep
Cofilin_ADF
16
143
152.4
1.10E−42


248
PHE0004148_PMON92574.pep
Iso_dh
28
412
521.5
8.40E−154


249
PHE0004149_PMON92471.pep
HEAT_PBS
115
143
23.8
0.00057


249
PHE0004149_PMON92471.pep
HEAT_PBS
155
181
37.8
3.50E−08


249
PHE0004149_PMON92471.pep
HEAT_PBS
186
212
22.4
0.0015


249
PHE0004149_PMON92471.pep
HEAT_PBS
260
287
16.8
0.074


250
PHE0004149_PMON93899.pep
HEAT_PBS
115
143
23.8
0.00057


250
PHE0004149_PMON93899.pep
HEAT_PBS
155
181
37.8
3.50E−08


250
PHE0004149_PMON93899.pep
HEAT_PBS
186
212
22.4
0.0015


250
PHE0004149_PMON93899.pep
HEAT_PBS
260
287
16.8
0.074


251
PHE0004152_PMON93672.pep
AT_hook
69
81
7.4
1.1


251
PHE0004152_PMON93672.pep
DUF296
96
217
175.1
1.60E−49


252
PHE0004155_PMON92626.pep
ADH_N
41
152
176.1
8.20E−50


252
PHE0004155_PMON92626.pep
ADH_zinc_N
181
324
127.8
2.70E−35


253
PHE0004156_PMON92623.pep
NPH3
135
364
219.3
7.80E−63


254
PHE0004162_PMON92481.pep
AUX_IAA
22
279
395.9
5.30E−116


255
PHE0004164_PMON92465.pep
X8
29
115
168.4
1.70E−47


257
PHE0004167_PMON93333.pep
APS_kinase
108
264
363.4
3.20E−106


258
PHE0004168_PMON93855.pep
FAD_binding_4
84
225
93
8.10E−25


258
PHE0004168_PMON93855.pep
BBE
476
534
120.1
5.70E−33


259
PHE0004169_PMON92568.pep
Aldo_ket_red
14
298
389.4
4.80E−114


260
PHE0004184_PMON92565.pep
UIM
214
231
14.4
0.29


260
PHE0004184_PMON92565.pep
UIM
298
315
24
0.00049


261
PHE0004185_PMON92802.pep
p450
39
504
157.8
2.70E−44


262
PHE0004188_PMON92803.pep
HSF_DNA-bind
70
233
177.8
2.50E−50


263
PHE0004190_PMON92801.pep
HLH
175
213
9.2
0.014


264
PHE0004208_PMON92834.pep
Myb_DNA-binding
5
56
39.1
1.30E−08


264
PHE0004208_PMON92834.pep
Myb_DNA-binding
134
181
44.6
3.10E−10


265
PHE0004215_PMON92827.pep
PBP
14
170
30
1.50E−07


266
PHE0004223_PMON92840.pep
Fasciclin
40
179
11.7
0.00032


266
PHE0004223_PMON92840.pep
Fasciclin
217
353
104.9
2.20E−28


267
PHE0004225_PMON94167.pep
Aldedh
77
539
880.7
6.30E−262


268
PHE0004226_PMON95114.pep
Aldedh
77
539
873
1.30E−259


269
PHE0004227_PMON92605.pep
UPF0057
5
55
76.3
8.50E−20


270
PHE0004229_PMON92867.pep
UPF0057
4
54
96.4
8.00E−26


271
PHE0004233_PMON92843.pep
HSF_DNA-bind
60
236
255.5
1.00E−73


272
PHE0004237_PMON93673.pep
HSP20
48
153
184.3
2.80E−52


273
PHE0004243_PMON92621.pep
CBFD_NFYB_HMF
22
87
122.5
1.10E−33


274
PHE0004244_PMON92858.pep
CBFD_NFYB_HMF
39
104
121
3.00E−33


275
PHE0004245_PMON93813.pep
CBFD_NFYB_HMF
25
90
129.2
1.00E−35


276
PHE0004248_PMON94672.pep
CBFD_NFYB_HMF
37
102
125.3
1.60E−34


278
PHE0004250_PMON92881.pep
CBFD_NFYB_HMF
25
90
119.7
7.80E−33


279
PHE0004252_PMON92606.pep
CBFD_NFYB_HMF
14
79
94.1
3.80E−25


280
PHE0004253_PMON92874.pep
CBFD_NFYB_HMF
7
71
83.8
5.00E−22


281
PHE0004258_PMON93385.pep
Pkinase
5
276
144.7
2.30E−40


282
PHE0004258_PMON93806.pep
Pkinase
5
276
144.7
2.30E−40


283
PHE0004259_PMON93384.pep
Abhydrolase_3
95
319
302.4
7.70E−88


285
PHE0004261_PMON93389.pep
Pkinase
31
282
289.6
5.30E−84


285
PHE0004261_PMON93389.pep
Pkinase_Tyr
31
280
69.3
6.10E−20


286
PHE0004261_PMON93655.pep
Pkinase
31
282
289.6
5.30E−84


286
PHE0004261_PMON93655.pep
Pkinase_Tyr
31
280
69.3
6.10E−20


287
PHE0004262_PMON92862.pep
Pkinase
86
366
153.9
3.70E−43


287
PHE0004262_PMON92862.pep
Pkinase_Tyr
86
366
132.2
1.30E−36


288
PHE0004262_PMON93360.pep
Pkinase
86
366
153.9
3.70E−43


288
PHE0004262_PMON93360.pep
Pkinase_Tyr
86
366
132.2
1.30E−36


289
PHE0004264_PMON92845.pep
PMEI
25
174
138.8
1.40E−38


290
PHE0004264_PMON93354.pep
PMEI
25
174
138.8
1.40E−38


291
PHE0004265_PMON92873.pep
Suc_Fer-like
59
308
60.7
4.30E−15


292
PHE0004265_PMON93807.pep
Suc_Fer-like
59
308
60.7
4.30E−15


293
PHE0004266_PMON92877.pep
Myb_DNA-binding
298
348
46.6
7.80E−11


294
PHE0004284_PMON93857.pep
U-box
23
97
98.2
2.30E−26


295
PHE0004285_PMON95136.pep
CBFD_NFYB_HMF
61
126
123
7.70E−34


296
PHE0004286_PMON93666.pep
ICL
21
551
1239.3
0


297
PHE0004287_PMON93344.pep
ICL
21
552
1169.2
0


298
PHE0004307_PMON94102.pep
RWP-RK
196
247
90.7
4.00E−24


299
PHE0004314_PMON93397.pep
zf-C3HC4
148
185
34.1
4.50E−07


300
PHE0004321_PMON93811.pep
Redoxin
64
228
4.9
0.0016


300
PHE0004321_PMON93811.pep
GSHPx
73
181
246.5
5.10E−71


301
PHE0004321_PMON93834.pep
Redoxin
64
228
4.9
0.0016


301
PHE0004321_PMON93834.pep
GSHPx
73
181
246.5
5.10E−71


302
PHE0004325_PMON93818.pep
CcmH
1
139
16.6
6.50E−09


303
PHE0004335_PMON93850.pep
DZC
158
193
81.9
1.80E−21


303
PHE0004335_PMON93850.pep
DZC
308
343
80.9
3.70E−21


304
PHE0004336_PMON93858.pep
DZC
179
214
78.3
2.20E−20


304
PHE0004336_PMON93858.pep
DZC
369
404
71.4
2.60E−18


306
PHE0004348_PMON93810.pep
CSD
1
65
136.8
5.50E−38


307
PHE0004349_PMON93812.pep
CSD
1
65
141.9
1.50E−39


308
PHE0004350_PMON93826.pep
CSD
1
66
148.4
1.70E−41


309
PHE0004351_PMON93821.pep
CSD
1
66
149.5
8.10E−42


310
PHE0004352_PMON93824.pep
CSD
2
68
151.2
2.50E−42


312
PHE0004393_PMON94192.pep
efhand
29
57
18
0.031


312
PHE0004393_PMON94192.pep
efhand
66
94
25.3
0.0002


312
PHE0004393_PMON94192.pep
efhand
110
138
24.2
0.00042


313
PHE0004395_PMON94145.pep
C2
16
138
72.1
1.60E−18


313
PHE0004395_PMON94145.pep
PLDc
357
392
30.1
7.20E−06


313
PHE0004395_PMON94145.pep
PLDc
702
729
37.1
5.70E−08


314
PHE0004396_PMON94137.pep
Orn_Arg_deC_N
118
393
282.3
8.80E−82


314
PHE0004396_PMON94137.pep
Orn_DAP_Arg_deC
396
596
161.7
1.70E−45


315
PHE0004417_PMON94190.pep
Spermine_synth
13
256
516.1
3.40E−152


316
PHE0004418_PMON94368.pep
Amino_oxidase
18
504
275.8
7.90E−80


317
PHE0004419_PMON95100.pep
Amidohydro_1
95
446
56.2
1.00E−13


317
PHE0004419_PMON95100.pep
Amidohydro_3
95
444
−49.9
0.00024


318
PHE0004421_PMON95120.pep
AP2
52
118
92.2
1.40E−24


319
PHE0004422_PMON95123.pep
AP2
58
123
78.5
1.90E−20


322
PHE0004432_PMON94112.pep
Lactamase_B
63
262
81.6
2.20E−21


322
PHE0004432_PMON94112.pep
RMMBL
400
440
33.6
6.10E−07


323
PHE0004472_PMON94115.pep
Sina
5
205
188
2.00E−53


324
PHE0004472_PMON94126.pep
Sina
5
205
188
2.00E−53


325
PHE0004488_PMON95609.pep
Anti-silence
1
155
392.9
4.40E−115


327
PHE0004492_PMON95614.pep
NPH3
193
435
469.9
2.90E−138


328
PHE0004545_PMON95117.pep
Ribosomal_L14
49
196
105.5
1.50E−28


329
PHE0004574_PMON94433.pep
Transaldolase
102
405
620.7
1.20E−183


329
PHE0004574_PMON94433.pep
efhand
444
472
21.3
0.0031


330
PHE0004606_PMON95627.pep
Metallophos
54
249
154
3.60E−43


331
PHE0004620_PMON94189.pep
PFK
6
281
515.1
7.30E−152


332
PHE0004620_PMON94442.pep
PFK
6
281
515.1
7.30E−152


333
PHE0004622_PMON95621.pep
F-box
2
49
43.2
8.10E−10


333
PHE0004622_PMON95621.pep
LRR_2
150
175
41.5
2.60E−09


333
PHE0004622_PMON95621.pep
FBD
332
382
74.8
2.50E−19


334
PHE0004626_PMON95101.pep
Aminotran_3
79
434
323.4
3.50E−94


335
PHE0004630_PMON94367.pep
Iso_dh
40
363
326.9
3.20E−95


336
PHE0004634_PMON94385.pep
AP2
28
91
114.2
3.40E−31


337
PHE0004640_PMON95066.pep
FAE1_CUT1_RppA
75
365
539.9
2.40E−159


337
PHE0004640_PMON95066.pep
Chal_sti_synt_C
322
466
8.7
0.0003


337
PHE0004640_PMON95066.pep
ACP_syn_III_C
382
464
26.7
2.30E−08


338
PHE0004645_PMON94655.pep
14-3-3
5
241
304.8
1.50E−88


339
PHE0004645_PMON94685.pep
14-3-3
5
241
304.8
1.50E−88


342
PHE0004650_PMON94686.pep
Skp1_POZ
4
64
105.3
1.70E−28


342
PHE0004650_PMON94686.pep
Skp1
112
190
173
6.90E−49


343
PHE0004652_PMON94657.pep
UPF0005
31
247
55.1
2.20E−13


344
PHE0004652_PMON94687.pep
UPF0005
31
247
55.1
2.20E−13


346
PHE0004689_PMON95131.pep
Pkinase
12
291
357
2.70E−104


347
PHE0004691_PMON95129.pep
Spermine_synth
33
278
501.4
9.60E−148


348
PHE0004719_PMON94698.pep
zf-C3HC4
203
243
26.6
8.00E−05


349
PHE0004719_PMON95089.pep
zf-C3HC4
203
243
26.6
8.00E−05


350
PHE0004734_PMON94667.pep
KOW
26
62
30.7
4.80E−06


350
PHE0004734_PMON94667.pep
eIF-5a
84
153
125.8
1.10E−34


351
PHE0004735_PMON95116.pep
KOW
26
62
32.2
1.70E−06


351
PHE0004735_PMON95116.pep
eIF-5a
84
153
120.3
5.10E−33


352
PHE0004739_PMON95110.pep
Miro
7
121
68.7
1.70E−17


352
PHE0004739_PMON95110.pep
Ras
8
179
270.9
2.30E−78


353
PHE0004753_PMON95105.pep
Aldedh
61
520
791.8
3.50E−235


355
PHE0004770_PMON95122.pep
DUF1242
2
70
118.4
1.80E−32


357
PHE0004774_PMON95147.pep
zf-A20
14
38
33.1
9.10E−07


357
PHE0004774_PMON95147.pep
zf-AN1
92
132
68.2
2.50E−17


358
PHE0004777_PMON95118.pep
RNA_pol_L
6
83
75.9
1.20E−19


359
PHE0004785_PMON95057.pep
Ribosomal_L18p
26
172
251.4
1.70E−72


360
PHE0004786_PMON95604.pep
Phi_1
35
314
691.3
6.40E−205


361
PHE0004788_PMON95092.pep
DS
53
369
587.4
1.30E−173


362
PHE0004799_PMON95602.pep
DAO
34
481
−14.1
7.30E−05


362
PHE0004799_PMON95602.pep
Amino_oxidase
42
483
342.7
5.60E−100


363
PHE0004841_PMON95636.pep
DNA_photolyase
18
190
254.3
2.30E−73


363
PHE0004841_PMON95636.pep
FAD_binding_7
223
501
503
3.20E−148


367
PHE0004888_PMON95603.pep
Globin
7
134
73
8.40E−19


367
PHE0004888_PMON95603.pep
FAD_binding_6
156
263
29
4.80E−07


367
PHE0004888_PMON95603.pep
NAD_binding_1
276
393
13.4
9.80E−05


369
ERD4.pep
DUF221
295
710
245.3
1.20E−70


370
At1g78070.2.pep
WD40
310
347
34.1
4.40E−07


372
At3g47340.1.pep
GATase_2
2
161
99.6
8.60E−27


372
At3g47340.1.pep
Asn_synthase
209
450
344.3
1.80E−100


373
At3g47340.3.pep
GATase_2
2
161
99.6
8.60E−27


373
At3g47340.3.pep
Asn_synthase
209
430
286.1
6.20E−83


374
At3g47340.2.pep
GATase_2
2
161
99.6
8.60E−27


374
At3g47340.2.pep
Asn_synthase
209
450
344.3
1.80E−100


375
At5g13170.1.pep
MtN3_slv
12
99
135.1
1.80E−37


375
At5g13170.1.pep
MtN3_slv
134
220
135.4
1.40E−37


376
At2g19900.1.pep
malic
107
295
407.1
2.20E−119


376
At2g19900.1.pep
Malic_M
297
550
466.9
2.30E−137


379
At2g42790.1.pep
Citrate_synt
93
461
506.2
3.40E−149


380
At3g56200.1.pep
Aa_trans
21
426
106.3
8.10E−29


381
At5g01520.1.pep
zf-C3HC4
146
183
26.1
0.00011


384
At5g59320.1.pep
Tryp_alpha_amyl
27
111
114.7
2.30E−31


385
AtHB7.pep
Homeobox
30
86
66.6
7.10E−17


385
AtHB7.pep
HALZ
87
131
39.2
1.30E−08


386
RD20.pep
Caleosin
54
227
469
5.30E−138



















TABLE 11





Pfam domain
accession
gathering



name
number
cutoff
domain description


















14-3-3
PF00244.9
25
14-3-3 protein


ACP_syn_III_C
PF08541.1
−24.4
3-Oxoacyl-[acyl-carrier-protein (ACP)] synthase III C





terminal


ADH_N
PF08240.2
−14.5
Alcohol dehydrogenase GroES-like domain


ADH_zinc_N
PF00107.16
23.8
Zinc-binding dehydrogenase


AP2
PF00847.9
0
AP2 domain


APS_kinase
PF01583.9
25
Adenylylsulphate kinase


AT_hook
PF02178.8
3.6
AT hook motif


AUX_IAA
PF02309.6
−83
AUX/IAA family


AWPM-19
PF05512.1
25
AWPM-19-like family


Aa_trans
PF01490.7
−128.4
Transmembrane amino acid transporter protein


Abhydrolase_3
PF07859.2
25.8
alpha/beta hydrolase fold


Aldedh
PF00171.11
−209.3
Aldehyde dehydrogenase family


Aldo_ket_red
PF00248.10
−97
Aldo/keto reductase family


Alpha-amylase
PF00128.12
−93
Alpha amylase, catalytic domain


Amidohydro_1
PF01979.8
−37.4
Amidohydrolase family


Amidohydro_3
PF07969.1
−65.5
Amidohydrolase family


Amino_oxidase
PF01593.12
−11.4
Flavin containing amine oxidoreductase


Aminotran_3
PF00202.10
−207.6
Aminotransferase class-III


Ammonium_transp
PF00909.10
−144
Ammonium Transporter Family


Anti-silence
PF04729.4
25
Anti-silencing protein, ASF1-like


Asn_synthase
PF00733.10
−52.8
Asparagine synthase


BBE
PF08031.1
25
Berberine and berberine like


C2
PF00168.18
3.7
C2 domain


CAF1
PF04857.8
−100.5
CAF1 family ribonuclease


CBFD_NFYB_HMF
PF00808.12
18.4
Histone-like transcription factor (CBF/NF-Y) and





archaeal histone


CSD
PF00313.12
−0.3
‘Cold-shock’ DNA-binding domain


CTP_transf_2
PF01467.16
−11.8
Cytidylyltransferase


Caleosin
PF05042.3
25
Caleosin related protein


CcmH
PF03918.4
−30.8
Cytochrome C biogenesis protein


Chal_sti_synt_C
PF02797.5
−6.1
Chalcone and stilbene synthases, C-terminal





domain


Citrate_synt
PF00285.10
−101.5
Citrate synthase


Cofilin_ADF
PF00241.10
−4.7
Cofilin/tropomyosin-type actin-binding protein


Cyclin_N
PF00134.13
−14.7
Cyclin, N-terminal domain


DAO
PF01266.12
−35.9
FAD dependent oxidoreductase


DNA_photolyase
PF00875.8
26.1
DNA photolyase


DS
PF01916.7
−95.2
Deoxyhypusine synthase


DUF1242
PF06842.1
25
Protein of unknown function (DUF1242)


DUF1336
PF07059.2
−78.2
Protein of unknown function (DUF1336)


DUF221
PF02714.5
25
Domain of unknown function DUF221


DUF296
PF03479.4
−11
Domain of unknown function (DUF296)


DZC
PF08381.1
15.3
Disease resistance/zinc finger/chromosome





condensation-like region


Dimerisation
PF08100.1
18.1
Dimerisation domain


DnaJ
PF00226.19
−8
DnaJ domain


F-box
PF00646.21
13.6
F-box domain


FAD_binding_4
PF01565.12
−8.1
FAD binding domain


FAD_binding_6
PF00970.13
−11.4
Oxidoreductase FAD-binding domain


FAD_binding_7
PF03441.4
25
FAD binding domain of DNA photolyase


FAE1_CUT1_RppA
PF08392.1
−192.7
FAE1/Type III polyketide synthase-like protein


FBD
PF08387.1
25
FBD


Fasciclin
PF02469.10
4
Fasciclin domain


GATase_2
PF00310.10
−106.2
Glutamine amidotransferases class-II


GSHPx
PF00255.10
−16
Glutathione peroxidase


GST_N
PF02798.9
14.6
Glutathione S-transferase, N-terminal domain


Globin
PF00042.11
−8.8
Globin


HALZ
PF02183.7
17
Homeobox associated leucine zipper


HEAT_PBS
PF03130.5
15
PBS lyase HEAT-like repeat


HLH
PF00010.15
8.2
Helix-loop-helix DNA-binding domain


HSF_DNA-bind
PF00447.7
−70
HSF-type DNA-binding


HSP20
PF00011.10
13
Hsp20/alpha crystallin family


Homeobox
PF00046.18
−4.1
Homeobox domain


ICL
PF00463.10
−234
Isocitrate lyase family


Iso_dh
PF00180.10
−97
Isocitrate/isopropylmalate dehydrogenase


K-box
PF01486.7
0
K-box region


KOW
PF00467.18
29.1
KOW motif


LIM
PF00412.11
0
LIM domain


LRR_2
PF07723.2
6
Leucine Rich Repeat


Lactamase_B
PF00753.16
24.6
Metallo-beta-lactamase superfamily


MMR_HSR1
PF01926.11
31.2
GTPase of unknown function


Malic_M
PF03949.4
−143.9
Malic enzyme, NAD binding domain


Metallophos
PF00149.17
22
Calcineurin-like phosphoesterase


Methyltransf_2
PF00891.7
−103.8
O-methyltransferase


Miro
PF08477.1
28
Miro-like protein


MtN3_slv
PF03083.5
−0.8
MtN3/saliva family


Myb_DNA-binding
PF00249.19
2.8
Myb-like DNA-binding domain


NAD_binding_1
PF00175.10
−3.9
Oxidoreductase NAD-binding domain


NAF
PF03822.4
4.5
NAF domain


NPH3
PF03000.4
25
NPH3 family


Orn_Arg_deC_N
PF02784.7
−76
Pyridoxal-dependent decarboxylase, pyridoxal





binding domain


Orn_DAP_Arg_deC
PF00278.12
6.7
Pyridoxal-dependent decarboxylase, C-terminal





sheet domain


PBP
PF01161.9
−20.6
Phosphatidylethanolamine-binding protein


PEP-utilizers
PF00391.12
10
PEP-utilising enzyme, mobile domain


PEP-utilizers_C
PF02896.7
−173
PEP-utilising enzyme, TIM barrel domain


PFK
PF00365.10
−132
Phosphofructokinase


PHD
PF00628.17
25.9
PHD-finger


PLDc
PF00614.11
0
Phospholipase D Active site motif


PMEI
PF04043.5
25
Plant invertase/pectin methylesterase inhibitor


PPDK_N
PF01326.8
−87
Pyruvate phosphate dikinase, PEP/pyruvate binding





domain


Phi_1
PF04674.2
25
Phosphate-induced protein 1 conserved region


Pkinase
PF00069.14
−70.8
Protein kinase domain


Pkinase_Tyr
PF07714.5
65
Protein tyrosine kinase


Pyridoxal_deC
PF00282.9
−158.6
Pyridoxal-dependent decarboxylase conserved





domain


RMMBL
PF07521.1
18.5
RNA-metabolising metallo-beta-lactamase


RNA_pol_L
PF01193.12
16.9
RNA polymerase Rpb3/Rpb11 dimerisation domain


RRM_1
PF00076.11
20.7
RNA recognition motif. (a.k.a. RRM, RBD, or RNP





domain)


RWP-RK
PF02042.5
25
RWP-RK domain


Ras
PF00071.11
−69.9
Ras family


Redoxin
PF08534.1
−1
Redoxin


Ribosomal_L12
PF00542.8
25
Ribosomal protein L7/L12 C-terminal domain


Ribosomal_L14
PF00238.9
−8
Ribosomal protein L14p/L23e


Ribosomal_L18p
PF00861.12
25
Ribosomal L18p/L5e family


SRF-TF
PF00319.8
11
SRF-type transcription factor (DNA-binding and





dimerisation domain)


Sina
PF03145.6
−48.4
Seven in absentia protein family


Skp1
PF01466.8
−2
Skp1 family, dimerisation domain


Skp1_POZ
PF03931.5
14.9
Skp1 family, tetramerisation domain


Spermine_synth
PF01564.6
−93.8
Spermine/spermidine synthase


Suc_Fer-like
PF06999.2
−42.4
Sucrase/ferredoxin-like


TPP_enzyme_M
PF00205.11
−23.9
Thiamine pyrophosphate enzyme, central domain


TPP_enzyme_N
PF02776.7
−70
Thiamine pyrophosphate enzyme, N-terminal TPP





binding domain


Transaldolase
PF00923.9
−49
Transaldolase


Tryp_alpha_amyl
PF00234.10
−4
Protease inhibitor/seed storage/LTP family


U-box
PF04564.5
10.5
U-box domain


UIM
PF02809.10
4.1
Ubiquitin interaction motif


UPF0005
PF01027.11
−6.7
Uncharacterised protein family UPF0005


UPF0057
PF01679.7
25
Uncharacterized protein family UPF0057


WD40
PF00400.20
21.5
WD domain, G-beta repeat


X8
PF07983.3
−28.8
X8 domain


eIF-5a
PF01287.9
9.6
Eukaryotic initiation factor 5A hypusine, DNA-





binding OB fold


efhand
PF00036.20
17.5
EF hand


malic
PF00390.8
25
Malic enzyme, N-terminal domain


p450
PF00067.11
−105
Cytochrome P450


peroxidase
PF00141.12
−10
Peroxidase


zf-A20
PF01754.6
25
A20-like zinc finger


zf-AN1
PF01428.6
0
AN1-like Zinc finger


zf-C3HC4
PF00097.13
16.9
Zinc finger, C3HC4 type (RING finger)









Example 10
Selection of Transgenic Plants with Enhanced Agronomic Traits

This example illustrates identification of plant cells of the invention by screening transgenic plants and seeds for an enhanced trait. Transgenic seed and plants, e.g., with transgenic corn cells in the plants prepared in Example 2, transgenic soybean cells in the plants prepared in Example 3, transgenic cotton cells in the plants prepared in Example 4, and transgenic cells in the plants prepared in Example 6, are screened for enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil as compared to control plants.


A. Selection for Enhanced Nitrogen Use Efficiency

The physiological efficacy of transgenic corn plants (tested as hybrids) can be tested for nitrogen use efficiency (NUE) traits in a high-throughput nitrogen (N) selection method. The collected data are compared to the measurements from wildtype controls using a statistical model to determine if the changes are due to the transgene. Raw data were analyzed by SAS software. Results shown herein are the comparison of transgenic plants relative to the wildtype controls.


(1) Media Preparation for Planting a NUE Protocol

Planting materials used: Metro Mix 200 (vendor: Hummert) Cat. #10-0325, Scotts Micro Max Nutrients (vendor: Hummert) Cat. #07-6330, OS 4⅓″×3⅞″ pots (vendor: Hummert) Cat. #16-1415, OS trays (vendor: Hummert) Cat. #16-1515, Hoagland's macronutrients solution, Plastic 5″ stakes (vendor: Hummert) yellow Cat. #49-1569, white Cat. #49-1505, Labels with numbers indicating material contained in pots. Fill 500 pots to rim with Metro Mix 200 to a weight of ˜140 g/pot. Pots are filled uniformly by using a balancer. Add 0.4 g of Micro Max nutrients to each pot. Stir ingredients with spatula to a depth of 3 inches while preventing material loss.


(2) Planting a NUE Selection in the Greenhouse

(a) Seed Germination—Each pot is lightly watered twice using reverse osmosis purified water. The first watering is scheduled to occur just before planting; and the second watering, after the seed has been planted in the pot. Ten Seeds of each entry (1 seed per pot) are planted to select eight healthy uniform seedlings. Additional wild type controls are planted for use as border rows. Alternatively, 15 seeds of each entry (1 seed per pot) are planted to select 12 healthy uniform seedlings (this larger number of plantings is used for the second, or confirmation, planting). Place pots on each of the 12 shelves in the Conviron growth chamber for seven days. This is done to allow more uniform germination and early seedling growth. The following growth chamber settings are 25° C./day and 22° C./night, 14 hours light and ten hours dark, humidity ˜80%, and light intensity ˜350 μmol/m2/s (at pot level). Watering is done via capillary matting similar to greenhouse benches with duration of ten minutes three times a day.


(b) Seedling transfer—After seven days, the best eight or 12 seedlings for the first or confirmation pass runs, respectively, are chosen and transferred to greenhouse benches. The pots are spaced eight inches apart (center to center) and are positioned on the benches using the spacing patterns printed on the capillary matting. The Vattex matting creates a 384-position grid, randomizing all range, row combinations. Additional pots of controls are placed along the outside of the experimental block to reduce border effects.


Plants are allowed to grow for 28 days under the low N run or for 23 days under the high N run. The macronutrients are dispensed in the form of a macronutrient solution (see composition below) containing precise amounts of N added (2 mM NH4NO3 for limiting N selection and 20 mM NH4NO3 for high N selection runs). Each pot is manually dispensed 100 ml of nutrient solution three times a week on alternate days starting at eight and ten days after planting for high N and low N runs, respectively. On the day of nutrient application, two 20 min waterings at 05:00 and 13:00 are skipped. The vattex matting should be changed every third run to avoid N accumulation and buildup of root matter. Table 12 shows the amount of nutrients in the nutrient solution for either the low or high nitrogen selection.











TABLE 12






2 mM NH4NO3
20 mM NH4NO3 (high



(Low Nitrogen Growth
Nitrogen Growth



Condition, Low N)
Condition, High N)


Nutrient Stock
mL/L
mL/L

















1 M NH4N03
2
20


1 M KH2PO4
0.5
0.5


1 M MgSO4•7H2O
2
2


1 M CaCl2
2.5
2.5


1 M K2SO4
1
1





Note


Adjust pH to 5.6 with HCl or KOH






(c) Harvest Measurements and Data Collection—After 28 days of plant growth for low N runs and 23 days of plant growth for high N runs, the following measurements are taken (phenocodes in parentheses): total shoot fresh mass (g) (SFM) measured by Sartorius electronic balance, V6 leaf chlorophyll measured by Minolta SPAD meter (relative units) (LC), V6 leaf area (cm2) (LA) measured by a Li-Cor leaf area meter, V6 leaf fresh mass (g) (LFM) measured by Sartorius electronic balance, and V6 leaf dry mass (g) (LDM) measured by Sartorius electronic balance. Raw data were analyzed by SAS software. Results shown are the comparison of transgenic plants relative to the wildtype controls.


To take a leaf reading, samples were excised from the V6 leaf. Since chlorophyll meter readings of corn leaves are affected by the part of the leaf and the position of the leaf on the plant that is sampled, SPAD meter readings were done on leaf six of the plants. Three measurements per leaf were taken, of which the first reading was taken from a point one-half the distance between the leaf tip and the collar and halfway from the leaf margin to the midrib while two were taken toward the leaf tip. The measurements were restricted in the area from ½ to ¾ of the total length of the leaf (from the base) with approximately equal spacing between them. The average of the three measurements was taken from the SPAD machine.


Leaf fresh mass is recorded for an excised V6 leaf, the leaf is placed into a paper bag. The paper bags containing the leaves are then placed into a forced air oven at 80° C. for 3 days. After 3 days, the paper bags are removed from the oven and the leaf dry mass measurements are taken.


From the collected data, two derived measurements are made: (1) Leaf chlorophyll area (LCA), which is a product of V6 relative chlorophyll content and its leaf area (relative units). Leaf chlorophyll area=leaf chlorophyll×leaf area. This parameter gives an indication of the spread of chlorophyll over the entire leaf area; (2) specific leaf area (LSA) is calculated as the ratio of V6 leaf area to its dry mass (cm2/g dry mass), a parameter also recognized as a measure of NUE.













TABLE 13







PEP

Leaf chlorophyll area
Leaf chlorophyll
Shoot fresh mass



















SEQ



Percent

P-
Percent

P-
Percent

P-


ID NO
Construct ID
Event ID
run
change
Delta
value
change
Delta
value
change
Delta
value






















199
PMON77880
ZM_M61363
1
2.2
140.91
0.5093
1.8
0.55
0.4558
8.9
4.39
0.0396



PMON77880
ZM_M61363
2
−6.1
−311.2
0.038
1.6
0.46
0.3878
−4.5
−2.04
0.1861



PMON77880
ZM_M61882
1
22.3
1423.3
0
15.1
4.68
0
38.5
18.94
0



PMON77880
ZM_M61882
2
5.6
288.92
0.0458
8.4
2.44
0
7.8
3.51
0.0108


204
PMON79194
ZM_M47022
1
11.7
0.09
1.00E−04
11.7
0.09
1.00E−04
−8.1
−16.4
2.00E−04



PMON79194
ZM_M47136
1
−10.4
−0.08
4.00E−04
8.3
0.44
2.00E−04
7.4
0.39
0.0011



PMON79194
ZM_M48721
1
−10.9
−685.75
0.0017
7.1
2.2
0.0016
10.5
4.48
0.0036









Nitrogen Use Field Efficacy Assay

Level I. Transgenic plants provided by the present invention are planted in field without any nitrogen source being applied. Transgenic plants and control plants are grouped by genotype and construct with controls arranged randomly within genotype blocks. Each type of transgenic plants are tested by 3 replications and across 5 locations. Nitrogen levels in the fields are analyzed in early April pre-planting by collecting 30 sample soil cores from 0-24″ and 24 to 48″ soil layer. Soil samples are analyzed for nitrate-nitrogen, phosphorus(P), Potassium(K), organic matter and pH to provide baseline values. P, K and micronutrients are applied based upon soil test recommendations.


Level II. Transgenic plants provided by the present invention are planted in field with three levels of nitrogen (N) fertilizer being applied, i.e. low level (0 N), medium level (80 lb/ac) and high level (180 lb/ac). Liquid 28% or 32% UAN (Urea, Ammonium Nitrogen) are used as the N source and apply by broadcast boom and incorporate with a field cultivator with rear rolling basket in the same direction as intended crop rows. Although there is no N applied to the 0 N treatment the soil should still be disturbed in the same fashion as the treated area. Transgenic plants and control plants are grouped by genotype and construct with controls arranged randomly within genotype blocks. Each type of transgenic plants is tested by 3 replications and across 4 locations. Nitrogen levels in the fields are analyzed in early April pre-planting by collecting 30 sample soil cores from 0-24″ and 24 to 48″ soil layer. Soil samples are analyzed for nitrate-nitrogen, phosphorus(P), Potassium(K), organic matter and pH to provide baseline values. P, K and micronutrients are applied based upon soil test recommendations.


B. Selection for Increased Yield

Many transgenic plants of this invention exhibit improved yield as compared to a control plant. Improved yield can result from enhanced seed sink potential, i.e. the number and size of endosperm cells or kernels and/or enhanced sink strength, i.e. the rate of starch biosynthesis. Sink potential can be established very early during kernel development, as endosperm cell number and size are determined within the first few days after pollination.


Much of the increase in corn yield of the past several decades has resulted from an increase in planting density. During that period, corn yield has been increasing at a rate of 2.1 bushels/acre/year, but the planting density has increased at a rate of 250 plants/acre/year. A characteristic of modern hybrid corn is the ability of these varieties to be planted at high density. Many studies have shown that a higher than current planting density should result in more biomass production, but current germplasm does not perform well at these higher densities. One approach to increasing yield is to increase harvest index (HI), the proportion of biomass that is allocated to the kernel compared to total biomass, in high density plantings.


Effective yield selection of enhanced yielding transgenic corn events uses hybrid progeny of the transgenic event over multiple locations with plants grown under optimal production management practices, and maximum pest control. A useful target for improved yield is a 5% to 10% increase in yield as compared to yield produced by plants grown from seed for a control plant. Selection methods may be applied in multiple and diverse geographic locations, for example up to 16 or more locations, over one or more plating seasons, for example at least two planting seasons to statistically distinguish yield improvement from natural environmental effects. It is to plant multiple transgenic plants, positive and negative control plants, and pollinator plants in standard plots, for example 2 row plots, 20 feet long by 5 feet wide with 30 inches distance between rows and a 3 foot alley between ranges. Transgenic events can be grouped by recombinant DNA constructs with groups randomly placed in the field. A pollinator plot of a high quality corn line is planted for every two plots to allow open pollination when using male sterile transgenic events. A useful planting density is about 30,000 plants/acre. High planting density is greater than 30,000 plants/acre, preferably about 40,000 plants/acre, more preferably about 42,000 plants/acre, most preferably about 45,000 plants/acre. Surrogate indicators for yield improvement include source capacity (biomass), source output (sucrose and photosynthesis), sink components (kernel size, ear size, starch in the seed), development (light response, height, density tolerance), maturity, early flowering trait and physiological responses to high density planting, for example at 45,000 plants per acre, for example as illustrated in Table 14 and 15.












TABLE 14





Timing
Evaluation
Description
comments







V2-3
Early stand
Can be taken any time after





germination and prior to




removal of any plants.


Pollen shed
GDU to 50% shed
GDU to 50% plants shedding




50% tassel.


Silking
GDU to 50% silk
GDU to 50% plants showing




silks.


Maturity
Plant height
Height from soil surface to
10 plants per plot - Yield




flag leaf attachment (inches).
team assistance


Maturity
Ear height
Height from soil surface to
10 plants per plot - Yield




primary ear attachment node.
team assistance


Maturity
Leaves above ear
visual scores: erect, size,




rolling


Maturity
Tassel size
Visual scores +/− vs. WT


Pre-Harvest
Final Stand
Final stand count prior to




harvest, exclude tillers


Pre-Harvest
Stalk lodging
No. of stalks broken below




the primary ear attachment.




Exclude leaning tillers


Pre-Harvest
Root lodging
No. of stalks leaning >45°




angle from perpendicular.


Pre-Harvest
Stay green
After physiological maturity




and when differences among




genotypes are evident: Scale




1 (90-100% tissue green)-9




(0-19% tissue green).


Harvest
Grain Yield
Grain yield/plot (Shell




weight)


















TABLE 15





Timing
Evaluation
Description







V8-V12
Chlorophyll



V12-VT
Ear leaf area


V15-15DAP
Chl fluorescence


V15-15DAP
CER


15-25 DAP
Carbohydrates
sucrose, starch


Pre-Harvest
1st internode diameter


Pre-Harvest
Base 3 internode diameter


Pre-Harvest
Ear internode diameter


Maturity
Ear traits
diameter, length, kernel




number, kernel weight









Electron transport rates (ETR) and CO2 exchange rates (CER): ETR and CER are measured with Li6400LCF (Licor, Lincoln, Nebr.) around V9-R1 stages. Leaf chlorophyll fluorescence is a quick way to monitor the source activity and is reported to be highly correlated with CO2 assimilation under varies conditions (Photosyn Research, 37: 89-102). The youngest fully expanded leaf or 2 leaves above the ear leaf is measured with actinic light 1500 (with 10% blue light) micromol m−2 s−1, 28° C., CO2 levels 450 ppm. Ten plants are measured in each event. There are 2 readings for each plant.


A hand-held chlorophyll meter SPAD-502 (Minolta-Japan) is used to measure the total chlorophyll level on live transgenic plants and the wild type counterparts a. Three trifoliates from each plant are analyzed, and each trifoliate were analyzed three times. Then 9 data points are averaged to obtain the chlorophyll level. The number of analyzed plants of each genotype ranges from 5 to 8.


When selecting for yield improvement a useful statistical measurement approach comprises three components, i.e. modeling spatial autocorrelation of the test field separately for each location, adjusting traits of recombinant DNA events for spatial dependence for each location, and conducting an across location analysis. The first step in modeling spatial autocorrelation is estimating the covariance parameters of the semivariogram. A spherical covariance model is assumed to model the spatial autocorrelation. Because of the size and nature of the trial, it is likely that the spatial autocorrelation may change. Therefore, anisotropy is also assumed along with spherical covariance structure. The following set of equations describes the statistical form of the anisotropic spherical covariance model.








C


(

h
;
θ

)


=


vI


(

h
=
0

)


+



σ
2

(

1
-


3
2


h

+


1
2



h
3



)



I


(

h
<
1

)





,




where I(•) is the indicator function, h=√{square root over ({dot over (x)}2+{dot over (y)}2)} and






{dot over (x)}=[cos(ρπ/180)(x1−x2)−sin(ρπ/180)(y1−y2)]/ωx






{dot over (y)}=[sin(ρπ/180)(x1−x2)+cos(ρπ/180)(y1−y2)]/ωy


where s1=(x1, y1) are the spatial coordinates of one location and s2=(x2, y2) are the spatial coordinates of the second location. There are 5 covariance parameters, θ=(ν, σ2, ρ, ωn, ωj), where ν is the nugget effect, σ2 is the partial sill, ρ is a rotation in degrees clockwise from north, Ωn is a scaling parameter for the minor axis and ωj is a scaling parameter for the major axis of an anisotropical ellipse of equal covariance. The five covariance parameters that defines the spatial trend will then be estimated by using data from heavily replicated pollinator plots via restricted maximum likelihood approach. In a multi-location field trial, spatial trend are modeled separately for each location.


After obtaining the variance parameters of the model, a variance-covariance structure is generated for the data set to be analyzed. This variance-covariance structure contains spatial information required to adjust yield data for spatial dependence. In this case, a nested model that best represents the treatment and experimental design of the study is used along with the variance-covariance structure to adjust the yield data. During this process the nursery or the seed batch effects can also be modeled and estimated to adjust the yields for any yield parity caused by seed batch differences. After spatially adjusted data from different locations are generated, all adjusted data is combined and analyzed assuming locations as replications. In this analysis, intra and inter-location variances are combined to estimate the standard error of yield from transgenic plants and control plants. Relative mean comparisons are used to indicate statistically significant yield improvements.


C. Selection for Enhanced Water Use Efficiency (WUE)

Described in this example is a high-throughput method for greenhouse selection of transgenic corn plants to wild type corn plants (tested as inbreds or hybrids) for water use efficiency and method for selection transgenic cotton plants for water use efficiency. This selection process imposes 3 drought/re-water cycles on plants over a total period of 15 days after an initial stress free growth period of 11 days. Each cycle consists of 5 days, with no water being applied for the first four days and a water quenching on the 5th day of the cycle. The primary phenotypes analyzed by the selection method are the changes in plant growth rate as determined by height and biomass during a vegetative drought treatment. The hydration status of the shoot tissues following the drought is also measured. The plant height is measured at three time points. The first is taken just prior to the onset drought when the plant is 11 days old, which is the shoot initial height (SIH). The plant height is also measured halfway throughout the drought/re-water regimen, on day 18 after planting, to give rise to the shoot mid-drought height (SMH). Upon the completion of the final drought cycle on day 26 after planting, the shoot portion of the plant is harvested and measured for a final height, which is the shoot wilt height (SWH) and also measured for shoot wilted biomass (SWM). The shoot is placed in water at 40 degree Celsius in the dark. Three days later, the shoot is weighted to give rise to the shoot turgid weight (STM). After drying in an oven for four days, the shoots are weighted for shoot dry biomass (SDM). The shoot average height (SAH) is the mean plant height across the 3 height measurements. The procedure described above may be adjusted for +/−˜one day for each step given the situation.


To correct for slight differences between plants, a size corrected growth value is derived from SIH and SWH. This is the Relative Growth Rate (RGR). Relative Growth Rate (RGR) is calculated for each shoot using the formula [RGR %=(SWH−SIH)/((SWH+SIH)/2)*100]. Relative water content (RWC) is a measurement of how much (%) of the plant was water at harvest. Water Content (RWC) is calculated for each shoot using the formula [RWC %=(SWM−SDM)/(STM−SDM)*100]. Fully watered corn plants of this age run around 98% RWC.


Progeny transgenic plants are selected from a population of transgenic cotton events under specified growing conditions and are compared with control cotton plants. Control cotton plants are substantially the same cotton genotype but without the recombinant DNA, for example, either a parental cotton plant of the same genotype that was not transformed with the identical recombinant DNA or a negative isoline of the transformed plant. Additionally, a commercial cotton cultivar adapted to the geographical region and cultivation conditions, i.e. cotton variety ST474, cotton variety FM 958, and cotton variety Siokra L-23, are used to compare the relative performance of the transgenic cotton plants containing the recombinant DNA. The specified culture conditions are growing a first set of transgenic and control plants under “wet” conditions, i.e. irrigated in the range of 85 to 100 percent of evapotranspiration to provide leaf water potential of −14 to −18 bars, and growing a second set of transgenic and control plants under “dry” conditions, i.e. irrigated in the range of 40 to 60 percent of evapotranspiration to provide a leaf water potential of −21 to −25 bars. Pest control, such as weed and insect control is applied equally to both wet and dry treatments as needed. Data gathered during the trial includes weather records throughout the growing season including detailed records of rainfall; soil characterization information; any herbicide or insecticide applications; any gross agronomic differences observed such as leaf morphology, branching habit, leaf color, time to flowering, and fruiting pattern; plant height at various points during the trial; stand density; node and fruit number including node above white flower and node above crack boll measurements; and visual wilt scoring. Cotton boll samples are taken and analyzed for lint fraction and fiber quality. The cotton is harvested at the normal harvest timeframe for the trial area. Enhanced water use efficiency is indicated by increased yield, improved relative water content, enhanced leaf water potential, increased biomass, enhanced leaf extension rates, and improved fiber parameters.


D. Selection for Growth Under Cold Stress

(1) Cold germination assay—Three sets of seeds are used for the assay. The first set consists of positive transgenic events (F1 hybrid) where the genes of the present invention are expressed in the seed. The second seed set is nontransgenic, wild-type negative control made from the same genotype as the transgenic events. The third set consisted of two cold tolerant and one cold sensitive commercial check lines of corn. All seeds are treated with a fungicide “Captan” (MAESTRO® 80DF Fungicide, Arvesta Corporation, San Francisco, Calif., USA). 0.43 mL Captan is applied per 45 g of corn seeds by mixing it well and drying the fungicide prior to the experiment.


Corn kernels are placed embryo side down on blotter paper within an individual cell (8.9×8.9 cm) of a germination tray (54×36 cm). Ten seeds from an event are placed into one cell of the germination tray. Each tray can hold 21 transgenic events and 3 replicates of wildtype (LH244SDms+LH59), which is randomized in a complete block design. For every event there are five replications (five trays). The trays are placed at 9.7 C for 24 days (no light) in a Convrion growth chamber (Conviron Model PGV36, Controlled Environments, Winnipeg, Canada). Two hundred and fifty milliliters of deionized water are added to each germination tray. Germination counts are taken 10th, 11th, 12th, 13th, 14th, 17th, 19th, 21st, and 24th day after start date of the experiment. Seeds are considered germinated if the emerged radicle size is 1 cm. From the germination counts germination index is calculated.


The germination index is calculated as per:





Germination index=(Σ([T+1−ni]*[Pi−Pi−i]))/T


Where T is the total number of days for which the germination assay is performed. The number of days after planting is defined by n. “i” indicated the number of times the germination had been counted, including the current day. P is the percentage of seeds germinated during any given rating. Statistical differences are calculated between transgenic events and wild type control. After statistical analysis, the events that show a statistical significance at the p level of less than 0.1 relative to wild-type controls will advance to a secondary cold selection. The secondary cold screen is conducted in the same manner of the primary selection only increasing the number of repetitions to ten. Statistical analysis of the data from the secondary selection is conducted to identify the events that show a statistical significance at the p level of less than 0.05 relative to wild-type controls.











TABLE 16









Germination Index










1st Run
2nd Run













PEP SEQ


%
P
%
P


ID
CONSTRUCT
Event
Change
value
Change
value
















266
PMON92840
MON810, ZM_M106115
28
0.079
15
0.233



PMON92840
MON810, ZM_M107208
58
0.000
24
0.049



PMON92840
MON810, ZM_M107212
36
0.026
34
0.006



PMON92840
MON810, ZM_M107214
53
0.001
26
0.035



PMON92840
MON810, ZM_M107221
29
0.072
−5
0.663



PMON92840
MON810, ZM_M107224
60
0.000
35
0.004



PMON92840
MON810, ZM_M107228
39
0.017
30
0.016


284
PMON92854
MON810, ZM_M103991
28
0.070
9
0.364



PMON92854
MON810, ZM_M104002
35
0.025
8
0.412



PMON92854
MON810, ZM_M105195
27
0.082
10
0.321



PMON92854
MON810, ZM_M105213
30
0.060
21
0.033



PMON92854
MON810, ZM_M105218
74
0.000
49
0.000



PMON92854
MON810, ZM_M105267
43
0.006
28
0.004



PMON92854
MON810, ZM_M106123
−1
0.965
30
0.002









(2) Cold Shock assay—The experimental set-up for the cold shock assay is the same as described in the above cold germination assay except seeds were grown in potted media for the cold shock assay.


The desired numbers of 2.5″ square plastic pots are placed on flats (n=32, 4×8). Pots were filled with Metro Mix 200 soil-less media containing 19:6:12 fertilizer (6 lbs/cubic yard) (Metro Mix, Pots and Flat are obtained from Hummert International, Earth City, Mo.). After planting seeds, pots are placed in a growth chamber set at 23° C., relative humidity of 65% with 12 hour day and night photoperiod (300 uE/m2-min). Planted seeds are watered for 20 minute every other day by sub-irrigation and flats were rotated every third day in a growth chamber for growing corn seedlings.


On the 10th day after planting the transgenic positive and wild-type negative (WT) plants are positioned in flats in an alternating pattern. Chlorophyll fluorescence of plants is measured on the 10th day during the dark period of growth by using a PAM-2000 portable fluorometer as per the manufacturer's instructions (Walz, Germany). After chlorophyll measurements, leaf samples from each event are collected for confirming the expression of genes of the present invention. For expression analysis six V1 leaf tips from each selection are randomly harvested. The flats are moved to a growth chamber set at 5° C. All other conditions such as humidity, day/night cycle and light intensity are held constant in the growth chamber. The flats are sub-irrigated every day after transfer to the cold temperature. On the 4th day chlorophyll fluorescence is measured. Plants are transferred to normal growth conditions after six days of cold shock treatment and allowed to recover for the next three days. During this recovery period the length of the V3 leaf is measured on the 1st and 3rd days. After two days of recovery V2 leaf damage is determined visually by estimating percent of green V2 leaf.


Statistical differences in V3 leaf growth, V2 leaf necrosis and fluorescence during pre-shock and cold shock can be used for estimation of cold shock damage on corn plants.


(3) Early seedling growth assay—Three sets of seeds are used for the experiment. The first set consists of positive transgenic events (F1 hybrid) where the genes of the present invention are expressed in the seed. The second seed set is nontransgenic, wild-type negative control made from the same genotype as the transgenic events. The third seed set consists of two cold tolerant and two cold sensitive commercial check lines of corn. All seeds are treated with a fungicide “Captan”, (3a,4,7,a-tetrahydro-2-[(trichloromethly)thio]-1H-isoindole-1,3(2H)-dione, Drex Chemical Co. Memphis, Tenn.). Captan (0.43 mL) was applied per 45 g of corn seeds by mixing it well and drying the fungicide prior to the experiment.


Seeds are grown in germination paper for the early seedling growth assay. Three 12″×18″ pieces of germination paper (Anchor Paper #SD7606) are used for each entry in the test (three repetitions per transgenic event). The papers are wetted in a solution of 0.5% KNO3 and 0.1% Thyram.


For each paper fifteen seeds are placed on the line evenly spaced down the length of the paper. The fifteen seeds are positioned on the paper such that the radical would grow downward, for example longer distance to the paper's edge. The wet paper is rolled up starting from one of the short ends. The paper is rolled evenly and tight enough to hold the seeds in place. The roll is secured into place with two large paper clips, one at the top and one at the bottom. The rolls are incubated in a growth chamber at 23° C. for three days in a randomized complete block design within an appropriate container. The chamber is set for 65% humidity with no light cycle. For the cold stress treatment the rolls are then incubated in a growth chamber at 12° C. for twelve days. The chamber is set for 65% humidity with no light cycle.


After the cold treatment the germination papers are unrolled and the seeds that did not germinate are discarded. The lengths of the radicle and coleoptile for each seed are measured through an automated imaging program that automatically collects and processes the images. The imaging program automatically measures the shoot length, root length, and whole seedling length of every individual seedling and then calculates the average of each roll.


After statistical analysis, the events that show a statistical significance at the p level of less than 0.1 relative to wild-type controls will advance to a secondary cold selection. The secondary cold selection is conducted in the same manner of the primary selection only increasing the number of repetitions to five. Statistical analysis of the data from the secondary selection is conducted to identify the events that show a statistical significance at the p level of less than 0.05 relative to wild-type controls.













TABLE 17







PEP

root length
shoot length
total length



















SEQ ID



Percent

P-
Percent


Percent

P-


NO
construct
event
run
change
Delta
value
change
Delta
P-value
change
Delta
value






















204
PMON79194
ZM_M47022
1
10
1.05
0.0801
5
0.38
0.4359
8
1.43
0.1411



PMON79194
ZM_M47022
2
31
3.31
0
44
3.25
0
36
6.56
0



PMON79194
ZM_M47136
1
9
0.96
0.1078
13
1.08
0.0304
11
2.05
0.0372



PMON79194
ZM_M47136
2
35
3.69
0
36
2.65
1.00E−04
35
6.34
0



PMON79194
ZM_M48721
1
14
1.47
0.0153
10
0.84
0.0908
13
2.31
0.0192



PMON79194
ZM_M48721
2
28
2.99
2.00E−04
33
2.47
3.00E−04
30
5.46
0









(4). Cold Field Efficacy Trial

This example sets forth a cold field efficacy trial to identify gene constructs that confer enhanced cold vigor at germination and early seedling growth under early spring planting field conditions in conventional-till and simulated no-till environments. Seeds are planted into the ground around two weeks before local farmers are beginning to plant corn so that a significant cold stress is exerted onto the crop, named as cold treatment. Seeds also are planted under local optimal planting conditions such that the crop has little or no exposure to cold condition, named as normal treatment. The cold field efficacy trials are carried out in five locations, including Glyndon Minn., Mason Mich., Monmouth Ill., Dayton Iowa, Mystic Conn. At each location, seeds are planted under both cold and normal conditions with 3 repetitions per treatment, 20 kernels per row and single row per plot. Seeds are planted 1.5 to 2 inch deep into soil to avoid muddy conditions. Two temperature monitors are set up at each location to monitor both air and soil temperature daily.


Seed emergence is defined as the point when the growing shoot breaks the soil surface. The number of emerged seedling in each plot is counted everyday from the day the earliest plot begins to emerge until no significant changes in emergence occur. In addition, for each planting date, the latest date when emergence is 0 in all plots is also recorded. Seedling vigor is also rated at V3-V4 stage before the average of corn plant height reaches 10 inches, with 1=excellent early growth, 5=Average growth and 9=poor growth. Days to 50% emergence, maximum percent emergence and seedling vigor are calculated using SAS software for the data within each location or across all locations.


E. Screens for Transgenic Plant Seeds with Increased Protein and/or Oil Levels


This example sets forth a high-throughput selection for identifying plant seeds with improvement in seed composition using the Infratec 1200 series Grain Analyzer, which is a near-infrared transmittance spectrometer used to determine the composition of a bulk seed sample. Near infrared analysis is a non-destructive, high-throughput method that can analyze multiple traits in a single sample scan. An NIR calibration for the analytes of interest is used to predict the values of an unknown sample. The NIR spectrum is obtained for the sample and compared to the calibration using a complex chemometric software package that provides a predicted values as well as information on how well the sample fits in the calibration.


Infratec Model 1221, 1225, or 1227 with transport module by Foss North America is used with cuvette, item #1000-4033, Foss North America or for small samples with small cell cuvette, Foss standard cuvette modified by Leon Girard Co. Corn and soy check samples of varying composition maintained in check cell cuvettes are supplied by Leon Girard Co. NIT collection software is provided by Maximum Consulting Inc. Software. Calculations are performed automatically by the software. Seed samples are received in packets or containers with barcode labels from the customer. The seed is poured into the cuvettes and analyzed as received.










TABLE 18







Typical sample(s):
Whole grain corn and soybean seeds


Analytical time to run method:
Less than 0.75 min per sample


Total elapsed time per run:
1.5 minute per sample


Typical and minimum sample size:
Corn typical: 50 cc; minimum 30 cc



Soybean typical: 50 cc;



minimum 5 cc


Typical analytical range:
Determined in part by the specific



calibration.



Corn - moisture 5-15%, oil 5-20%,



protein 5-30%, starch 50-75%, and



density 1.0-1.3%.



Soybean - moisture 5-15%,



oil 15-25%, and protein 35-50%.
















TABLE 19







Transgenic corn plants have an increased oil level in seeds










PEP

2004 Data
2005 Data













SEQ


Oil

Oil



ID NO
Event
Construct
Delta
Pvalue
delta
P value
















231
ZM_S90572
PMON17730
0.18
0.22
0.25
0.04



ZM_S90588
PMON17730
N/A
N/A
0.10
0.33



ZM_S90610
PMON17730
N/A
N/A
−0.03
0.78



ZM_S90614
PMON17730
0.26
0.08
0.47
0.00



ZM_S90622
PMON17730
−0.03  
0.82
0.31
0.00
















TABLE 20







Transgenic corn plants have an increased protein level in seeds










PEP





SEQ

1st Inbred protein trial
2nd Inbred protein trial

















ID


Mean
Mean


Mean
Mean




NO
Construct
Event
transgenic
control
Delta
Pvalue
transgenic
control
Delta
Pvalue




















208
PMON92607
ZM_M106133
14.06
10.39
3.67
0
11.91
10.06
1.84
0.0023




ZM_M106129
16.46
10.39
6.07
0
16.00
10.06
5.94
0




ZM_M105269
15.80
10.39
5.41
0
14.89
10.06
4.83
0




ZM_M105268
14.07
10.39
3.67
0
12.81
10.06
2.74
0




ZM_M104742
12.57
10.39
2.18
0.0064
12.52
10.06
2.46
0




ZM_M104740
14.45
10.39
4.06
0
12.93
10.06
2.86
0




ZM_M104403
12.90
10.39
2.51
0.0017
12.60
10.06
2.53
0




ZM_M104399
13.21
10.39
2.82
0.0004
14.04
10.06
3.98
0




ZM_M104398
14.91
10.39
4.51
0
12.79
10.06
2.73
0




ZM_M104396
12.13
10.39
1.74
0.0289
12.90
10.06
2.83
0




ZM_M104385
13.12
10.39
2.72
0.0007
12.89
10.06
2.82
0




ZM_M104371
12.23
10.39
1.83
0.0213
12.18
10.06
2.12
0.0004




ZM_M104369
13.41
10.39
3.01
0.0002
11.35
10.06
1.29
0.0309




ZM_M103621
12.26
10.39
1.86
0.0191
10.76
10.06
0.69
0.2425




ZM_M106138
13.74
10.39
3.35
0
13.34
10.06
3.28
0
















TABLE 21







Transgenic soybean plants have an increased seed oil level










PEP





SEQ

seed oil content
seed protein content
















ID



control
transgenic

control
transgenic



NO
construct
event
run
mean
mean
delta
mean
mean
delta



















231
PMON94697
construct
1
20.0
19.7
−0.3
42.0
42.9
0.9




analysis
2
19.6
20.2
0.6*
43.3
43.6
0.3





3
19.9
20.6
0.7*
42.5
43.1
0.6




GM_A79833
1
20.2
19.7
−0.3
42.0
42.9
0.9





2
19.6
19.9
0.3
43.3
43.5
0.2




GM_A79838
2
19.6
19.8
0.2
43.3
45.2
1.9*




GM_A79839
2
19.6
20.4
0.8*
43.3
43.7
0.4




GM_A79857
2
19.6
19.9
0.3
43.3
43.7
0.4




GM_A79859
2
19.6
20.6
1.0*
43.3
43.7
−0.6




GM_A79894
2
19.6
20.4
0.8*
43.3
43.1
−0.2




GM_A79896
2
19.6
19.8
0.2
43.3
44.4
1.1*




GM_A79914
2
19.6
20.9
1.3*
43.3
42.7
−0.6





3
19.9
20.6
0.7
42.5
43.4
0.9




GM_A79934
3
19.9
20.3
0.4*
42.5
43.3
0.8*




GM_A79936
3
19.9
21.0
1.1*
42.5
42.5
0.0





Data point with “*” indicate a statistically significant delta (the difference between transgenic and control plants).


Seed protein or oil is measured as a percentage of total seed composition.





Claims
  • 1. A plant cell with stably integrated, recombinant DNA comprising a promoter that is functional in plant cells and that is operably linked to DNA from a plant, bacteria or yeast that encodes a protein having at least one domain of amino acids in a sequence that exceeds the Pfam gathering cutoff for amino acid sequence alignment with a protein domain family identified by a Pfam name in the group of Pfam names consisting of FAD_binding—4, MtN3_slv, Homeobox, FAD_binding—6, RWP-RK, PMEI, FAD_binding—7, RRM—1, Transaldolase, RNA_pol_L, WD40, U-box, Cyclin_N, Skp1, Redoxin, DZC, PBP, TPP_enzyme_M, CBFD_NFYB_HMF, TPP_enzyme_N, PFK, Caleosin, Iso_dh, Ribosomal_L18p, Metallophos, zf-A20, Ras, BBE, NAF, PLDc, DUF1242, Pkinase, C2, p450, Pyridoxal_deC, FBD, UPF0005, HEAT_PBS, GST_N, PEP-utilizers, Alpha-amylase, Amino_oxidase, SRF-TF, Phi—1, Malic_M, Tryp_alpha_amyl, GSHPx, Miro, HSF_DNA-bind, DNA_photolyase, Sina, CTP_transf—2, Abhydrolase—3, Chal_sti_synt_C, ACP_syn_III_C, ADH_zinc_N, CSD, Globin, GATase—2, Amidohydro—1, HLH, HALZ, Amidohydro—3, Lactamase_B, HSP20, DAO, DUF296, AT_hook, AWPM-19, Dimerisation, Suc_Fer-like, Methyltransf—2, Aminotran—3, PHD, MMR_HSR1, Aldo_ket_red, zf-AN1, malic, Fasciclin, UPF0057, DUF221, Pkinase_Tyr, DnaJ, Cofilin_ADF, Orn_Arg_deC_N, Skp1_POZ, Asn_synthase, K-box, LRR—2, Ribosomal_L12, Ammonium_transp, Ribosomal_L14, KOW, DUF1336, DS, Aa_trans, CcmH, peroxidase, eIF-5a, Aldedh, PEP-utilizers_C, ADH_N, UIM, NAD_binding—1, zf-C3HC4, Spermine_synth, AUX_IAA, LIM, Anti-silence, X8, Citrate_synt, 14-3-3, RMMBL, efhand, NPH3, CAF1, ICL, FAE1_CUT1_RppA, Orn_DAP_Arg_deC, PPDK_N, Myb_DNA-binding, AP2, F-box, and APS_kinase wherein the Pfam gathering cuttoff for said protein domain families is stated in Table 11; wherein said plant cell is selected from a population of plant cells with said recombinant DNA by screening plants that are regenerated from plant cells in said population and that express said protein for an enhanced trait as compared to control plants that do not have said recombinant DNA; and wherein said enhanced trait is selected from group of enhanced traits consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil.
  • 2. A plant cell of claim 1 wherein said protein has an amino acid sequence with at least 90% identity to a consensus amino acid sequence in the group of consensus amino acid sequences consisting of the consensus amino acid sequence constructed for SEQ ID NO: 194 and homologs thereof listed in Table 7 through the consensus amino acid sequence constructed for SEQ ID NO:386 and homologs thereof listed in Table 7.
  • 3. A plant cell of claim 1 wherein said protein is selected from the group of proteins identified in Table 1.
  • 4. A plant cell of claim 1 further comprising DNA expressing a protein that provides tolerance from exposure to an herbicide applied at levels that are lethal to a wild type of said plant cell.
  • 5. A plant cell of claim 4 wherein the agent of said herbicide is a glyphosate, dicamba, or glufosinate compound.
  • 6. A transgenic plant comprising a plurality of the plant cell of claim 1
  • 7. A transgenic plant of claim 6 which is homozygous for said recombinant DNA.
  • 8. A transgenic seed comprising a plurality of the plant cell of claim 1.
  • 9. A transgenic seed of claim 8 from a corn, soybean, cotton, canola, alfalfa, wheat or rice plant.
  • 10. Non-natural, transgenic corn seed of claim 9 wherein said seed can produce corn plants that are resistant to disease from the Mal de Rio Cuarto virus or the Puccina sorghi fungus or both.
  • 11. A transgenic pollen grain comprising a haploid derivative of a plant cell of claim 1.
  • 12. A method for manufacturing non-natural, transgenic seed that can be used to produce a crop of transgenic plants with an enhanced trait resulting from expression of stably-integrated, recombinant DNA comprising a promoter that is (a) functional in plant cells and (b) is operably linked to DNA from a plant, bacteria or yeast that encodes a protein having at least one domain of amino acids in a sequence that exceeds the Pfam gathering cutoff for amino acid sequence alignment with a protein domain family identified by a Pfam name in the group of Pfam names consisting of FAD_binding—4, MtN3_slv, Homeobox, FAD_binding—6, RWP-RK, PMEI, FAD_binding—7, RRM—1, Transaldolase, RNA_pol_L, WD40, U-box, Cyclin_N, Skp1, Redoxin, DZC, PBP, TPP_enzyme_M, CBFD_NFYB_HMF, TPP_enzyme_N, PFK, Caleosin, Iso_dh, Ribosomal_L18p, Metallophos, zf-A20, Ras, BBE, NAF, PLDc, DUF1242, Pkinase, C2, p450, Pyridoxal_deC, FBD, UPF0005, HEAT_PBS, GST_N, PEP-utilizers, Alpha-amylase, Amino_oxidase, SRF-TF, Phi—1, Malic_M, Tryp_alpha_amyl, GSHPx, Miro, HSF_DNA-bind, DNA_photolyase, Sina, CTP_transf—2, Abhydrolase—3, Chal_sti_synt_C, ACP_syn_III_C, ADH_zinc_N, CSD, Globin, GATase—2, Amidohydro—1, HLH, HALZ, Amidohydro—3, Lactamase_B, HSP20, DAO, DUF296, AT_hook, AWPM-19, Dimerisation, Suc_Fer-like, Methyltransf—2, Aminotran—3, PHD, MMR_HSR1, Aldo_ket_red, zf-AN1, malic, Fasciclin, UPF0057, DUF221, Pkinase_Tyr, DnaJ, Cofilin_ADF, Orn_Arg_deC_N, Skp1_POZ, Asn_synthase, K-box, LRR—2, Ribosomal_L12, Ammonium_transp, Ribosomal_L14, KOW, DUF1336, DS, Aa_trans, CcmH, peroxidase, eIF-5a, Aldedh, PEP-utilizers_C, ADH_N, UIM, NAD_binding—1, zf-C3HC4, Spermine_synth, AUX_IAA, LIM, Anti-silence, X8, Citrate_synt, 14-3-3, RMMBL, efhand, NPH3, CAF1, ICL, FAE1_CUT1_RppA, Orn_DAP_Arg_deC, PPDK_N, Myb_DNA-binding, AP2, F-box, and APS_kinase; wherein the gathering cutoff for said protein domain families is stated in Table 11; and wherein said enhanced trait is selected from the group of enhanced traits consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil, said method for manufacturing said seed comprising: (a) screening a population of plants for said enhanced trait and said recombinant DNA, wherein individual plants in said population can exhibit said trait at a level less than, essentially the same as or greater than the level that said trait is exhibited in control plants which do not express the recombinant DNA,(b) selecting from said population one or more plants that exhibit the trait at a level greater than the level that said trait is exhibited in control plants,(c) verifying that said recombinant DNA is stably integrated in said selected plants,(d) analyzing tissue of a selected plant to determine the production of a protein having the function of a protein encoded by nucleotides in a sequence of one of SEQ ID NO:1-193; and(e) collecting seed from a selected plant.
  • 13. A method of claim 12 wherein plants in said population further comprise DNA expressing a protein that provides tolerance to exposure to an herbicide applied at levels that are lethal to wild type plant cells, and wherein said selecting is effected by treating said population with said herbicide.
  • 14. A method of claim 13 wherein said herbicide comprises a glyphosate, dicamba or glufosinate compound.
  • 15. A method of claim 12 wherein said selecting is effected by identifying plants with said enhanced trait.
  • 16. A method of claim 12 wherein said seed is corn, soybean, cotton, alfalfa, wheat or rice seed.
  • 17. A method of producing hybrid corn seed comprising: acquiring hybrid corn seed from a herbicide tolerant corn plant which also has stably-integrated, recombinant DNA comprising a promoter that is (a) functional in plant cells and (b) is operably linked to DNA that encodes a protein having at least one domain of amino acids in a sequence that exceeds the Pfam gathering cutoff for amino acid sequence alignment with a protein domain family identified by a Pfam name in the group of Pfam names consisting of FAD_binding—4, MtN3_slv, Homeobox, FAD_binding—6, RWP-RK, PMEI, FAD_binding—7, RRM—1, Transaldolase, RNA_pol_L, WD40, U-box, Cyclin_N, Skp1, Redoxin, DZC, PBP, TPP_enzyme_M, CBFD_NFYB_HMF, TPP_enzyme_N, PFK, Caleosin, Iso_dh, Ribosomal_L18p, Metallophos, zf-A20, Ras, BBE, NAF, PLDc, DUF1242, Pkinase, C2, p450, Pyridoxal_deC, FBD, UPF0005, HEAT_PBS, GST_N, PEP-utilizers, Alpha-amylase, Amino_oxidase, SRF-TF, Phi—1, Malic_M, Tryp_alpha_amyl, GSHPx, Miro, HSF_DNA-bind, DNA_photolyase, Sina, CTP_transf—2, Abhydrolase—3, Chal_sti_synt_C, ACP_syn_III_C, ADH_zinc_N, CSD, Globin, GATase—2, Amidohydro—1, HLH, HALZ, Amidohydro—3, Lactamase_B, HSP20, DAO, DUF296, AT_hook, AWPM-19, Dimerisation, Suc_Fer-like, Methyltransf—2, Aminotran—3, PHD, MMR—HSR1, Aldo_ket_red, zf-AN1, malic, Fasciclin, UPF0057, DUF221, Pkinase_Tyr, DnaJ, Cofilin_ADF, Orn_Arg_deC_N, Skp1_POZ, Asn_synthase, K-box, LRR—2, Ribosomal_L12, Ammonium_transp, Ribosomal_L14, KOW, DUF1336, DS, Aa_trans, CcmH, peroxidase, eIF-5a, Aldedh, PEP-utilizers_C, ADH_N, UIM, NAD_binding—1, zf-C3HC4, Spermine_synth, AUX_IAA, LIM, Anti-silence, X8, Citrate_synt, 14-3-3, RMMBL, efhand, NPH3, CAF1, ICL, FAE1_CUT1_RppA, Orn_DAP_Arg_deC, PPDK_N, Myb_DNA-binding, AP2, F-box, and APS_kinase;(a) wherein the gathering cuttoff for said protein domain families is stated in Table 11;(b) producing corn plants from said hybrid corn seed, wherein a fraction of the plants produced from said hybrid corn seed is homozygous for said recombinant DNA, a fraction of the plants produced from said hybrid corn seed is hemizygous for said recombinant DNA, and a fraction of the plants produced from said hybrid corn seed has none of said recombinant DNA;(c) selecting corn plants which are homozygous and hemizygous for said recombinant DNA by treating with an herbicide;(d) collecting seed from herbicide-treated-surviving corn plants and planting said seed to produce further progeny corn plants;(e) repeating steps (c) and (d) at least once to produce an inbred corn line;(f) crossing said inbred corn line with a second corn line to produce hybrid seed.
  • 18. A method of selecting a plant comprising cells of claim 1 wherein an immunoreactive antibody is used to detect the presence of said protein in seed or plant tissue.
  • 19. Anti-counterfeit milled seed having, as an indication of origin, a plant cell of claim 1.
  • 20. A method of growing a corn, cotton or soybean crop without irrigation water comprising planting seed having plant cells of claim 1 which are selected for enhanced water use efficiency.
  • 21. A method of claim 20 comprising providing up to 300 millimeters of ground water during the production of said crop.
  • 22. A plant cell with stably integrated, recombinant DNA comprising a promoter that is functional in plant cells and that is operably linked to DNA from a plant, bacteria or yeast that encodes a protein having at least one domain of amino acids in a sequence that exceeds the Pfam gathering cutoff for amino acid sequence alignment with a protein domain family identified by a MtN3_slv Pfam; wherein the Pfam gathering cuttoff for said protein domain −0.8; wherein said plant cell is selected from a population of plant cells with said recombinant DNA by screening plants that are regenerated from plant cells in said population and that express said protein for an enhanced trait as compared to control plants that do not have said recombinant DNA; and wherein said enhanced trait is enhanced seed oil.
  • 23. A plant cell of claim 22 wherein said protein has an amino acid sequence with at least 90% identity to a consensus amino acid sequence in the group of consensus amino acid sequences consisting of the consensus amino acid sequence constructed for SEQ ID NO: 212 and homologs thereof listed in Table 7.
  • 24. A transgenic plant comprising a plurality of the plant cell of claim 22.
  • 25. The transgenic plant of claim 24 which is homozygous for said recombinant DNA.
  • 26. A transgenic seed comprising a plurality of the plant cell of claim 22.
  • 27. The transgenic seed of claim 26 from a corn, soybean, cotton or canola plant.
  • 28. A transgenic pollen grain comprising a haploid derivative of a plant cell of claim 22.
  • 29. A method for manufacturing non-natural, transgenic seed that can be used to produce a crop of transgenic plants with an enhanced trait resulting from expression of stably-integrated, recombinant DNA comprising a promoter that is (a) functional in plant cells and (b) is operably linked to DNA from a plant, bacteria or yeast that encodes a protein having at least one domain of amino acids in a sequence that exceeds the Pfam gathering cutoff for amino acid sequence alignment with a protein domain family identified by MtN3_slv Pfam; wherein the gathering cutoff for said protein domain is −0.8; and wherein said enhanced trait is enhanced seed oil, said method for manufacturing said seed comprising: (a) screening a population of plants for said enhanced trait and said recombinant DNA, wherein individual plants in said population can exhibit said trait at a level less than, essentially the same as or greater than the level that said trait is exhibited in control plants which do not express the recombinant DNA,(b) selecting from said population one or more plants that exhibit the trait at a level greater than the level that said trait is exhibited in control plants,(c) verifying that said recombinant DNA is stably integrated in said selected plants,(d) analyzing tissue of a selected plant to determine the production of a protein having the function of a protein encoded by nucleotides in a sequence of one of SEQ ID NO:1; and(e) collecting seed from a selected plant.
  • 30. The method of claim 29 wherein said selecting is effected by identifying plants with said enhanced trait.
  • 31. The method of claim 29 wherein said seed is corn, soybean, cotton or canola.
  • 32. A method of producing hybrid corn seed comprising: acquiring hybrid corn seed from a herbicide tolerant corn plant which also has stably-integrated, recombinant DNA comprising a promoter that is (a) functional in plant cells and (b) is operably linked to DNA that encodes a protein having at least one domain of amino acids in a sequence that exceeds the Pfam gathering cutoff for amino acid sequence alignment with a protein domain family identified by MtN3_slv Pfam;(a) wherein the gathering cuttoff for said protein domain is −0.8;(b) producing corn plants from said hybrid corn seed, wherein a fraction of the plants produced from said hybrid corn seed is homozygous for said recombinant DNA, a fraction of the plants produced from said hybrid corn seed is hemizygous for said recombinant DNA, and a fraction of the plants produced from said hybrid corn seed has none of said recombinant DNA;(c) selecting corn plants which are homozygous and hemizygous for said recombinant DNA by treating with an herbicide;(d) collecting seed from herbicide-treated-surviving corn plants and planting said seed to produce further progeny corn plants;(e) repeating steps (c) and (d) at least once to produce an inbred corn line;(f) crossing said inbred corn line with a second corn line to produce hybrid seed.
  • 33. A method of selecting a plant comprising cells of claim 22 wherein an immunoreactive antibody is used to detect the presence of said protein in seed or plant tissue.
  • 34. Anti-counterfeit milled seed having, as an indication of origin, a plant cell of claim 22.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims benefit under 35USC § 119(e) of U.S. provisional application Ser. No. 60/713,150, filed Aug. 30, 2005, and incorporated herein by reference.

Provisional Applications (1)
Number Date Country
60713150 Aug 2005 US