The present invention provides high pressure, large volume, high density, transient, batch injection of cryogenic liquid or gas into a relatively small, closed chamber for rapidly cycling combustion such as occurs in a gas gun or other combustion driven devices such as switches, presses, etc.
Gas guns generally have low rates of fire because of the long periods of time required to fill the combustion chamber with the necessary gases unless expensive and leakage-prone gas filled cartridges are used. Light gas guns in particular can provide very high muzzle velocities but cannot presently load propellants quickly enough to achieve the high rates of fire required by an effective weapon. The friction and compression heating caused by extremely rapid transfer of room temperature gases results in high temperatures that especially impede injection of the necessary quantity of propellants into relatively small volume, closed combustion chambers. Combustion driven presses for powdered metal parts and other production as well as very fast and reliable combustion driven switches have similar cycling limitations with present injection methods.
Liquid fuel rocket engines generally employ turbomachinery for pressurizing and/or gasifying the liquid propellants prior to injection into the main rocket nozzle. Furthermore, one or more of the propellant components may be adapted to cool the main rocket nozzle and heat the cryogenic propellant through associated plumbing circuitry. Liquid fuel and liquid oxidizer are provided from pressurized tanks at relatively low-pressure to separate sections within a rotor system driven by a relatively low-pressure ratio turbine that is powered by combustion effluent generated by a precombustor. A rocket engine frequently uses primary and secondary rotary injectors for injecting fuel and oxidizer propellant components into a first combustion chamber, and the effluent drives a turbine that rotates the rotary injectors. The mixture within the first combustion chamber is preferably fuel-rich so as to reduce the associated combustion temperature, and the fuel-rich effluent mixes in a second combustion chamber with additional oxidizer injected by a third rotary injector so as to generate a high temperature effluent suitable for propulsion. The rotary injectors are adapted to isolate the low-pressure propellant supply from the relatively high pressures in the respective combustion chambers. Rocket engines use steady state injection into open combustion chambers with much lower injection and combustion pressures than either gas gun or combustion driven applications.
A considerable amount of heat is transferred in all designs of rocket engines. The principle objective of high-temperature rocket design is to safely limit the heat transfer to the materials in critical hot sections such as the injector, combustion chamber, throat, and nozzle. The walls have to be cooled sufficiently to not exceed their safe allowable operating limit. Erosion, usually the result of combined oxidation and chemical interaction with the hot combustion gases, should not damage the walls, and the walls should be capable of withstanding the extreme thermal shock caused by the sudden onset of a high heat flux from combustion ignition. The materials comprising the thrust chamber devices must also be capable of resisting the thermal stresses induced by the heat transfer and thermal gradients.
Actively-cooled liquid propellant thrust chambers have provisions for cooling some or all of the components in contact with the hot combustion gases, such as the chamber walls, nozzle walls and injector faces. A cooling jacket or cooling coil often consists of separate inner and outer walls or a bundled assembly of continuous, contoured tubes. The inner wall confines the combustion gases, and the space between the inner and outer walls serves as the coolant passage. Regenerative cooling is a form of active cooling and is used for engines where one of the propellant constituents is circulated through cooling passages around the thrust chamber prior to injection and burning of the propellant in the combustion chamber. Regenerative cooling in bipropellant engines uses either the fuel or oxidizer as the cooling fluid. Therefore, the thermal energy absorbed by the coolant is not wasted as it augments the initial energy content of the propellant prior to injection, thereby increasing the exhaust velocity and propulsive performance. Radiation cooling is typically used in monopropellant thrust chambers, some gas generators and for nozzle exhaust sections. Radiation cooling is a simple, lightweight cooling method, which is commonly employed in low-temperature rocket engines, such as hydrazine (monopropellant) spacecraft maneuver and attitude control systems, where the maximum chamber temperature is only about 650 degrees C.
The fundamental principle that allows a hybrid rocket to burn is that in steady state operation, the fuel surface is constantly generating a melt layer, which in turn generates vapor as more heat is added or the heat causes the fuel to sublime directly to vapor from solid phase. The method of improving combustion of a hybrid rocket by gasifying liquid oxygen (LOX) as it enters the hybrid motor, before it contacts the hybrid fuel, is comprised of connecting at least one O2-driven hybrid heater to the motor such that its exhaust stream intersects and mixes directly with the LOX stream. Gaseous oxygen (GOX) is provided to the hybrid heater during the entire burn of the rocket. The hybrid heater is preferably ignited with electrical current.
Liquid injection of fuel into supersonic combustors has experienced difficulty in achieving vaporization of the liquid droplets, followed by gas mixing of this vapor with the surrounding air so that complete, molecular-scale mixing and combustion can take place inside the combustor. If the fuel droplets are small enough to vaporize quickly, they are carried along with the flow and because there is little relative velocity between the vaporizing droplet and the surrounding flow, there is no driving force for mixing the air with the vapor fuel except by molecular diffusion, which is very slow compared with fluid dynamic mixing. If the fuel droplets are large and a relative velocity can be maintained with respect to the surrounding air to promote mixing, a large amount of heat is required to vaporize the droplets and fuel vapor is formed at a relatively slow rate compared with the same mass of fuel dispersed in smaller droplets. Thus for either large or small liquid droplets of fuel the final mixing of fuel and air on a molecular scale necessary for combustion is a slow process compared with the approximately 10 ms time scale to flow through a supersonic combustor.
A high-pressure pump and delivery system provides a method of utilizing both pumped LNG and compressed NG in a Diesel type fuel injection system. As the truck's engine requires fuel, the LNG is vaporized and supplied to the engine at a pre-determined pressure, with the desired pressure being a function of the engine's specific design. These engines are generally designed to operate at pressures between 200 psig and 2,000 psig with potential for as much as 3000 psig.
There is a need in the art for an improved, high rate transient closed-system cryogenic injection system.
The present invention provides more rapid, higher-pressure, higher density, transient, and batch injection of cryogenic liquid or gas as compared to prior art. In 0.5 to 3.0 seconds, this invention injects enough gas to provide 500 to 6500 psi pressure in a closed combustion chamber. In contrast to prior art, this invention provides steady state injection or transient injection. Prior art typically uses injection pressures ranging from 200 to 2000 psi with potential up to 3000 psi. This invention injects cryogenic liquids or gases at 500 to 6500 psi with potential for much higher pressures as cycle rates increase.
A cryogenic-high-pressure-propellant-feed system injects oxygen and hydrogen into a gun chamber. The cryogenic-high-pressure-propellant-feed system is able to fire the gun every 6 seconds and has liquid storage of the oxygen and hydrogen.
The primary objectives of the high-pressure-propellant-feed-system are to fill the combustion chamber in two seconds, have liquid propellant storage, propel a projectile mass of 0.20 kg to 0.52 kg and at a velocity of 1500 m/s to 3200 m/s, and have the chamber, ignition system, and barrel survive numerous firings. The secondary objectives of the high-pressure-propellant-feed-system are to provide sufficient supply line flow, leak test all plumbing and tanks, control mass flow rate, have 100% liquid in the pump's sump, system automation, and intrinsic and extrinsic safety.
Although hydrogen is a fire hazard, it is not to the level of gasoline or acetylene. Liquid oxygen and hydrogen hazards are asphyxiation, extreme cold, and fire. Each of these risks can be mitigated by following proper design guidelines and procedures.
The system provides specific propellants to use, propellant storage methods, combustion chamber injection methods, phases of the propellant at ignition, chamber injection rates, and mass of propellants to use. In propellant selection, hydrogen and oxygen were chosen as propellants because of their superior heat of reaction and low molecular weight exhaust mass.
Cryogenic liquid storage of the propellants is the best storage method because of the significant space savings. Liquid storage is 1/840 the volume of gas at ambient conditions for hydrogen, 1/700 the volume of gas at ambient conditions for oxygen, 1/6 the volume of hydrogen gas in a cylinder at 2200 psi, and 1/5 the volume of oxygen gas in a cylinder at 2200 psi. Cryogenic liquid storage has become very common in commercial industries, for example: liquid oxygen for fish stocking aeration and liquid carbon dioxide for beverages. Liquid hydrogen and liquid oxygen are purchased at typical commercial conditions, approximately 35 psi at −414° F. for liquid hydrogen and 230 psi at −227° F. for liquid oxygen.
The chamber injection method uses a high-pressure accumulator between the pump and combustion chamber. The accumulator has passive heat exchanger cooling, exchanging heat with ambient pressure liquid nitrogen. The accumulator has the following benefits: flow smoothing/steadiness, consistent supply from accumulator to chamber, ability to use a smaller, less expensive pump, and modularization of pump and test chamber.
In phase selection, “G” means gaseous, “L” means liquid, “OX” oxygen, “H2” hydrogen, and “N2” nitrogen. The pumps pump 100% liquid. The oxygen accumulator stores GOX. The hydrogen accumulator stores GH2 at −319° F. The −319° F. is achieved by cooling the accumulator with LN2. The GOX and GH2 flow into the combustion chamber. There is sufficient heat transfer from the metal of the supply lines that oxygen phase changes to gas before reaching the accumulator. The result at ignition is GOX+GH2.
The cryogenic-propellant-feed system is able to fire the gun every 6 to 10 seconds and uses liquid storage of the oxygen and hydrogen. This system stores LH2 in a Prentex 500 gallon fixed tank and LOX in Air Gas dewars. It obeys NFPA (National Fire Protection Agency) guidelines and OSHA law. PHPK vacuum jacketed tubing is used for the LH2 supply line to the pump. Swagelok tubing insulated with cellular glass is used for the LOX supply line to the pump. Cryostar pumps fill an 18 liter LOX accumulator and an 18 liter GH2 accumulator, built by Vulcan and Prentex. The accumulators are filled up to 8000 psi and can be LN2 cooled to maintain long-term storage. After the accumulator, the GOX or GH2 is reduced from 8000 psi to 500 to 6500 psi. The gas flows through a mass flow meter by Micromotion and Utron Inc.'s poppet valve to fill the gun chamber. The gun chamber is filled from the accumulator in 0.5 to 3 seconds.
The 500 gallon LH2 tank has a 2″ OD low-pressure vent and a 1.25″ OD high-pressure vent. The oxygen tank has a 1.25″ OD oxygen supply line, a 1.25″ OD low-pressure vent, and a 1.25″ OD high-pressure vent.
A GN2 supply is used to actuate all pneumatic valves (at 15 psi, 30 psi, 90 psi, and 250 psi) and to provide purging. For the system to be intrinsically safe, all the supply valves are normally closed and all the vent valves are normally open. In the event of power failure or disruption of the nitrogen supply, the supply line valves will close and the vent valves will open. A solenoid bank controls the nitrogen supply to each pneumatic valve.
The system includes tanks, pumps, accumulators, mass control system (mass flow meters and regulators), and a chamber. The LOX and LH2 reciprocating pumps require 100% liquid at all times during operation.
Both accumulators hold up to 8000 psi. The accumulator outer jackets are LN2 cooled. The jackets are open to the atmosphere and are vented. The hydrogen accumulator stores GH2 at 8000 psi at −319° F. that is reduced to 5000 psi by the pressure-reducing regulator before passing through the hydrogen mass flow meter and into the chamber. The oxygen accumulator stores LOX at 6000 psi at −319° F. that passes through the oxygen mass flow meter and into the chamber. The mass flow meters are connected to the test chamber by flexible lines that allow for recoil. The final valve that is mounted on the gun chamber is designed to survive the 80,000 psi combustion in the chamber.
These and further and other objects and features of the invention are apparent in the disclosure, which includes the above and ongoing written specification, with the drawings.
Below is a set of equations and a table with examples of the heat transfer and evaporation calculations used to examine the graph of test results in
The tank 1 has a pressure-building line 15 that ensures that the tank 1 remains sufficiently pressurized to flow the hydrogen the tank contains in liquid form and to force the hydrogen from the tank through the lines into the accumulator subsystem 6. A variety of devices on the line prevents the system from becoming over-pressurized and failing. A pressure relief device 17 reduces over pressure in the line 15 when the pressure becomes excessive. A rupture disk 19 vents gas in the event of excessive pressure build-up to prevent catastrophic failure of the tank 1 or line 15. A tank blowdown valve 20 allows gas to exit the system via the low pressure vent 13. A pressure building coil 21 warms the hydrogen and increases the pressure in the line 15 and tank 1 by heating the flow through the line 15. A back pressure regulator 16, isolated by valves 18, 22 on either side, controls the pressure on the line. An isolation valve 23 closes off the pressure building line 15 and isolates it from the tank 1, preventing pressure building.
For safety, a nitrogen purge 25 is provided to a vent stack 26 of the tank to remove the air from the vent before flowing liquid hydrogen from the tank. A vacuum probe isolation valve 27 releases pressure in the jacket 26. A vacuum pumpout valve 29 connects to a pump which creates or maintains a vacuum 31 in the space between the tank 1 and the outer tank 26. A pressure differential meter is a liquid hydrogen level indicator 33 and can be isolated from the rest of the system 2 by closing level indicator isolation valves 35 and opening the level indicator bypass valve 37.
A trycock valve 39 acts as a full indicator, and trycock level meter 41 indicates liquid level. The vent line 42 for the tank also has a purge isolation check valve 46 and vent water drain line 48. A tank discharge valve 43 flows liquid hydrogen from the tank 1 to the NC primary pump supply valve 45 and the 45 mm and 155 mm bays, which can be isolated from the tank subsystem 2 by a 155 mm bay isolation valve 47 and 45 mm bay isolation valve 49. A temperature sensor 51 in tank 1 monitors temperature in the pressure relief line after the flow through the tank discharge valve 43, and before pressure relief device 53. A throttling valve 45 pneumatically controlled by solenoids 55 and 56 controls flow out of the tank. Gaseous nitrogen at 30 psi is admitted by solenoids 57, 59 to control shut-off valves 61, and 63 which control hydrogen flow. Pressure relief devices 65, 67 act to release excess pressure in the lines.
A gaseous nitrogen purge of the entire supply line is provided by solenoid 62 through isolation check valve 69 when the system is shut down. Flow proceeds towards the 155 mm and 45 mm bays through valves 49 and 47 respectively. Valves 45, 47, and 49 are enclosed in a vacuum jacketed pipe 40.
The flow goes from the subcooler 79 to the pump 77. The pump crankcase is purged with nitrogen 98, which is then vented 89. The pump 77 is driven by a motor 91 that is monitored by a power meter 92. A silicon diode 93 in the pump sump monitors temperature and is connected to a temperature monitor 94. A pump suction check valve 95 and pump discharge check valve 97 enable flow through the pump. Gas enters the pump through a flow meter 99 and is vented through line 100.
Hydrogen also exits the pump 77 from the tank 1 through pressure relief device 101 in line 102. The pump sump has a vapor discharge line 102, which is wide open during pre-chilling of the pump per a pneumatically controlled valve 107 and during pump operation the vapor discharge line is vented through a back pressure regulator 109 set to the LH2 tank's pressure. Pressure gauges 106, 108 on either side of regulator 109 and pressure gauge 114 before valve 107 monitor the pressure in the line. A pre-chill line temperature sensor 103 and pressure sensor 105 measure the temperature and pressure of the flow. A high-pressure vent line 110 vents at the nozzle 111 (
After leaving the pump, the flow passes through a temperature sensor 121 and pressure gauge 123 and a liquid nitrogen isolation check valve 125. The flow passes by a pressure sensor 127 and filter 129 on its way to the accumulator 131 (
The accumulator 131 discharges hydrogen that passes though a pressure sensor 149 and temperature sensor 151 from the accumulator before entering the NC tertiary supply valve 153 from the accumulator outlet. The NC tertiary supply valve 153 is controlled by 90 psi gas when solenoid valve 156 is open. A rupture disk 152 allows venting if the system becomes over-pressurized and excess gas is released via a pressure relief device 154 through the high pressure gaseous hydrogen conduit 110 and vent 111.
From the accumulator 131, the flow enters a pressure-reducing regulator 157, which reduces the pressure to 500 to 6500 psi. The fluid at this location is monitored by a pressure sensor 159 and temperature sensor 161. The flow then enters the mass flow meter 133 that measures the flow through the line into a closed chamber 8 (
Batches of measured hydrogen are injected from the accumulator 131 through an inlet 150 or 160 into a closed light gas combustion chamber, test chamber 170, or light gas gun combustion chamber 171 shown in
The oxygen injection system is similar to the hydrogen system shown in
Gaseous hydrogen enters the light gas gun chamber 171 through a check valve 195 and a pressure controlled NC quaternary supply chamber inlet valve 197 where the flow is controlled by gas applied through an open solenoid 199. For safety, valve 201 (opened by solenoid 203) acts as a vent for the closed chamber 171.
The present invention provides rapid, higher pressure, higher density, transient, and batch injection of cryogenic liquid or gas. In 0.5 to 3.0 seconds, this invention injects enough gas to provide 500 to 6500 psi pressure in a relatively small, closed combustion chamber. This invention provides steady state injection or transient injection. Prior art typically uses injection pressures ranging from 200 to 2000 psi with potential up to 3000 psi. This invention injects cryogenic liquids or gases at 500 to 6500 psi with potential for much higher pressures as cycle rates increase.
The injection system feeds hydrogen and oxygen from tanks, through subcoolers to pumps that charge accumulators to a pressure as high as 8000 psi, through a pressure-reducing regulator (500 to 6500 psi), through a mass flow meter and into a closed chamber. Large lines reduce the pressure drop from high transient flow rates to minimize injection time for a high cycling rate.
While the invention has been described with reference to specific embodiments, modifications and variations of the invention may be constructed without departing from the scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 60/817,620 filed Jun. 29, 2006, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3044363 | Musser | Jul 1962 | A |
3496827 | Dardlck | Feb 1970 | A |
3601061 | Dardick | Aug 1971 | A |
3712171 | Sweigart | Jan 1973 | A |
4644843 | Soper | Feb 1987 | A |
4653380 | Griffing et al. | Mar 1987 | A |
4841723 | Lau | Jun 1989 | A |
5012719 | Goldstein et al. | May 1991 | A |
5052272 | Lee | Oct 1991 | A |
5303633 | Guthrie et al. | Apr 1994 | A |
5429030 | Tidman | Jul 1995 | A |
5542606 | Kadyrov et al. | Aug 1996 | A |
5899388 | Sion et al. | May 1999 | A |
6003300 | Bates | Dec 1999 | A |
6073437 | Jones | Jun 2000 | A |
6145299 | Fasano | Nov 2000 | A |
6205770 | Williams et al. | Mar 2001 | B1 |
6212988 | Chernyshov et al. | Apr 2001 | B1 |
6220016 | Delever et al. | Apr 2001 | B1 |
6260802 | Hampsten | Jul 2001 | B1 |
6517010 | Barykin et al. | Feb 2003 | B1 |
6663350 | Tyree, Jr. | Dec 2003 | B2 |
6679155 | Yaschur et al. | Jan 2004 | B1 |
6679294 | Ringelberg et al. | Jan 2004 | B1 |
6684625 | Kline et al. | Feb 2004 | B2 |
6708905 | Borissov et al. | Mar 2004 | B2 |
6783824 | Steffier et al. | Aug 2004 | B2 |
7254914 | Lund et al. | Aug 2007 | B2 |
7775148 | McDermott | Aug 2010 | B1 |
7784268 | Greason et al. | Aug 2010 | B1 |
20020100361 | Russell | Aug 2002 | A1 |
20040026572 | Burton | Feb 2004 | A1 |
20060266206 | Lund et al. | Nov 2006 | A1 |
20080256924 | Pederson et al. | Oct 2008 | A1 |
20100212481 | Koth | Aug 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
60817620 | Jun 2006 | US |