This disclosure relates to semiconductor devices and methods for their manufacture or fabrication. In particular, this disclosure relates to semiconductor devices having minority carrier traps which help reduce current gain of bipolar transistors that form inherent parasitic thyristors.
In CMOS devices, latch-up is a common problem. Latch-up is caused by inherent parasitic thyristors that can switch to a low ohmic state when triggered accordingly and then cause unwanted current paths between external pins of the circuit.
In semiconductor devices with an ESD structure in the so- called rail-to-rail architecture, unwanted current paths may also be formed by the unwanted triggering of inherent thyristors. Furthermore, functional bipolar transistors in a device may also exhibit parasitic thyristors. Since a thyristor is essentially two coupled transistors, some have addressed this issue by decoupling the two transistors by isolating specific areas of the semiconductor by trenches and/or buried isolation layers (for example, silicon-on-insulator, SOI, structures). Others have attempted to reduce the emitter efficiency of one or both of these transistors by adding highly doped areas that reject the minority carriers with built-in potentials (for example, by use of highly doped buried layers beneath diffusion wells). Another approach has been to reduce the current gain of at least one of the transistors by introducing additional recombination centers (for example, by use of gold doping or radiation defects or implanted dislocation networks).
Illustratively, the present disclosure includes a transistor having a minority carrier trap. Further, by way of illustration, the present disclosure includes a bipolar transistor with emitter, collector, and base having a minority carrier trap located within the base. Further example embodiments include a minority carrier trap having an n doped region and a p doped region adjacent to or very close to the n region. In an embodiment, the closely-spaced n doped region and p doped region may be approximately or precisely 10 microns apart. Further example embodiments include a conductor connecting the n doped and p doped region. The conductor may be either floating or connected to ground or another voltage such as the same voltage as the base. In other example embodiments, the minority carrier trap may surround the emitter on at least three sides. In further embodiments, the minority carrier trap may surround the collector on at least three sides. In yet another embodiment, the minority carrier trap includes n-doped and p-doped regions arranged in a checkerboard pattern. Another possible arrangement includes interdigitated fingers of alternating n and p doped regions. Other geometric patterns which feature alternating n doped and p doped regions are also intended. In another embodiment, the transistor may be a MOS transistor and the minority carrier trap is located in a doped well. Also encompassed are transistors with minority carrier traps which may include one or more p doped regions and respective closely spaced n doped regions. Further encompassed are transistors with minority carrier traps which may include one or more p doped regions and respective adjacent n doped regions. Various combinations and permutations of features are also contemplated.
The parasitic thyristor in a semiconductor device consists of two coupled bipolar transistors. By reducing the current gain of one or both of these transistors (which comprise the parasitic thyristor), the action of the thyristor can be suppressed. The current gain can be reduced by reducing the base transport factor. The base transport factor is defined as the fraction of minority carriers injected into the base of a bipolar junction transistor that successfully diffuse across the quasineutral width of the base and enter the collector.
Thus, by adding minority traps in the base region of one or both of the transistors that comprise the thyristor, the density of minority carriers will be locally reduced and less minority carriers will reach the collector of the bipolar transistor.
In various illustrative embodiments, minority traps (alternatively termed “minority carrier traps”) include one or more p-doped and adjacent n-doped areas that may be shorted electrically with a conductor. Alternatively, a minority trap may include one or more p-doped and closely spaced n-doped regions that may be shorted electrically with a conductor. An illustrative spacing between closely a closely spaced n doped region and p doped region is approximately 10 microns. The n and p regions of the minority trap should be surrounded by a single region which may be either n or p doped itself.
In
The minority traps comprise one or more p-doped and adjacent n-doped regions that may be shorted electrically with metal on top. The metal may be floating or connected to ground or another voltage. Location of the minority trap(s) in one or both base regions serves to reduce the current gain and reduce the effect of the parasitic thyristor.
In
In all of the illustrative embodiments, the doping polarities can be interchanged and similar minority traps may be formed for pnp transistors by substituting p for n and vice versa.
Another illustrative embodiment is depicted in
The minority trap may alternatively be formed around the collector. Such an embodiment may also be understood by reference to
A further illustrative embodiment may be seen in
A further illustrative embodiment may be seen in
The present invention may be used, for example, not only in functional bipolar transistors, but also in bipolar protection devices with an ESD protection structure in so-called rail to rail architectures.
The present invention may also be used in CMOS devices. For example,
Formation of minority traps may be accomplished, illustratively, by methods known to those of skill in the art, typically implantation, and thermal activation or diffusion of the implant to form a doped area. For example, the processes used to form the base and/ or emitter in a typical bipolar fabrication process may, with appropriate masking, also be used to form the n and p doped regions of a minority catcher. Then, if desired, the n and p doped regions of the minority catcher may be connected with conductive material as part of the process steps which are used to form interconnections.
Various exemplary embodiments are described in reference to specific illustrative examples. The illustrative examples are selected to assist a person of ordinary skill in the art to form a clear understanding of, and to practice the various embodiments. However, the scope of systems, structures and devices that may be constructed to have one or more of the embodiments, and the scope of methods that may be implemented according to one or more of the embodiments, are in no way confined to the specific illustrative examples that have been presented. On the contrary, as will be readily recognized by persons of ordinary skill in the relevant arts based on this description, many other configurations, arrangements, and methods according to the various embodiments may be implemented.
To the extent positional designations such as top, bottom, upper, lower have been used in describing this disclosure, it will be appreciated that those designations are given with reference to the corresponding drawings, and that if the orientation of the device changes during manufacturing or operation, other positional relationships may apply instead. As described above, those positional relationships are described for clarity, not limitation.
The present disclosure has been described with respect to particular embodiments and with reference to certain drawings, but the invention is not limited thereto, but rather, is set forth only by the claims. The drawings described are only schematic and are non-limiting. In the drawings, for illustrative purposes, the size of various elements may be exaggerated and not drawn to a particular scale. It is intended that this disclosure encompasses inconsequential variations in the relevant tolerances and properties of components and modes of operation thereof. Imperfect practice of the invention is intended to be covered.
Where the term “comprising” is used in the present description and claims, it does not exclude other elements or steps. Where an indefinite or definite article is used when referring to a singular noun, e.g. “a” “an” or “the”, this includes a plural of that noun unless something otherwise is specifically stated. Hence, the term “comprising” should not be interpreted as being restricted to the items listed thereafter; it does not exclude other elements or steps, and so the scope of the expression “a device comprising items A and B” should not be limited to devices consisting only of components A and B. This expression signifies that, with respect to the present disclosure, the only relevant components of the device are A and B.