Not applicable.
1. Field of the Invention
The present invention relates to a transcutaneous energy transfer system as well as a transit time ultrasonic sensor, and more particularly to coupled inductive coils and an ultrasonic flow sensor that can be employed in relatively low flow systems, such as hydrocephalic shunt flow measurement.
2. Description of Related Art
Ventricles of the brain contain cerebrospinal fluid (CSF) which cushions the brain against shock and provides a means for nutrient and waste transport in the brain. CSF is constantly being secreted and absorbed by the body, usually in equilibrium. However, if blockages exist in the circulation pathways of CSF, the CSF can't be reabsorbed by the body at the proper rate.
This imbalance can create a condition known as hydrocephalus: a condition marked by an excessive accumulation of fluid in subarachnoid space, including the cerebral ventricles. Hydrocephalus is a condition characterized by abnormal flow, absorption or formation of CSF which may subsequently increase the volume and/or pressure of the intracranial cavity. If left untreated, the increased intracranial pressure can lead to neurological damage and may result in death.
In addition, it has been found that in some persons with adult-onset dementia of the Alzheimer's type there is dysfunction of the cerebrospinal fluid resorptive mechanism, leading to the retention in the cerebrospinal fluid of substances which result in the histologic lesions associated with adult-onset dementia of the Alzheimer's type, or which are neurotoxic, or both.
Therefore, in both the treatment of hydrocephalus and adult-onset dementia of the Alzheimer's type, there is a need to remove excess CSF.
A CSF shunt is a common treatment for hydrocephalus patients. A standard shunt consists of the proximal (upstream) catheter, a valve and a distal (downstream or discharge) catheter. The excess CSF is typically drained from the ventricles or other subarachnoid locations to a suitable cavity, most often the peritoneum or the right atrium of the heart. The shunt thereby relieves pressure from the CSF acting on the brain.
Typically, a physician selects a pressure-flow relationship for the CSF of the patient. Current shunts allow the physician to select pressure settings, but in situ CSF flow itself—the very purpose of placing the shunt—is unknown and must be derived from clinical signs.
The existence of shunt dysfunction further complicates treatment. Hydrocephalic shunt dysfunction diagnosis is one of the most complicated and time consuming aspects of treating hydrocephalic infants and young children. Hydrocephalus can require lifelong treatment with implanted shunt systems that drain excess CSF. However, pediatric hydrocephalic patients have a high risk of shunt dysfunction. It has been estimated that 25% to 40% of the shunts fail in the first year of implantation.
Diagnosis of shunt dysfunction is particularly challenging with preverbal children as such children cannot describe critical symptoms such as headaches. Diagnosis must instead rely on observable symptoms that often resemble those of common childhood illnesses. Unfortunately, the absence of an objective shunt dysfunction diagnostic method leads to delayed treatment or unnecessary intervention.
Neurosurgeons currently diagnose shunt dysfunctions using a combination of neurological studies, shunt pumping, shunt tapping, nuclear or x-ray contrast studies (“shuntograms”), and CT (computed tomography) scans. However, none of these methods actually measure the volumetric flow in the shunt.
Shunt pumping involves depressing a shunt reservoir to see if the reservoir empties and then refills. This method is often inconclusive since the reservoir is typically made of relatively soft materials that can be easily distorted and depressed without creating any fluid motion.
More definitive results can be obtained by shunt tapping and nuclear flow studies. Shunt tapping involves inserting a needle into the ventricular catheter reservoir to directly access the CSF. Doctors detect proximal blockage by measuring CSF drainage and by observing manometer fluctuations. However, this technique risks shunt infection; does not diagnose the other parts of the shunt system; can be inconclusive in patients with small ventricles and low pressure; and results can be complicated by physiological disturbances caused by a child expressing severe pain and distress.
While shunt tapping can detect proximal occlusion, nuclear flow or X-ray contrast studies can provide information on distal occlusions. In nuclear flow studies, radioactive isotopes are injected into the shunt, and a gamma camera monitors flow of the isotope through the shunt. In X-ray contrast studies, an X-ray contrast agent is injected in the shunt and flow of the agent is monitored via periodic patient x-rays. While these tests can determine shunt patency and shunt flow, this may not be a preferred procedure in many instances since it requires involved expensive studies that will provide readings only while the patient is restrained to a fixed position rather than the dynamic flow picture under different patient conditions such as sitting up and lying down.
Head CT scans can directly visualize the ventricles and show the proximal shunt catheter position. These scans are readily available in most hospitals, and the CT scan can define CSF volumes and changes in ventricular volume, but the CT scan cannot measure flow. Also, stable ventricular volume does not indicate shunt patency, since a patient with very small ventricles can show no change in flow even with an occluded shunt and high intra-cranial pressure. Finally, each scan exposes the patient to additional radiation, a well known health hazard.
Doppler ultrasound relies on backscatter of ultrasonic waves on red blood cells. Since no such cells are present in the CSF, a Doppler sensor is not commercially available.
Therefore, there is a need to measure CSF shunt flow to assess shunt patency and under drainage or over drainage. There is a further need to non-invasively measure shunt CSF flow. The need to measure CSF flow can reduce tests, improve clinical outcomes, avoid unnecessary shunt replacement surgeries, and reduce patient/parental stress.
The need also exists for a non-invasive, relatively inexpensive method to measure CSF shunt flow that can be employed at more hospitals and emergency rooms. A need further exists for the quantification of the actual volume flow (ml/hr) carried by the CSF shunt. A need also exists for providing transcutaneous energy transfer to a subcutaneous biological device.
The present disclosure provides an implantable sensor assembly having an implantable housing; a first internal coil retained within the housing, the first internal coil having a first coil axis; a second internal coil retained within the housing, the second internal coil having a second coil axis; the second coil axis being nonparallel to the first coil axis; and a sensor connected to the housing and electrically coupled to at least one of the first internal coil and the second internal coil.
The sensor can include a first transducer and a second transducer, wherein the first transducer is electrically connected to the first internal coil and the second transducer is electrically connected to the second internal coil. It is contemplated that the sensor can be an ultrasonic flow sensor. The ultrasonic flow sensor can define a flow channel with integral signal pathways defining a portion of the flow channel.
A method is provided for the transcutaneous transfer of a transmitting and receiving signal between an external flowmeter device and the internal flow sensor transducers, by subcutaneously locating a first internal coil and a second internal coil, the first internal coil aligned along a first axis and the second internal coil aligned along a nonparallel second axis; and inductively coupling a first external coil with the first internal coil, and a second external coil with the second internal coil, the first external coil and the first internal coil aligned parallel to the first axis and the second external coil and the second internal coil aligned parallel to the second axis. The internal flow sensor transducers connect to the first internal coil and the second internal coil, and are thus electronically connected to the external flowmeter. The first and second coil axes are generally located such that the coils do not exhibit mutual inductance, so that a signal or power passing through one of the coils does not induce a corresponding signal or power in the remaining coil.
A method is also provided wherein power and signals are transcutaneously transferred between an external electronic apparatus and an implanted biologic device, by subcutaneously locating a biologic device, a first internal coil and a second internal coil, the first internal coil aligned along a first axis and the second internal coil aligned along a nonparallel second axis; inductively coupling a first external coil with the first internal coil, and a second external coil with the second internal coil; energizing the biologic device from one of the first internal coil and the second internal coil, and transferring signal energy from the biological device to the other internal coil back to the external electronic apparatus. With respect to the internal and external coils, the method further includes aligning the first and second axes of the internal and external coils so as to connect the internal sensor inductively to the external electronics. The first and the second axes are generally selected to have a relationship such that the energy transfer via a coil aligned along one axis will minimally interfere with the signal transfer via a coil aligned along the other axis.
A transcutaneous energy transfer assembly is also provided wherein an external housing retains (i) a first external coil having a first coil axis and (ii) a second external coil having a second coil axis; the first coil axis being nonparallel to the second coil axis; and wherein an implantable housing retains (i) a first internal coil having a first internal coil axis and (ii) a second internal coil having a second internal coil axis; the first internal coil axis being nonparallel to the second internal coil axis.
A sensor can be at least partially retained within the implantable housing, wherein the sensor and/or its interfacing electronics is electrically connected to the first internal coil and the second internal coil. It is further contemplated that an orientation between the first external coil axis and the second external coil axis is the same as the orientation between the first internal coil axis and the second internal coil axis.
The present flow sensor also includes a housing formed of a first material, the housing defining a flow channel having a linear section bounded by a first bend and a second bend, the first material of the housing forming a first signal pathway adjacent the first bend and a second signal pathway adjacent the second bend; a first transducer adjacent the first signal pathway; and a second transducer adjacent the second signal pathway.
The transducers can be directly connected or acoustically coupled to the respective signal pathway in the housing. The transducers can produce one of a longitudinal or a shear wave to pass along the signal pathways, wherein the signal pathway is selected to refract the wave into a fluid flow in the flow channel to propagate along the measurement channel. If the transducers are shear-wave transducers, the pathway is designed such that a shear wave converts to a longitudinal wave at one of the boundaries within the signal pathways, typically the boundary between the housing and the flow channel.
The present disclosure provides a transcutaneous energy transfer (TET) system, wherein the TET system can be employed to transfer power and signal energy between any of a variety of subcutaneous devices, which include implanted biological support devices and sensors. The biological support devices include pumps for introducing medicines, tracers or indicators, dispensers, heaters, coolers and even electrical stimulators. The implanted sensors include flow, pressure, ECG, EEG, EMG, PH, and blood properties. For purposes of description, the present description is set forth in terms of an implanted ultrasonic transit time flow sensor. Further, although the present flow measurements are set forth in terms of low flow shunt measurements and particularly hydrocephalic shunts, the invention is not limited to such specific systems. The flow sensor and the transcutaneous energy and signal transfer are not so limited and can be employed in any of a variety of applications, such as biomedical device applications.
Referring to
Referring
As seen in
The angle of intersection between the measuring channel 44 and the inlet and outlet channels 42, 46 is selected to provide relatively smooth passage of the flow into and out of the measuring channel. That is, the flow channel 40 defines a flow path through the housing 30 that avoids abrupt angles or corners which can otherwise introduce a fluidic “dead space” which can: (i) trap air bubbles that block ultrasound transmission; (ii) gradually accumulate proteins and other organic debris and possibly obstruct shunt flow and (iii) create flow turbulence and vortices at high flow rates, all of which may reduce flow rate measurement accuracy. The angle of intersection of the inlet and outlet channels 42, 46 with the measurement channel 44 is selected to reduce flow disturbance and debris accumulation along the measurement channel 44.
Referring to
As seen in
Referring to FIGS. 2,3 and 4-8, the housing 30 defines a first signal pathway 62 adjacent the first bend 52 and a second signal pathway 66 adjacent the second bend 56. The first and second signal pathways 62, 66 are defined by the material of the housing 30 and terminate at one end at the flow channel 40, thereby defining a portion of the flow channel, and terminate at a free end spaced apart from the flow channel. The signal pathways 62, 66 are configured to conduct signals into the flow channel 40 and define a portion of the flow channel. In one configuration, the flow channel 40 is entirely defined by the material of the housing. That is, there is no separate or independent conduit or tube guiding flow through the housing 30, although it is contemplated that a conduit or tubing could be disposed within the housing to direct the flow. For example such tubing could be a portion of the CSF drainage shunt catheter itself.
As seen in
The implantable housing 30 is sized for operation in a subcutaneous location. Typical dimensions for the implantable housing 30 are:
It is also contemplated that the implantable housing 30 can have an exposed surface that is shaped, contoured, or molded for cooperatively engaging or retaining the internal coupling coils.
The implantable housing 30 is formed of a biocompatible inert material, such as polyetherimide thermoplastic resins including those manufactured and sold by SABIC Innovative Plastics under the mark ULTEM®, as well as medical grade polysulfone, PEEK and silicones. It is also contemplated the housing 30 can be formed of injection-molded or machined medical ceramics or injection-molded or machined metals such as titanium or stainless steel 316L.
The ULTEM polyetherimide thermoplastic resins provide satisfactory housings 30, which can be machined to the desired configuration. The ULTEM material exhibits compatible acoustic properties, mechanical strength, and biocompatibility. The implantable housing 30 is generally formed of a single material, however, it is contemplated that multiple materials can be employed to form the housing.
The implantable housing 30 can include a resilient or compliant covering, such as soft silicone and specifically composed of an approximately 1 mm thick shunt grade silicone. The covering is selected to reduce pressure induced tissue breakdown resulting from contact with the implantable housing 30. As set forth below, the compliant covering may encapsulate the housing 30, which retains the internal coupling coils 80. Alternatively, the covering can encapsulate the housing 30 and the internal coupling coils 80 as the internal coupling coils are wrapped about at least a portion of the housing.
As seen in
Referring to
Referring to
From Snell's law and for the data for the materials as shown in
Referring to
Referring to
As seen in
The second transducer 76 is located adjacent the second signal pathway 66 to intersect the refracted shear wave passing though the second signal pathway.
Referring to
In an alternative configuration, the measurement channel can define a substantially U-shape, as seen in
As seen in
The external coils 92, 96 are disposed within or about a casing, wherein the casing is electrically connected to the flowmeter 100 by a cable or wire.
As seen in
As seen in
In the configuration of
As seen in
Further, it is contemplated that the first internal coil 82 can be connected to the sensor 22 or a component of the sensor and the second internal coil 86 can be connected to a second sensor or a second component of the sensor.
In one configuration the internal coils 80 are crossed coils in that the coils 82, 86 are tilted or rotated relative to each other, and in one configuration the first internal coil 82 is perpendicular to the second internal coil 86. In the 90° tilted orientation, the first internal coil 82 and the second internal coil 86 and their associated magnetic fields are perpendicular to each other. In one configuration, the first coil axis 83 is perpendicular to the second coil axis 87, and the axes intersect.
Similarly, as seen in
While the description of the coil axes being tilted or rotated to a perpendicular orientation or alignment appropriately sets forth the relationship for symmetrical coils as shown in
A zero mutual inductance or zero coupling effect is understood to encompass a non zero inductance or non zero coupling below a detrimental threshold. That is, if there is any inductive coupling between the two external coils 92, 96, the induced voltage is insufficient to create a detrimental effect on signal or power transmission and thus the relationship of the coils is effectively zero mutual inductance or zero coupling effect. Similarly, if there is inductive coupling between the internal coils 82, 86, the resulting voltage is insufficient to create a detrimental effect on signal or power transmission and impair the intended operating parameters of the system. Thus, the first internal coil 82 is disposed in a zero mutual inductance or zero coupling effect orientation with respect to the second internal coil 86. Similarly, the first external coil 92 is disposed in a zero mutual inductance or zero coupling effect orientation with respect to the second external coil 96.
Typically, the relative configuration and orientation of the internal coils 80 will be the same as the relative configuration and orientation of the external coils 90. Therefore, upon inductively coupling the external coils 90 to the internal coils 80, the coils 82, 92 provide sufficient mutual inductance to operably transfer the signal or power, without inducing a detrimental voltage in the coils 86, 96. Similarly, the coils 86, 96 provide sufficient mutual inductance to operably transfer the signal or power, without inducing a detrimental voltage in the coils 82, 92.
It is contemplated that the first internal coil 82 and the second internal coil 86 are nested such that an occupied volume of the coils is minimized, as seen in
As seen in
Thus, the internal coils 82, 86 can be formed with or without cores 88 inside the respective coil. A satisfactory material for the core 88 is ferrite, such as a ferromagnetic oxide, which increases magnetic field strength.
As seen in
In operation, the alignment of the external coupling coils 90 and the internal coupling coils 80, the axes 83, 93 of the first coils 82, 92 respectively are aligned, so that the axes are parallel. Also, the axes 87, 97 of the second coils 86, 96 respectively are aligned, so that the axes are parallel. In one configuration, the first coil axis 83 is orthogonal to the second coil axis 87, such that the axes intersect and the coil axis 93 is orthogonal to the coil axis 97, such that the axes intersect.
The crossed coil construction provides a transcutaneous transmission distance of (13 mm with the ferrite core, and 9 mm without the ferrite core 88); acceptable flow measurement accuracy when coupled with wave converting sensor 22 configuration; and relative ease at with which the external coils 90 are aligned with the internal coils 80.
Representative design parameters include:
As shown in
A satisfactory flowmeter 100 has been found to be a modified standard TS-420 Ultrasonic Transit-Time flowmeter by Transonic Systems Inc. of Ithaca N.Y. The modified flowmeter 100 is configured to operate the inductively coupled external and internal coils 80, 90 and determine a flow from the implanted flow sensor 22, via the signals from the transducers 72, 76.
The modifications to the TS-420 Ultrasonic Transit-Time flowmeter 100 include an increased voltage meter transmit signal output stage which energizes the piezoelectric transducers of the implanted flow sensor. The modified flowmeter 100 provides a larger transducer transmit voltage amplitude and longer transmit signals to take advantage of the increased flow measurement resolution features of the implanted flow sensor 22. Also, the flowmeter 100 is modified to provide a visual display of the signal coupling between the external flowmeter and the implanted flowsensor 22, so as to allow optimal alignment between the external and internal coil axes.
These modifications allow the TS-420 Ultrasonic Transit-Time flowmeter 100 to operate the inductively-coupled shunt flow sensor 22 over a distance of 9 mm for non-ferrite coupling coils 80, 90, and up to 13 mm with ferrite core coupling coils 80, 90.
Referring to
The amplitude of the signal received at the external coils 92, 96 is inversely proportional to the coil-to-coil separation distance between the internal coils 80 and the external coils 90. It has been found that a change in the zero offset can be corrected for by monitoring the signal amplitude received at the external coupling coils 90.
Referring to
As seen in the Table below, the correction algorithm compensates the recorded flow or motion induced changes to zero flow offset.
Thus, the flowmeter 100 can be programmed or configured to continuously monitor changes to the amplitude of the received signal. By monitoring changes to the amplitude of the received signal, the flowmeter 100 can correct the flow signal offset using lookup tables calculated from bench calibration data or alert the operator to perform a new zero calibration. For implanted sensors monitoring CSF flow, density measurements could also be used as adjunct measurements to correlate CSF density changes with shunt function. For example, density changes could be caused by infections. Similarly, for extracorporeal sensors, and when used to monitor cranial drainage from patients recovering from brain surgery, density changes could give early warning of bleeding or infection by monitoring the fluid density changes.
Referring to
Referring to
The flowmeter 100 generates a (sine wave) signal burst or pulse, such as a sine wave. The sine wave signal burst travels through wires to the external coupling coils 90, and specifically through the first external coil 92. The first external coil 92, with the coil axis 93 at a first orientation, converts the signal burst to an oscillating magnetic field emanating from the coil.
The first internal coil 82, with the coil axis 83 in the first orientation, converts the oscillating magnetic field to a corresponding current and voltage burst. As the second internal coil 86 is oriented in a second (orthogonal) orientation to the first internal coil 82, there is no induced current or voltage in the second internal coil.
The induced voltage burst in the first internal coil 82 travels through wiring directly to the first transducer 72. The first transducer 72 converts the voltage burst into ultrasonic shear waves passing along the first signal pathway 62. The shear waves translate along the first signal pathway 62, and refract into the flow channel 40 to become longitudinal waves parallel to the measurement channel 44.
As the longitudinal waves travel in the flow in the measurement channel 44, the propagation speed of the waves is altered or modulated. The altered longitudinal waves intersect the second signal pathway 66 and refract into the pathway, converting into shear waves. These shear waves travel the second signal pathway 66 to intersect the second transducer 76. The second transducer converts the shear waves to corresponding sine wave voltage. The sine wave voltage travels through the wires directly to the second internal coil 86.
The second internal coil 86, with the coil axis 87 at the different second orientation, converts the sine wave voltage into an oscillating magnetic field emanating from the second internal coil. The second external coil 96, with the coil axis 97 at the second orientation, converts the oscillating magnetic field into a sine wave voltage or signal. As the axis 93 of the first external coil 92 is tilted or orthogonal to the axis 97 of the second external coil 96, a voltage is not induced in the first external coil from the magnetic field emanating from the second internal coil 86.
The sine wave signal from the second external coil 96 travels to the flowmeter 100. The flowmeter 100 receives the sine wave signal and measures the phase changes between this signal and a stationary reference signal, and the amplitude of the signal for zero offset correction.
A corresponding process is employed to send a longitudinal wave upstream from the second downstream transducer 76 to the first upstream transducer 72. That is, the process of
It is further contemplated that the measurement of phase changes of the signals having passed through the measurement channel 44 can be employed in a number of distinct blood properties measurement approaches. The difference in phase measurement between two signals that have passed the measurement channel in the upstream and downstream direction, respectively, is proportional to flow through the implanted flow conduit such as set forth, for instance, in U.S. Pat. No. 4,227,407 to Drost, hereby expressly incorporated by reference. The average of the upstream and downstream signal (the “common mode phase signal”) is invariant to fluid flow but it may be monitored for changes in the time of flight of the ultrasound signal traveling from one transducer to the other in the implanted sensor. This time of flight is a function of the distance between these two transducers, and the ultrasound velocity of materials placed between these two transducers. The common mode phase signal will change to reflect changes in the acoustical velocity of the liquid in the measurement channel. Such changes in the acoustical velocity may result from temperature changes of the liquid, or from changes in the density or constituents of the liquid. By monitoring the phase changes of the signals traversing the measurement channel 44, the flowmeter 100 can determine temperature or density changes for purposes of measurements such as indicator dilution when a liquid parameter change such as a temperature change or a saline bolus injection is introduced into the flowing liquid, and as a measurement of hematocrit changes if the liquid flowing through the sensor were blood.
Referring to
A further aspect of the implantable sensor 20 is magnetic resonance imaging (MRI) compatibility.
In preliminary testing of the implantable sensor 22, artifact size caused by the presence of the sensor in the MRI and MRI induced force, torque, and RF (radio-frequency) heating were examined in a Philips Intera 1.5 Tesla whole body MRI scanner.
MRI induced force and torque were evaluated by hanging the sensor having the ferrite core and the sensor without the ferrite core from threads and moving the sensors into the 1.5 Tesla static field of the MRI machine and measuring the deflection angle. RF heating was evaluated by attaching the ferrite sensor to a liquid-filled phantom and conducting a T1 Weighted Spin Echo (1.5 Tesla, 63 MHz, 20-minute duration) scan and a GRE Gradient Recall Echo (20 minute duration) scan.
The MRI artifact was measured by suspending the non-ferrite sensor in a cylinder of water doped with an MRI contrast agent (Ominiscan diluted 1 part in 500), and repeating the above scans. The NIH Image-J image analysis package was used to analyze the scan DICOM image sequence and estimate the artifact dimensions.
The table below documents test results when prototype sensors were tested against four ASTM (American Society for Testing and Materials) standards for implanted medical devices exposed to a Magnetic Resonance Environment. Specifically, (i) ASTM F2052-06e1 Standard Test Method for Measurement of Magnetically Induced Displacement Force on Medical Devices in the Magnetic Resonance Environment; (ii) ASTM F2213-06 Standard Test Method for Measurement of Magnetically Induced Torque on Medical Devices in the Magnetic Resonance Environment; (iii) ASTM F2182-02a Standard Test Method for Measurement of Radio Frequency Induced Heating Near Passive Implants During Magnetic Resonance Imaging and (iv) ASTM F2119-01 Historical Standard: ASTM F2119-01 Standard Test Method for Evaluation of MR Image Artifacts from Passive Implants. This standard has been superseded by: ASTM F2119-07 Standard Test Method for Evaluation of MR Image Artifacts from Passive Implants.
The largest measured MRI artifacts were 5.6 cm×2.6 cm×1.8 cm (T1 Weighted), and 4.6 cm×4.0 cm×2.9 cm (GRE). These artifact sizes are comparable with those of programmable shunt valves.
In one configuration, the implanted sensor 22, with internal coils is compatible with following MRI machine specs: Static Magnetic Field: up to 1.5 Tesla; Gradient Magnetic Field: 14.91 Tesla/second vertical to patient, 26.17 Tesla/second along patient length, with a Radio-Frequency: 64 MHz (300-400 MHz in high-field head coils).
As seen in
For example, for patients connected to Extra-Ventricular Drains (EVDs), the flow sensor 122 can be spliced directly into a drainage line as shown in
Additionally, for patients with an implanted CSF shunt, there is a need for diagnosis of shunt functionality before the shunt is replaced. The flow sensor 122 can be spliced into existing exteriorized shunt tubing, and directly measure the flow. This again can allow the doctor to assess the functionality and flow-pressure relationship of the implanted CSF shunt in situ.
Referring to
In one configuration, the flow sensor 22, 122 can measure hydrocephalic shunt flows between approximately 0.5 ml/hr (one drop every 4 minutes) to 120 ml/hr. Further, the transcutaneous energy transfer is operable from approximately 5 mm to 10 mm skin (tissue) depth, and depending on the configuration of the crossed coils up to approximately 20 mm. In one configuration, a flow resolution of 0.5 ml/hr was obtained for a coil separation of 7.5 mm with the coils having core 88, and a coil separation of 6 mm for coils without the cores. At a coil separation distance of 13 mm for the coils having the core 88 and 9 mm for the coils without the core, the flow resolution was 1.0 ml/hr.
Referring to
The biological support devices include pumps for introducing medicines, tracers or indicators, dispensers, heaters, coolers or even electrical stimulators. The implanted sensors include flow, pressure, ECG, EMG EEG, PH, and blood property sensors.
The external coupling coils 192, 196 are operably connected to a corresponding processor or control unit 150, as dictated by the corresponding implanted device 162.
This configuration provides for the operable location of the coupling coil(s) to be spaced from the subcutaneous device powered by the coupling coils. Therefore, detrimental effects associated with the inductive coupling can be spaced from the biologic support device. This separation is particularly advantageous when the biologic support device must be subcutaneously located proximal to a relatively sensitive or delicate area of the patient or wherein the size of the biologic support device must be minimized. As the coupling coils are remotely located subcutaneously, the biologic device can be configured to minimize size, as necessary power is supplied from the remotely located coupling coil.
In this configuration, the coupling coil can be a single coil or a plurality of coils in any of a variety of configurations. For example the coils 182,186,192,196 can be relatively planar structures concentrically would about a corresponding axis, wherein the coils 182, 186 are generally coplanar, and the coils 192, 196 are generally coplanar. It is also understood the internal and external coils can be those previously set forth as the internal coils 80 and the external coils 90, wherein the internal coils are not commonly housed or encapsulated with the implanted sensor.
Thus, the present disclosure provides transcutaneous signal and power coupling with two orthogonal coil pairs, one pair being subcutaneous and the other pair being external. Although described in terms of a hydrocephalus monitor application, the system has wide uses in any transcutaneous signal/power coupling for implanted (subcutaneous) sensors/controllers (passive such as the present ultrasonic sensor, and active meaning that the implanted device includes electronics that need to be electrically powered for the device to function or operate.) The subcutaneous coil set could be made part of the sensor housing 30, or connected via electronic cabling 170 to the sensor. The two subcutaneous coils may be fabricated co-axially or mounted side by side, wherein the requirement is met that the coils be positioned in relationship to each other such that their magnetic field coupling from one external/internal pair exhibits only minimal cross talk with the other external/internal pair. Thus, in addition to the present transcutaneous signal/power transfer application, the system can be employed in any non-contact measurement applications, such as in the measurement of parameters inside an isolation chamber, container, barrier or layer, where the spread of disease agents or chemically materials needs to be contained.
While a preferred embodiment of the invention has been shown and described with particularity, it will be appreciated that various changes in design and formulas and modifications may suggest themselves to one having ordinary skill in the art upon being apprised of the present invention. It is intended to encompass all such changes and modifications as fall within the scope and spirit of the appended claims.
The present application claims the benefit of U.S. provisional patent application No. 61/004,858, filed Nov. 30, 2007.
This invention was made with government support under Research supported under Phase-I SBIR (Small Business Innovative Research) Grant #1R43 NS049680-01A1 from the National Institute of Neurological Disorders and Stroke of the National Institutes of Health. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61004858 | Nov 2007 | US |