This invention relates to transit vehicle broadcast and more particularly, to a system and method for wirelessly transmitting multimedia content between two or more transit vehicles for broadcasting the multimedia content to passengers traveling in the transit vehicles.
It is a problem in the field of broadcast systems to provide multimedia content to a plurality of passengers traveling in transit vehicles having a plurality of interconnected cars while also distributing the multimedia content to each of the interconnected cars. Typical transit vehicles having two or more cars are interconnected physically and electrically. The physical connection retains each next adjacent car connected to the previous car. One car on the transit vehicle may include a generator for providing electricity to the interconnected cars. A connector located at one end of each car connects to a mating connector located on the next adjacent car, thus providing electricity to each one of the two or more cars. However, a problem arises when a spare connection within the connector and corresponding mating connector is not available for use distributing multimedia content between the cars for broadcast to passengers traveling in the cars.
A typical solution is installation of a storage device in each one of the cars and connection of each storage device to a video graphic display for broadcasting the stored multimedia content to the passengers traveling in the car. Use of a plurality of storage devices requires multimedia to be downloaded to each storage device individually. Furthermore, each storage device is individually controlled, therefore the multimedia content broadcast to the passengers is not synchronized and the multimedia content retrieved from one storage device may vary from the multimedia content broadcast from another storage device located in another car.
Another solution may be the addition of another set of connectors for distributing multimedia content between the interconnected cars. However, addition of another connector requires existing cars in the field to be rewired. Adding additional wiring to existing cars which requires the two mating connected to automatically connect when the vehicles are attached increases the cost of installing the broadcast system on the transit vehicle since the connects requires both a physical and electrical connection.
Wireless transmission between interconnected cars is known for transmitting operational characteristics (U.S. patent application, Publication Number 20020049520 A1) in a daisy-chain fashion along a number of interconnected cars comprising the transit vehicle. A master controller within one of the cars serves as an interface with an external system for providing real-time data to a control site. The data provided to the control site may include sensor information, railcar identification, status, trouble spots, locations and warning. Another known system which wirelessly transmits the control data is disclosed in a patent application filed in Japan, Publication Number 01138916 JP. Pub. No. 01138916 JP discloses a system which includes a receiver and a transmitter at each of the front end and the read end for transmitting control data about each car to a host computer where the information is collected and managed. The information collected and managed is not distributed between the cars for broadcast to the passengers.
A known broadcast system is disclosed in U.S. Pat. No. 6,356,822, issued to Diaz et al. includes a multi-functional antenna on the vehicle for communicating with the vehicle to provide information for and about the vehicle's operational status and coordinating the vehicles activities. The system antenna also receives traditional broadcast such as AM/FM radio and television signals, transmit and receive citizens band (CB) radio signals, satellite and microwave and cellular telephone communications. While the system disclosed in Diaz et al. may broadcast the received audio and/or video to the passengers traveling in the vehicle, the system requires the vehicle to travel in areas where traditional broadcast is available. When the vehicle travels outside of the area where traditional broadcast is available, audio and or video signals are not received and therefore, the broadcast to the passengers ceases.
U.S. Pat. No. 6,144,900 issued to Ali et al., discloses a system for automatic serialization of an array of wireless nodes for determining the sequence of cars in a train. In this system, each car is equipped with a wireless communication device that requires no physical connection to the next. Each car forwards the wave pattern received from the adjacent car to the next adjacent car until the wave pattern is received by the head-end unit where the head-end unit constructs a train map which is the sequence of the cars. Another system for determining the position of vehicles in a convoy of vehicles is disclosed in German Patent Number EP0357963 issued to Bragas et al., where each vehicle in the convoy includes a transmitter and receiver for transmission of carrier modulated by data for determining the position of each vehicle in the convoy.
While these systems provide wireless transmission from one vehicle to the next, the systems do not provide for transmission of multimedia content for broadcast to the passengers traveling in the vehicles in areas where traditional broadcast is lacking or not available. The wireless transmission is limited in function to conveying the received wireless position or control data transmission to a next adjacent vehicle and is not directly linked to any broadcast system within the vehicle.
For these reasons, a need exists for a system for wirelessly distributing multimedia content to a plurality of interconnected cars with devices located in each car for broadcasting the received multimedia content to the passengers traveling in the car.
A transit vehicle wireless transmission broadcast system for wirelessly transmitting multi-media content from one car of a transit vehicle to another car for broadcast of the multimedia content to passengers traveling in the cars. Each transit vehicle includes a receiver for receiving the multimedia content or a storage device for retrieving the multimedia content and a transmitter for transmitting the multimedia content to a receiver located on the car. Prior to transmitting, the multimedia content may be converted to a wireless frequency and may be amplified for transmission. Each of the transit vehicles includes at least one broadcast device for broadcasting the multimedia content to the passengers traveling within the corresponding car.
Each transit vehicle may include a converter for converting the received multimedia content for display on one or more video graphic display devices or wirelessly transmitted within the transit vehicle for receipt by hand held devices that are capable of receiving the transmitted wireless multimedia content and are in the possession of passengers.
The transit vehicle wireless transmission system summarized above and defined by the enumerated claims may be better understood by referring to the following detailed description, which should be read in conjunction with the accompanying drawings. This detailed description of the preferred embodiment is not intended to limit the enumerated claims, but to serve as a particular example thereof. In addition, the phraseology and terminology employed herein is for the purpose of description, and not of limitation.
A typical broadcast system for transit vehicles having multiple interconnected cars includes a storage device located in each vehicle connect to a closed circuit audio and/or audio/video system for broadcast of content to the passengers traveling in the corresponding car. Referring to the block schematic diagram of
The multimedia content may be prerecorded content or may be wirelessly downloaded to the transit vehicle. The multimedia content is illustrated and described as residing in memory within storage device 12, although the multimedia content may be stored on an alternative medium for distribution via a device capable of retrieving the multimedia content from the alternative medium, such as a combination of a storage disk and a disk player. Likewise, the multimedia content may be downloaded to the storage device while the transit vehicle is stationary or while the transit vehicle is traveling.
A converter 13 is connected to the storage device 12 for converting the stored multimedia content to a wireless frequency for transmitting the stored multimedia content via transmitter 14 to receiver 24 located on adjacent car 20. Storage device 12 also distributes the stored multimedia content to video graphic displays 16 and 18 located in first car 10. Receiver 24 located in adjacent car 20 broadcasts the received multimedia content to passengers traveling in adjacent car 20 via video graphic displays 26 and 36 located in adjacent car 20.
Referring to the schematic block diagram of
When a train comprises a plurality of interconnected cars, each adjacent car includes a receiver at one end of the car and a transmitter at the other end of the car 20. Each adjacent car having a receiver and a transmitter provides the components necessary to distribute the multimedia content stored on storage device 12 located in first car 10 to each next adjacent car. Referring to the schematic block diagram of
More specifically, each next adjacent car includes a converter 25 for converting the multimedia content step 132 for broadcast on video graphic display 28 located within the car 20 in step 134 as illustrated in
In another embodiment illustrated in
In an embodiment illustrated in
As to alternative embodiments, those skilled in the art will appreciate that the present transit vehicle wireless transmission broadcast system may be implemented with alternative configurations. While the multimedia content has been illustrated and described for broadcast to passengers via video graphic display devices connected to the storage device or to the receiver, alternative configurations may be substituted. For example, the multimedia content may be audio broadcast via speakers within the transit vehicle or may be audio, video or a combination thereof that is wirelessly broadcast for receipt by handheld devices in the possession of passengers that are capable of receiving the wireless multimedia. Similarly, while the multimedia content has been illustrated and described as residing in memory within the storage device, the audio and/or audio/video content may be stored on an alternative medium for distribution via a device capable of retrieving the multimedia content from the alternative medium, such as a combination of a storage disk and a disk player.
It is apparent that there has been described a transit vehicle wireless transmission system that fully satisfies the objects, aims, and advantages set forth above. While the present transit vehicle wireless transmission system has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications, and/or variations can be devised by those skilled in the art in light of the foregoing description. Accordingly, this description is intended to embrace all such alternatives, modifications and variations as fall within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5732216 | Logan et al. | Mar 1998 | A |
6144900 | Ali et al. | Nov 2000 | A |
6173399 | Gilbrech | Jan 2001 | B1 |
6223027 | Ono et al. | Apr 2001 | B1 |
6356822 | Diaz et al. | Mar 2002 | B1 |
6407673 | Lane | Jun 2002 | B1 |
6751442 | Barrett | Jun 2004 | B1 |
20010021654 | Spratt et al. | Sep 2001 | A1 |
20010048749 | Ohmura et al. | Dec 2001 | A1 |
20020027495 | Darby et al. | Mar 2002 | A1 |
20020049520 | Mays | Apr 2002 | A1 |
20020170060 | Lyman | Nov 2002 | A1 |
20030045265 | Huang et al. | Mar 2003 | A1 |
20030151520 | Kraeling et al. | Aug 2003 | A1 |
20030217363 | Brady et al. | Nov 2003 | A1 |
20030223387 | Davenport et al. | Dec 2003 | A1 |
20040058656 | Chikaishi | Mar 2004 | A1 |
20040066786 | Catterall et al. | Apr 2004 | A1 |
20040104312 | Hess et al. | Jun 2004 | A1 |
20050039208 | Veeck et al. | Feb 2005 | A1 |
20050170791 | Tabata et al. | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
0 357 963 | Jan 1995 | EP |
2306857 | May 1997 | GB |
WO 0103075 | Jan 2001 | WO |
WO 0127829 | Apr 2001 | WO |
WO 0137517 | May 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040198281 A1 | Oct 2004 | US |