The present invention relates to extra dense, non-volatile memory arrays generally and to their connection to the periphery in particular.
Dual bit memory cells are known in the art. One such memory cell is the NROM (nitride read only memory) cell 10, shown in
A dual polysilicon process (DPP) may also be used to create an NROM cell.
NROM cells are described in many patents, for example in U.S. Pat. No. 6,649,972, assigned to the common assignees of the present invention. Where applicable, descriptions involving NROM are intended specifically to include related oxide-nitride technologies, including SONOS (Silicon-Oxide-Nitride-Oxide-Silicon), MNOS (Metal-Nitride-Oxide-Silicon), MONOS (Metal-Oxide-Nitride-Oxide-Silicon) and the like used for NVM devices. Further description of NROM and related technologies may be found at “Non Volatile Memory Technology”, 2005 published by Saifun Semiconductor, and materials presented at and through http://siliconnexus.com, “Design Considerations in Scaled SONOS Nonvolatile Memory Devices” found at: http://klabs.org/richcontent/MemoryContent/nvmt_symp/nvmts—2000/presentations/bu_white_sonos_lehigh_univ.pdf,
“SONOS Nonvolatile Semiconductor Memories for Space and Military Applications” found at: http://klabs.org/richcontent/MemoryContent/nvmt_symp/nvmts—2000/papers/adams_d.pdf, “Philips Research-Technologies-Embedded Nonvolatile Memories” found at: http://research.philips.com/technologies/ics/nvmemories/index.htnl, and “Semiconductor Memory: Non-Volatile Memory (NVM)” found at: http://ece.nus.edu.sg/stfpage/elezhucx/myweb/NVM.pdf, all of which are incorporated by reference herein in their entirety.
As shown in
U.S. patent application Ser. Nos. 11/489,327 and 11/489,747 describe a novel architecture and manufacturing process to generate a very dense array with very closely spaced word lines. In this array, the cells are less than 4 F2 in size. The minimum theoretical size of the cells is 2 F2.
An object of the present invention is to improve upon the prior art.
There is therefore provided, in accordance with a preferred embodiment of the present invention, a non-volatile memory chip with word lines spaced a sub-F (sub-minimum feature size F) width apart, and extensions of the word lines in at least two transition areas, wherein neighboring said extensions in at least one of said transition areas are spaced at least F apart.
There is also provided in accordance with a preferred embodiment of the present invention a non-volatile memory chip including word lines in a memory array with spacings between neighboring word lines of less than half the width of one of the word lines and extensions of the word lines in at least two transition areas wherein neighboring said extensions in at least one of said transition areas are spaced more than the width of one word line apart.
Further in accordance with a preferred embodiment of the present invention, the transition areas are on different sides of an array of the word lines.
Still further, in accordance with a preferred embodiment of the present invention, array is a NROM (nitride read only memory) array.
Additionally, in accordance with a preferred embodiment of the present invention, the extensions are insulated from each other by a dielectric filler.
Moreover, in accordance with a preferred embodiment of the present invention, the extensions are connected to peripheral transistors.
Further in accordance with a preferred embodiment of the present invention, the dielectric filler is at least one of oxide or oxynitride.
Still further, in accordance with a preferred embodiment of the present invention, the extensions are formed of conductive materials such as tungsten, salicide or silicide.
Additionally, in accordance with an alternative embodiment of the present invention, the extensions are formed of polysilicon.
Moreover, in accordance with a preferred embodiment of the present invention, the extensions are integral to said word lines.
There is also provided in accordance with a preferred embodiment of the present invention, a non-volatile memory chip with a densely packed array with spacings between neighboring word lines of less than half the width of one of said word lines, a loosely packed periphery, and at least two transition areas connecting word lines of the densely packed array to the loosely packed periphery, wherein each transition area connects only a portion of the word lines.
Further in accordance with a preferred embodiment of the present invention, each portion is every other word line.
Still further, in accordance with a preferred embodiment of the present invention, the extensions of said every other word lines are integral to said word lines.
There is also provided in accordance with a preferred embodiment of the present invention, a method for word-line patterning of a non-volatile memory chip, the method including generating sub-F word lines with extensions in transition areas for connecting to peripheral transistors from mask generated elements with widths of at least a minimum feature size F.
Additionally, in accordance with a preferred embodiment of the present invention, the generating includes generating a first set of rows from the mask generated elements, and generating a second set of rows, interleaved between the first set of rows, from the first set of rows.
Moreover, in accordance with a preferred embodiment of the present invention, first generating includes creating rows of nitride hard mask where each row has a width of greater than 1 F, depositing word line material between the rows, etching the word line material from a first transition area, etching the rows from a second transition area, and depositing oxide into the etched areas.
Further in accordance with a preferred embodiment of the present invention, the second generating includes etching the nitride hard mask, depositing nitride spacers in place of the rows of nitride, and depositing word line material between the spacers.
Still further, in accordance with a preferred embodiment of the present invention, the second transition area is generally located on an opposite side of the word lines from the first transition area.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings in which:
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the present invention.
Applicants have realized that, while densely packed word lines may provide small cells, they are difficult to connect to the transistors of the periphery, since the periphery transistors are typically much larger and thus, the periphery is typically much more loosely packed.
Reference is now made to
In accordance with a preferred embodiment of the present invention, word lines 32 may be formed from rows 31, where rows 31 may comprise word lines 32, active extensions 33 and insulating extensions 34. Extensions 33 and 34 may extend into their respective fan-out areas, as described in more detail hereinbelow.
In accordance with a preferred embodiment of the present invention, each fan-out area may control a portion of word lines 32. For example, fan-out area 35-E may control the even word lines, labeled 32-E, and fan-out area 35-O may control the odd word line rows, labeled 32-O. As shown in
As discussed in U.S. Ser. No. 11/489,327 and Ser. No. 11/489,747, word lines may be generated from one another. Only one set, for example the even word lines, may be laid down in a lithographic process. The second set, for example the odd word lines, may be generated from the first set through a series of self-aligning processes. In the present invention, rows 31 may be laid down in a similar manner, with one set of rows being laid down lithographically and the second set of rows being generated from the first set.
In accordance with a preferred embodiment of the present invention and as discussed hereinbelow, insulating extensions 34, formed of insulating material such as oxide or oxynitride, may be generated at the ends of those word lines 32 that do not extend into each fan-out area 35. Thus, even word lines 32-E may have insulating extensions 34-E in odd fan-out area 35-O while odd word lines 32-O may have insulating extensions 34-O in even fan-out area 35-O.
The remainder of this application will describe how to create fan-out areas 35 while creating densely packed, memory array 30.
Reference is now made to
The process begins, in step 100, with the process steps prior to word line patterning. Suitable DPP type process steps may be found in U.S. patent application Ser. Nos. 11/489,327 and 11/489,747, as well as the following applications assigned to the common assignees of the present invention, all of which applications are incorporated herein by reference: U.S. patent application Ser. No. 11/247,733, filed Oct. 11, 2005, U.S. patent application Ser. No. 11/336,093 filed Jan. 20, 2006 and U.S. patent application Ser. No. 11/440,624, filed May 24, 2006.
The results of step 100 are illustrated in
As shown in
Material may then be deposited (step 104—
The memory chip may then be planarized to provide a smooth surface and a set of fan out steps (steps 106-126) may be performed. These steps may generate fan out areas 35 where insulating extensions 34 (
Initially, a first fan out mask may be created (step 106). Even fan out area 35-E may be exposed, while the rest of the memory chip (including memory array 30 and fan-out area 35-O) may be covered. A nitride etch may be performed (step 108) which may etch out elements of nitride rows 40 in exposed fan out area 35-E, leaving active extensions 33-E of rows 31-E.
The first fan out mask may then be removed (step 110) and a second fan out mask created (step 112). Fan out area 35-O may be exposed, while the rest of the chip may be covered. A word line etch, etching the material used for rows 31, while not etching the nitride, may be performed (step 114) which may etch out elements of rows 31-E extending into exposed fan out area 35-O.
It will also be appreciated that portions of exposed fan out areas 44 and 45 may have been partially etched during steps 108 and 114. However, as will be described hereinbelow, exposed fan out areas 44 and 45 may now be covered with an oxide, and accordingly there may be no lasting effect from such partial etches.
As mentioned hereinabove, an oxide fill may then deposited (step 116), completely covering the memory chip and filling exposed fan-out areas 44 and 45, thereby creating insulating extensions 34-O and 34-E, respectively. The memory chip may then be planarized to the level of word lines 32-E, their active extensions 33-E and nitride rows 40′. The results of step 116 may be illustrated by
The process may then continue with non-fan-out steps. Nitride rows 40′ may be removed (step 118) using a wet strip.
A nitride liner may now be deposited (step 120) in the area formerly occupied by nitride rows 40 (
It will be appreciated that the width of spacers 70 may be 0.3 F. Accordingly, in accordance with a preferred embodiment of the present invention, “troughs” defined by spacers 70 may have a width of 0.7 F which may be generally equal to the width of even word lines 32-E. Other widths for spacers 70 are possible and are incorporated in the present invention.
Word line row material may then be deposited (step 124) between spacers 70. As discussed hereinabove, the material may be semi-conductive (such as polysilicon) or conductive (such as tungsten, salicide or silicide). The memory chip may then be planarized (step 126) to provide a smooth surface.
At this point, the process for creating the fan out area required for densely packed memory cell 30 may be complete. U.S. patent application Ser. Nos. 11/489,327 and 11/489,747 may detail further steps required to finish the creation of the memory chip.
It will be appreciated that the memory chip as represented in
It will further be appreciated that while even word lines 32-E extend into fan out area 35-E with active extensions 33-E, they do not extend into fan out area 35-O. Similarly, odd word lines 32-O extend into fan out area 35-O with active extensions 33-O, but do not extend into fan out area 35-E. Accordingly, each set of word lines 32 may have sufficient space to properly connect to the transistors of the periphery.
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
This application is a continuation application of U.S. Ser. No. 12/149,202 filed Apr. 29, 2008, which is a continuation of U.S. Ser. No. 11/604,029 filed Nov. 24, 2006 which claims benefit from U.S. Provisional Patent Application No. 60/739,426, filed Nov. 25, 2005, and U.S. Provisional Patent Application No. 60/800,022, filed May 15, 2006, and U.S. Provisional Patent Application No. 60/800,021, filed May 15, 2006, all of which are hereby incorporated in their entirety by reference.
Number | Date | Country | |
---|---|---|---|
60739426 | Nov 2005 | US | |
60800022 | May 2006 | US | |
60800021 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12149202 | Apr 2008 | US |
Child | 12213620 | US | |
Parent | 11604029 | Nov 2006 | US |
Child | 12149202 | US |