The subject matter disclosed herein relates to a transition nozzle and, more particularly, a transition nozzle having non-axisymetric endwall contouring.
Typical gas turbine engines include a compressor, a combustor and a turbine. The compressor compresses inlet gas and includes and outlet. The combustor is coupled to the outlet of the compressor and is thereby receptive of the compressed inlet gas. The combustor then mixes the compressed gas with combustible materials, such as fuel, and combusts the mixture to produce high energy and high temperature fluids. These high energy and temperature fluids are directed to a turbine for power and electricity generation.
Generally, the combustor and the turbine would be aligned with the engine centerline. A first stage of the turbine would thus be provided as a nozzle (i.e., the stage 1 nozzle) having airfoils that are oriented and configured to direct the flow of the high energy and high temperature fluids tangentially so that the tangentially directed fluids aerodynamically interact with and induce rotation of the first bucket stage of the turbine.
With such construction, the first turbine stages exhibit strong secondary flows in which the high energy and high temperature fluids flow in a direction transverse to the main flow direction. That is, if the main flow direction is presumed to be axial, the secondary flows propagate circumferentially or radially. This can negatively impact the stage efficiency and has led to development of non-axisymetric endwall contouring (EWC), which has been effective in reducing secondary flow losses for turbines. Current EWC is, however, only geared toward conventional vanes and blades with leading and trailing edges.
According to one aspect of the invention, a transition nozzle is provided and includes a liner in which combustion occurs and through which products of the combustion flow toward a turbine bucket stage. The liner includes opposing endwalls and opposing sidewalls extending between the opposing endwalls. The opposing sidewalls are oriented to tangentially direct the flow of the combustion products toward the turbine bucket stage. At least one of the opposing endwalls and the opposing sidewalls includes a flow contouring feature to guide the flow of the combustion products.
According to another aspect of the invention, a transition nozzle is provided and includes a liner having a first section in which combustion occurs and a second section downstream from the first section through which products of the combustion flow toward a turbine bucket stage. The liner includes, at the second section, opposing endwalls and opposing sidewalls extending between the opposing endwalls. The opposing sidewalls are oriented to tangentially direct the flow of the combustion products toward the turbine bucket stage. At least one of the opposing endwalls and the opposing sidewalls includes a non-axisymetric flow contouring feature to guide the flow of the combustion products.
According to yet another aspect of the invention, a gas turbine engine is provided and includes a compressor having an outlet through which compressed flow passes, a combustor stage coupled to the outlet, the combustor stage being receptive of the compressed flow and including a combustor in which combustible materials are mixed and combusted with the compressed flow to produce exhaust and a turbine coupled to the combustor stage, which is receptive of the exhaust produced in the combustor for power generation. A portion of the combustor being oriented tangentially with respect to an engine centerline and includes a non-axisymetric flow guiding feature.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
With reference to
In a typical gas turbine engine, the combustor would be aligned with the engine centerline and a first stage of the turbine would be provided as a nozzle (i.e., the stage 1 nozzle) having airfoils that are oriented and configured to direct the flow of the combustion products tangentially so that the tangentially directed combustion products induce rotation of the first bucket stage of the turbine. As described herein, however, the stage 1 nozzle can be integrated with the combustor 130 such that at least the portion 131 of the combustor 130 serves as the stage 1 nozzle. That is, with the portion 131 of the combustor 130 being disposed adjacent to the first turbine bucket stage 140 of the turbine 14, the tangential orientation of the portion 131 of the combustor 130 with respect to the engine centerline 15 directs the flow of the combustion products tangentially toward the first turbine bucket stage 140. This induces the necessary rotation of the first turbine bucket stage 140 and the turbine 14 need not include a first nozzle stage.
The combustor stage 13 may include a plurality of combustors 130 in an annular or can-annular array. Each of the plurality of the combustors 130 includes a respective portion 131 that is oriented tangentially with respect to the engine centerline 15. In addition, each of the respective portions 131 includes a non-axisymetric flow contouring feature 16. In accordance with embodiments, the tangential orientations and non-axisymetric flow contouring features 16 of each portion 131 of each combustor 130 may be respectively unique or respectively substantially similar.
Still referring to
The portion 131 of the combustor 130 that is oriented tangentially with respect to the engine centerline 15 is generally disposed within the aft section 22. In accordance with embodiments, the tangential orientation is provided by the opposing sidewalls 202 being angled or curved in the circumferential dimension about the engine centerline 15. Thus, one of the opposing sidewalls 202 is concave and the other is convex, the concave one of the opposing sidewalls 202 representing a pressure side 30 and the convex one of the opposing sidewalls 202 representing a suction side 40.
With reference to
With reference to the topography of
With reference to
With reference to
The embodiments described herein are merely exemplary and do not represent an exhaustive listing of the various configurations and arrangements of the portion 131 of the combustor 130 or the non-axisymetric flow contouring feature 16.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2743579 | Gaubatz | May 1956 | A |
3316714 | Smith et al. | May 1967 | A |
5397215 | Spear et al. | Mar 1995 | A |
5466123 | Rose | Nov 1995 | A |
6283713 | Harvey et al. | Sep 2001 | B1 |
6669445 | Staubach et al. | Dec 2003 | B2 |
7179049 | Glasspoole | Feb 2007 | B2 |
7465155 | Nguyen | Dec 2008 | B2 |
7887297 | Allen-Bradley et al. | Feb 2011 | B2 |
7930891 | Brostmeyer | Apr 2011 | B1 |
8113003 | Charron et al. | Feb 2012 | B2 |
20070258819 | Allen-Bradley et al. | Nov 2007 | A1 |
20080267772 | Harvey et al. | Oct 2008 | A1 |
20090133377 | Kenyon et al. | May 2009 | A1 |
20090266047 | Kenyon et al. | Oct 2009 | A1 |
20100037618 | Charron et al. | Feb 2010 | A1 |
20100077762 | Hessler et al. | Apr 2010 | A1 |
20100115953 | Davis et al. | May 2010 | A1 |
20100284818 | Sakamoto et al. | Nov 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20130094952 A1 | Apr 2013 | US |