The present invention is directed to a catheter for use in intralumenal procedures within particularly tortuous vessels.
Cardiovascular disease, including atherosclerosis, is the leading cause of death in the U.S. The medical community has developed a number of methods and devices for treating coronary heart disease, some of which are specifically designed to treat the complications resulting from atherosclerosis and other forms of coronary arterial narrowing.
One method for treating atherosclerosis and other forms of coronary narrowing is percutaneous transluminal coronary angioplasty, commonly referred to as “angioplasty” or “PTCA”. The objective in angioplasty is to enlarge the lumen of the affected coronary artery by radial hydraulic expansion. The procedure is accomplished by inflating a balloon of a balloon catheter within the narrowed lumen of the coronary artery.
In addition to PTCA, catheters are used for delivery of stents or grafts, therapeutic drugs (such as vaso-occlusion agents or tumor treatment drugs) and radiopaque agents for radiographic viewing. Other uses for such catheters are well known in the art.
The anatomy of coronary arteries varies widely from patient to patient. Often a patient's coronary arteries are irregularly shaped, highly tortuous and very narrow. The tortuous configuration of the arteries may present difficulties to the physician in proper placement of a guidewire, and advancement of a catheter to a treatment site. A highly tortuous coronary anatomy typically will present considerable resistance to advancement of the catheter over the guidewire.
Therefore, it is important for a catheter to be highly flexible. However, it is also important for a catheter shaft to be stiff enough to push the catheter into the vessel in a controlled manner from a position far away from the distalmost point of the catheter.
Conventional catheter shafts for PTCA and other procedures typically include a proximal shaft, a transition section and a distal shaft having a flexible distal tip. In particular, the catheters have a proximal shaft, which is generally rigid for increased pushability and a more flexible distal shaft with a flexible distal tip for curving around particularly tortuous vessels. Often the proximal shaft is made stiff by the insertion of a thin biocompatible tube, such as a stainless steel hypotube, into a lumen formed within the proximal shaft. The transition section is the portion of the catheter shaft between the stiffer proximal shaft and the more flexible distal shaft, which provides a transition in flexibility between the two portions.
With some types of catheter construction, when an increase in resistance occurs during a procedure there is a tendency for portions of the catheter to collapse, buckle axially or kink, particularly in an area where flexibility of the catheter shaft shifts dramatically. Consequently, the transition section is often an area where the flexibility of the catheter gradually transitions between the stiff proximal shaft and the flexible distal shaft. It is known in the art to create a more gradual flexibility transition by spiral cutting a distal end of the hypotubing used to create stiffness in the proximal shaft. Typically, the spiral cut is longitudinally spaced farther apart at the hypotube proximal end creating an area of flexibility, and longitudinally spaced closer together at the hypotube distal end creating an area of even greater flexibility.
In a typical PTCA procedure, it may be necessary to perform multiple dilatations, for example, using various sized balloons. In order to accomplish the multiple dilatations, the original catheter must be removed and a second catheter tracked to the treatment site. When catheter exchange is desired, it is advantageous to leave the guidewire in place while the first catheter is removed to properly track the second catheter.
Two types of catheters commonly used in angioplasty procedures are referred to as over-the-wire (OTW) catheters and rapid exchange (RX) catheters. A third type of catheter with preferred features of both OTW and RX catheters, which is sold under the trademarks MULTI-EXCHANGE, ZIPPER MX, ZIPPER, and/or MX, is discussed below. An OTW catheter's guidewire shaft runs the entire length of the catheter and is attached to, or enveloped within, an inflation shaft. Thus, the entire length of an OTW catheter is tracked over a guidewire during a PTCA procedure. A RX catheter, on the other hand, has a guidewire shaft that extends within only the distalmost portion of the catheter. Thus, during a PTCA procedure only the distalmost portion of a RX catheter is tracked over a guidewire.
If a catheter exchange is required while using a standard OTW catheter, the user must add an extension onto the proximal end of the guidewire to maintain control of the guidewire, slide the catheter off of the extended guidewire, slide the new catheter onto the guidewire and track back into position. Multiple operators are required to hold the extended guidewire in place while the original catheter is changed out.
A RX catheter avoids the need for multiple operators when changing out the catheter. With a rapid exchange catheter, the guidewire is outside the shaft of the catheter for all but the distalmost portion of the catheter. The guidewire can be held in place without an extension when the catheter is removed from the body. However, one problem associated with RX catheters is that the exposed portion of the guidewire may become tangled with the catheter shaft during use.
In addition, there are instances when the guidewire and not the catheter must be replaced. An OTW catheter, with the guidewire lumen extending the entire length of the catheter, allows for simple guidewire exchange. With a RX catheter, the guidewire, and most of the catheter, must be removed from the body in order to exchange guidewires. Essentially the procedure must then start anew because both the guidewire and the catheter must be retracked to the treatment site.
A balloon catheter capable of both fast and simple guidewire and catheter exchange is particularly advantageous. A catheter designed to address this need is sold by Medtronic AVE, Inc. of Santa Rosa, Calif. under the trademarks MULTI-EXCHANGE, ZIPPER MX, ZIPPER and/or MX (hereinafter referred to as the “MX catheter”). An MX catheter is disclosed in U.S. Pat. No. 4,988,356 to Crittenden et al., and in co-pending U.S. patent application Ser. No. 10/116,234, filed Apr. 4, 2002, both of which are incorporated in their entirety herein by reference.
The MX catheter includes a catheter shaft having a guidewire lumen positioned side-by-side with an inflation lumen. The MX catheter also includes a longitudinal cut that extends along the catheter shaft and that extends radially from the guidewire lumen to an exterior surface of a catheter shaft. A guide member through which the shaft is slidably coupled cooperates with the longitudinal cut such that a guidewire may extend transversely into or out of the guidewire lumen at any location along the longitudinal cut's length. By moving the shaft with respect to the guide member, the effective over-the-wire length of the MX catheter is adjustable.
The guidewire is threaded into a guidewire lumen opening at the distal end of the catheter and out through the guide member. The guidewire lumen envelops the guidewire as the catheter is advanced into the patient's vasculature. Furthermore, the indwelling catheter may be removed by withdrawing the catheter from the patient while holding the proximal end of the guidewire and the guide member in a fixed position. When the catheter has been withdrawn to the point where the distal end of the slot has reached the guide member, the distal portion of the catheter over the guidewire is of a sufficiently short length that the catheter may be drawn over the proximal end of the guidewire without releasing control of the guidewire or disturbing its position within the patient.
When both an inflation lumen and a guidewire lumen are generally circular in shape, a side-by-side lumen configuration generally creates a catheter shaft having an oblong or oval shaped cross-section. However, a catheter with an oblong shaped cross-section may not readily traverse the generally circular shaped body lumens as effectively as a catheter having a generally circular shaped cross-section.
In light of the foregoing discussed in the background section, the present invention is directed to a catheter shaft with a substantially circular cross-section having a rigid proximal shaft, a flexible distal shaft and a transition section, which gradually increases in flexibility from a proximal to a distal end thereof due to the inclusion of a transition means. The transition section has a proximal end and a distal end, such that the proximal end is in communication with the proximal shaft while the distal end is in communication with the distal shaft.
At least the proximal shaft defines a guidewire lumen and an inflation lumen. The inflation lumen is generally an arcuate shaped lumen (i.e., has an arcuate shaped cross-section) that cradles the guidewire lumen along the length of the proximal shaft. The proximal shaft also includes a reinforcing means. The reinforcing means provides increased pushability of the proximal shaft for controlling a distal portion of the catheter shaft from a proximal position. The reinforcing means may be an arcuate shaped tube inserted into the inflation lumen. Alternatively, the reinforcing means may be a rod, a long, thin plate or a skived or halved metal or thermoplastic tube inserted into the inflation lumen. Further, the reinforcing means may be entirely embedded in an extruded thickness of the proximal shaft.
Thus, the transition section is proximally defined where the stiffness of the reinforcement means ends or begins to be reduced and distally defined by the location of a transition means. For example, the transition section may contain a spiral helix as the transition means. The spiral helix may be disposed on the outside of the transition section or inside the transition section. Alternatively, the spiral helix may be bonded to the transition section, or may be positioned to cover more than one of the transition section, proximal shaft or distal shaft. The spiral helix may be partially bonded and partially free-floating. Alternatively, the spiral helix may be entirely free-floating within the transition section and held in place by a “bumped” reduction in the diameter between the transition section and the distal shaft. Also, the spiral helix may be extruded into the tubing of the transition section.
The transition means may be a continuation of the reinforcing means used in the proximal shaft, wherein the reinforcing means is skived or reduced as it extends distally from the proximal end to the distal end of the transition section. Thus, as the substance of the reinforcing means is reduced, the transition section becomes more flexible along its length.
If the catheter is an MX catheter, it has a longitudinal cut that is generally found between the guidewire lumen and an exterior surface of the proximal shaft. If the longitudinal cut continues into the transition section, any transition means located in or around the inflation lumen will not affect the distal movement of a guide member along the longitudinal cut. Thus, a skived or reduced reinforcing means within the inflation lumen will not affect this MX feature. However, a spiral helix located in or around the guidewire lumen may affect how far distally a guide member can move along a catheter shaft. Thus, the transition means in an MX catheter may be a U-shaped wire or ribbon sleeve that operates similarly to the spiral helix while providing an opening to access the longitudinal cut along the transition section. The U-shaped wire sleeve can be bent onto an exterior of transition section or it may be embedded into an extruded transition section.
Further features and advantages of the invention, as well as the structure and operation of various embodiments of the invention, are described in detail below with reference to the accompanying drawings. It is noted that the invention is not limited to the specific embodiments described herein. Such embodiments are presented herein for illustrative purposes only. Additional embodiments will be apparent to persons skilled in the relevant art based on the teachings contained herein.
The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention.
The present invention will be described with reference to the accompanying drawings. The drawing in which an element first appears is typically indicated by the leftmost digit(s) in the corresponding reference number.
In the embodiment of
Outer shaft 124, inner shaft 120 and extruded shaft 128 are manufactured separately from thermoplastic materials, particularly high-density polyethylene, polyimide, polyamides, polyolefins and various other polymeric material. Preferably, outer shaft 124, inner shaft 120 and extruded shaft 128 are made from a polyethylene block amide (PEBA) copolymer. Outer shaft 124, inner shaft 120 and extruded shaft 128 are bonded together by an adhesive bond, a lap joint thermal compression bond, laser welding or ultrasonic welding or another method of bonding these thermoplastic materials together. Outer shaft 124 and inner shaft 120 may be extruded, molded or formed in another process known in the art for producing tubing used in a medical device.
As seen in
One skilled in the art can appreciate that in an alternate embodiment a guidewire lumen may be arcuate shaped while an inflation lumen is generally circular. However, it is easier to track a guidewire through a circular shaped guidewire lumen rather than an arcuate shaped one. Inflation lumen 132 functions to fluidly communicate an inflation fluid with a balloon (not shown) at its distal end, so it may be of any shape, provided that enough volume of fluid can flow therethrough to inflate the balloon.
A side-by-side lumen arrangement, such as that shown in
A RX catheter has a single lumen proximal shaft, because it has a guidewire lumen only at a very distal portion of its catheter shaft 100. In a RX catheter, the cross-section shown in
One skilled in the art can appreciate how the transition section and various transition means of the present invention, described in detail below, may be suitable for a fixed wire, OTW, RX or MX catheter type.
In an embodiment of the present invention, proximal shaft 102 is reinforced with a reinforcing means. A reinforcing means provides proximal shaft 102 with increased pushability. In other words, the reinforcing means makes the proximal shaft 102 stiffer, so that a user can control the catheter while it traverses the tortuous pathways of the body lumen from a proximal position. In one embodiment, a reinforcing means is used along an entire length of the proximal shaft 102.
In conventional catheters, reinforcing means may be a thin metal tube, such as a stainless steel hypotube, inserted into a guidewire lumen or inflation lumen in order to reinforce the proximal shaft. An MX catheter design, however, is not suitable for having a hypotube inserted within guidewire lumen 230 because the guidewire must be able to escape out of longitudinal cut 134 made between the guidewire lumen and exterior surface 129 of extruded shaft 128 as shown in
In another embodiment, seen in
In
As seen in to
In a conventional catheter shaft, a transition means may be created by spiral cutting the reinforcing means. However, since the reinforcing means in this case is not a circular hypotube, the present invention provides transition means alternative to spiral cutting a reinforcing means.
In
Spiral helix 140 provides a gradual increase in flexibility by having the pitch of the coils closer together at proximal end 108 and further apart at distal end 116 of transition section 106. Further, moving distally along spiral helix 140 the windings become farther apart. Where the windings of the coil are closer together, the spiral helix 140 has less movement, thus making the transition section 106 stiffer. However, where the coils are farther apart, the spiral helix 140 has more movement and more flexibility. Therefore, the spiral helix 140 provides a gradual transition in flexibility along transition section 106. In addition, spiral helix 140 may be of any length and the pitch may be altered such that a desired flexibility occurs at a particular location along transition section 106.
In an alternate embodiment, extruded shaft 128 may extend into transition section 106 without reinforcing means 135. Thus, transition means 114 may be disposed in outer surface 124 in a location where extruded shaft 128 and outer shaft 124 overlap. Alternatively, spiral helix 140 may be extruded into extruded shaft 128 at a position distal to the distal end 138 of reinforcing means 135.
However,
Alternatively, spiral helix 540 may be fully or partially free-floating along outer surface 544 of outer shaft 124. As such only a portion or an end of spiral helix 540 would be bonded to outer surface 544 of outer shaft 124. A fully or partially free-floating spiral helix 540 may provide greater flexibility for transition section 106, but may cause greater friction against the walls of a body lumen when inserted therein. Alternatively, spiral helix 540 may be placed between outer surface 544 and a thin coating or covering, such as a layer of polyolefin, polyimide or polyamide, to reduce friction when moving through a body lumen and to hold spiral helix 540 in place.
Spiral helix 540 may vary in pitch (i.e. distance between adjacent windings) from a proximal end 548 to a distal end 516. In particular, near the proximal end 548, spiral helix 540 has a tight pitch, wherein the windings are close together. At the distal end 516, spiral helix 540 has a looser pitch, wherein the windings are farther apart. Thus, from proximal end 548 to distal end 516, the flexibility of spiral helix 540 increases with an increase in the pitch of the coils, providing transition section 106 with a gradual increase in flexibility.
Spiral helix 740 may be bonded at a proximal end 748 to proximal shaft 702. If so, a distal end 716 of spiral helix 740 may be free-floating inside outer shaft 724. Alternatively, spiral helix 740 may be bonded to an interior surface 750 of outer shaft 724 at one or more locations or along the entire length of spiral helix 740. For example, the distal end 716 of the spiral helix 740 may be bonded to the outer shaft 724, and the proximal end 748 may be free-floating. Spiral helix 740 also may be located between outer shaft 724 and a coating or covering used to keep spiral helix 740 in position and to isolate spiral helix 740 from the inflation fluid flow. In yet another embodiment, a spiral helix may be used that has smaller outer diameter than the spiral helix 740 shown in
As discussed above, from proximal end 748 to distal end 716, the flexibility of spiral helix 740 increases with an increase in the pitch between the windings, providing transition section 706 with a gradual increase in flexibility.
Again, a spiral helix that is free floating will provide the greatest flexibility. However, spiral helix 740 of
If a catheter shaft of the previously described embodiments, such as catheter shaft 100 as shown in
With reference to
The shape and thickness of reinforcing means 935 may be changed in a variety of ways along the reduced portion 940 of reinforcing means 935 in order to achieve the desired flexibility at any location along the length of transition section 906. For example, if reinforcing means 935 is a rod or a metal plate, the rod or metal plate may be made thinner and more flexible at a distal end than at the proximal end where it is used as a reinforcing means.
Alternatively, the properties of reinforcing means 935 may be altered in portion 940, without changing the physical dimensions of the reinforcing means 935. For example, reinforcing means 935 may be made from a thermoplastic polymer having a particular stiffness in proximal shaft 902. However, in transition section 906 the properties of that polymer can be chemically altered to provide a gradual increase in flexibility along transition section 906. For example, transition section 906 may comprise two materials having different stiffness compositions, such that the concentration of each material (i.e., the percent composition) changes along the length of transition section 906 to provided different characteristics. Further, chemical processing, such as cross-linking, may also change the properties along transition section 906.
The embodiment of
U-shaped sleeve 1240 may be bonded to the outer surface 1229 of extruded shaft 1228 at any location or along the entire length of U-shaped sleeve 1240 by adhesive bonding, heat bonding, laser bonding or another type of bonding. Similarly to that of a spiral helix, a free-floating U-shaped sleeve 1240 may provide greater flexibility for transition section 1206, but will likely cause greater friction against the walls of a body lumen when inserted therein. U-shaped sleeve 1240 may be place between outer surface 1229 and a thin coating or covering, such as a layer of polyolefin or polyimide, to reduce friction when moving through a body lumen and to hold U-shaped sleeve 1240 in place. Alternatively, U-shaped sleeve 1240 may be extruded into extruded shaft 1228.
U-shaped sleeve 1240 may be formed from a ribbon or a wire. Alternatively, U-shaped sleeve 1240 may be made from a thermoplastic polymer having sufficient strength to provide support to transition section 1206. Preferably, U-shaped sleeve 1240 is a wire ribbon. As shown in
While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that they have been presented by way of example only, and not limitation, and various changes in form and details can be made therein without departing from the spirit and scope of the invention.
Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents. Additionally, all references cited herein, including issued U.S. patents, or any other references, are each entirely incorporated by reference herein, including all data, tables, figures, and text presented in the cited references.
The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art (including the contents of the references cited herein), readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance presented herein, in combination with the knowledge of one of ordinary skill in the art.