The present disclosure relates generally to small appliances, and more particularly to electric can openers.
Electric can openers are a common household appliance and are capable of removing the top off a metal can. There are two main types of electric can openers—traditional countertop can openers and walk-and-cut can openers. Both types of electric can openers cut the lid away from the inside of the can. As seen in
Countertop can openers have a relatively tall housing to enable cans of a variety of heights to be opened. In this regard, typical countertop can openers are able to open most common can sizes. However, typical countertop can openers are not tall enough to open all can sizes (such as #10 cans) as most consumers do not want to have a can opener that is tall enough to open as cans as such extra tall can openers would be unsightly and are less regularly needed.
Walk-and-cut can openers are smaller, battery-powered devices that are able to open any size can because walk-and-cut can openers sit on top of the can and rotate about the can during operation. As seen in
It has heretofore not been discovered how to create an electric can opener that provides a reasonably compact form factor, that is able to open any size can, and that seldom (if ever) needs to have batteries replaced. The electric can opener of the following disclosure overcomes at least one of the above-described disadvantages of conventional electric can openers.
A transitional electric can opener is disclosed herein. In one embodiment of the subject device, an electric can opener comprises an upper opening portion and lower base portion. The upper opening portion and the lower base portion are selectively attachable to and separable from each other. The upper opening portion and the lower base portion are operable as an upright countertop can opener when attached, and the upper cutting portion is operable as a walk-and-cut can opener when separated from the lower base portion.
The upper opening portion may comprise a motor and one or more batteries to selectively power the motor. The lower base portion may selectively provide electrical power to the upper opening portion to charge the one or more batteries. The lower base portion may selectively provide electrical power to the upper opening portion via corresponding electrical contacts in the upper opening portion and in the lower base portion. The lower base portion may comprise an AC power cord and an AC-to-DC converter to provide DC electrical power to the upper opening portion.
The electric can opener may further comprise one or more latches for selectively securing the upper opening portion to the lower base portion.
In alternative embodiments of the present disclosure, an electric can opener comprises an upper opening portion and an upright base. The upper opening portion comprises a motor, one or more batteries to power the motor, a drive wheel, and a cutting blade. The upper opening portion is selectively attachable to and separable from a top end of the upright base.
The upper opening portion and the upright base may be operable as an upright countertop electric can opener when attached, and the upper cutting portion may be operable as an electric walk-and-cut can opener when separated from the upright base.
The upright base may selectively provide electrical power to the upper opening portion to charge the one or more batteries. The upright base may selectively provide electrical power to the upper opening portion via corresponding electrical contacts in the upper opening portion and in the upright base. The upright base may comprise an AC power cord and an AC-to-DC converter to selectively provide DC electrical power to the upper opening portion.
The electric can opener may further comprise one or more latches for selectively securing the upper opening portion to the upright base.
Other alternative embodiments of the invention comprise a method of opening different sized cans. The method comprises (a) attaching an upper opening portion of an electric can opener to an upright base, the upper opening portion comprising an activation handle, a motor, one or more batteries to power the motor when the activation handle is moved to an activation position, a drive wheel, and a cutting blade; (b) attaching a first sized can to the upper opening portion; (c) moving the activation handle to the activation position; (d) removing the first sized can from the upper opening portion; (e) separating the upper opening portion from the upright base; (f) attaching the upper opening portion to a second sized can, the second sized can having a different size than the first sized can; (g) moving the activation handle to the activation position; and (h) removing the upper opening portion from the second sized can.
The upright base may provide electrical power to the upper opening portion to charge the one or more batteries when the upper opening portion is attached to the upright base. The upright base may provide electrical power to the upper opening portion via corresponding electrical contacts in the upper opening portion and in the upright base.
The upright base portion may comprise (a) one or more latches selectively engageable with corresponding latch holes in the upper opening portion for selectively securing the upper opening portion to the upright base and (b) a detach button for moving the one or more latches from a latching position to an unlatching position. The method may further comprise depressing the detach button before separating the upper opening portion from the upright base.
The foregoing summary, as well as the following detailed description of the disclosure, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the disclosure, there are shown in the drawings embodiments which are presently preferred. It should be understood, however, that the disclosure is not limited to the precise arrangements and instrumentalities shown. In the drawings:
Certain terminology is used in the following description for convenience only and is not limiting. The words “lower,” “bottom,” “upper,” and “top” designate directions in the drawings to which reference is made. The words “inwardly,” “outwardly,” “upwardly” and “downwardly” refer to directions toward and away from, respectively, the geometric center of the device, and designated parts thereof, in accordance with the present disclosure. Unless specifically set forth herein, the terms “a,” “an” and “the” are not limited to one element, but instead should be read as meaning “at least one.” The terminology includes the words noted above, derivatives thereof and words of similar import.
Embodiments of the present disclosure comprise an electric can opener having selectively separable upper and lower housing portions. When the upper and lower housing portions are engaged, the electric can opener of embodiments of the present disclosure looks and functions like a conventional countertop electric can opener. However, when the upper housing portion is separated from the lower housing portion, the upper housing portion looks and operates like a walk-and-cut can opener. In this regard, the electric can opener of embodiments of the present disclosure may be used to open any size can. The electric can opener of embodiments of the invention may be termed a transitional electric can opener, as the device is capable of transitioning between a countertop can opener and a walk-and-cut can opener.
Referring to the drawings in detail, wherein like numerals indicate like elements throughout,
As illustrated in
The lower housing portion 52b has a flat, relatively wide bottom 64 such that the lower housing portion 52b is adapted to sit on a countertop or other flat surface and support the upper housing portion 52a at a suitable height for opening a desired number of different can sizes (but typically not all can sizes) when functioning as a countertop can opener. Because the electric motor 96 and battery(ies) 94 must be in the upper housing portion thereby increasing the mass of the upper housing portion, additional mass (not illustrated) may be added to the lower housing portion to provide stability to the device when the upper and lower housing portions are joined.
Because the can is held and rotated by the upper housing portion (when the upper and lower housing portions are joined), the upper and lower housing portions should be securely (but removably) attachable to each other to prevent the housing portions from unintentionally detaching from each other. Any suitable mechanical attachment mechanism may be used to securely but removably attach the upper and lower housing portions, such as a sliding latch, one or more clips, or the like. Alternatively, it may be possible to use a friction or compression fit between the upper and lower housing portions.
The figures illustrate one possible attachment mechanism for selectively attaching and detaching the upper and lower housing portions 52, 52b. The upper housing portion 52a has a rounded bottom 70 that is selectively received relatively snugly into a cavity 80 at the top end of the lower housing portion 52b. To help ensure proper alignment between the upper and lower housing portions 52, 52b and to help prevent lateral movement between the upper and lower housing portions, one or more mating pins 86 (four are illustrated, but more or fewer may be used) may project upward from a floor 82 of the cavity 80 of the lower housing portion 52b. When the upper and lower housing portions 52, 52b are selectively attached, the mating pins 86 are received by corresponding mating holes 76 defined in a flat floor 72 of the upper housing portion 52a.
To hold the upper and lower housing portions 52, 52b together, one or more latches 84 (three are illustrated, but more or fewer may be used) may project upward through holes 90 defined in the floor 82 of the cavity 80 of the lower housing portion 52b. The holes 90 are larger than the latches 84 to enable lateral (front-back) movement of the latches when attaching and detaching the upper and lower housing portions 52, 52b. The latches 84 each have a lateral projection at the top to enable each latch 84 to selectively engage a corresponding hole 74 defined in the flat floor 72 of the upper housing portion 52a. The latches 84 move in unison toward the front of the device when a user depresses a detach button 68 on the back side of the lower housing portion 52b (the directional movement of the latches and the location of the detach button may vary) to disengage the latches 84 and enable the upper and lower housing portions to be detached. A spring 92 or similar biasing mechanism biases the latches 84 toward the rear of the device into the positions in which the latches 84 engage the corresponding holes 74. The top ends of each latch 84 may be rounded/angled as shown such that pushing the upper and lower housing portions 52, 52b together forces the latches 84 forward to enable the upper and lower housing portions to fully mate. In this regard, the detach button 68 typically does not need to be depressed to enable the upper and lower housing portions 52, 52b to be attached.
As the motor is powered via one or more batteries contained within the upper housing portion 52a, it may be desirable to provide the ability to charge the batteries. In this regard, the upper and lower housing portions 52a, 52b may contain the necessary components to charge the batteries when the upper and lower housing portions are attached to each other. The lower housing portion 52b may comprise a power cord that may be plugged into an AC household electrical outlet, a suitable AC-to-DC converter, and any suitable charging ports, contacts, or the like that would mate with corresponding charging ports, contacts, or the like on the upper housing portion 52a when the upper and lower housing portions are attached to each other. Any suitable charging mechanism may be used to enable the batteries in the upper housing portion 52a to charge when the upper and lower housing portions are attached to each other. For example, the lower housing portion 52b may have a male charging connector that engages a female charging port on the upper housing portion 52b (or vice versa). As another example, the upper and lower housing portions may have corresponding magnetic inductance coils to enable wireless charging when the upper and lower housing portions are attached to each other. As yet another example, the upper and lower housing portions may have corresponding open charging contacts (which may be spring loaded on one or both of the upper and lower housing portions) that come in contact when the upper and lower housing portions are attached to each other. Optionally, the charging connection between the upper and lower housing portions may be integrated with the mechanical attachment mechanism used to securely attach the upper and lower housing portions.
As illustrated in the block diagram of
It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this disclosure is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present disclosure as defined by the appended claims.
This application is a non-provisional of and claims priority to U.S. Provisional Patent Application Ser. No. 62/667,739, filed May 7, 2018, the contents of which are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4561182 | Yamamoto | Dec 1985 | A |
4663849 | Nickelson | May 1987 | A |
5313708 | Edwards | May 1994 | A |
5664333 | Hardman | Sep 1997 | A |
Number | Date | Country | |
---|---|---|---|
20190352159 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62667739 | May 2018 | US |