The present application is related in some aspects to commonly owned and co-pending application entitled “Identification of a Service Oriented Architecture Shared Services Project”, which was filed on Nov. 24, 2008, and was assigned application Ser. No. 12/277,280, commonly owned and co-pending application entitled “Evaluating a Service Oriented Architecture Shared Services Project”, which was filed on Feb. 19, 2009, and was assigned application Ser. No. 12/388,533, commonly owned and co-pending application entitled “Selecting a Service Oriented Architecture Shared Service”, which was filed on Feb. 24, 2009, and was assigned application Ser. No. 12/391,426, commonly owned and co-pending application entitled “Designing a Service Specific Service Oriented Architecture Shared Service Solution”, which was filed on Feb. 24, 2009, and was assigned application Ser. No. 12/391,728, commonly owned and co-pending application entitled “Constructing a Service Oriented Architecture Shared Service”, which was filed on Feb. 25, 2009, and was assigned application Ser. No. 12/392,189, commonly owned and co-pending application entitled “Management of a Service Oriented Architecture Shared Service”, which was filed on Feb. 26, 2009, and was assigned application Ser. No. 12/393,110, commonly owned and co-pending application entitled “Managing Service Oriented Architecture (SOA) Shared Service Escalation”, which was filed on Feb. 24, 2009, and was assigned application Ser. No. 12/391,362, the entire contents of which are herein incorporated by reference.
This invention relates generally to lifecycle management and more specifically to the management of SOA shared services.
In the past, software architectures have attempted to deal with increasing levels of software complexity. As the level of complexity continues to increase, traditional architectures are reaching the limit of their ability to deal with various problems. At the same time, traditional needs of information technology (IT) organizations persist. IT organizations need to respond quickly to new requirements of the business, while continuing to reduce the cost of IT to the business by absorbing and integrating new business partners, new business sets, etc.
Current IT lifecycle processes are configured to managing self-contained and siloed solutions. However, as businesses transition to service oriented architectures (SOA), traditional IT governance methods are inadequate at managing SOA shared services during their entire lifecycle. SOA is not a self-contained and siloed solution, rather it's a decomposition of solutions delivered as a set of shared services. It is these SOA shared services that require a new lifecycle management system which takes into consideration multiple new processes that are not available or part of existing IT governance systems.
In one embodiment, there is a method for transitioning to management of a service oriented architecture (SOA) shared service. In this embodiment, the method comprises: providing a SOA shared service developed as part of a SOA shared services project; and planning a transition from development of the SOA shared service to management of the SOA shared service.
In a second embodiment, there is a system for transitioning to management of a service oriented architecture (SOA) shared service. In this embodiment, the system comprises at least one processing unit, and memory operably associated with the at least one processing unit. A service transition tool is storable in memory and executable by the at least one processing unit. The service transition tool comprises: a project component configured to provide a SOA shared service developed as part of a SOA shared services project; and a planning component configured to plan a transition from development of the SOA shared service to management of the SOA shared service.
In a third embodiment, there is a computer-readable medium storing computer instructions, which when executed, enables a computer system to provide a transition to management of a service oriented architecture (SOA) shared service, the computer instructions comprising: providing a SOA shared service developed as part of a SOA shared services project; and planning a transition from development of the SOA shared service to management of the SOA shared service.
In a fourth embodiment, there is a method for deploying a service transition tool for use in a computer system that provides transition to management of a service oriented architecture (SOA) shared service. In this embodiment, a computer infrastructure is provided and is operable to: provide a SOA shared service developed as part of a SOA shared services project; and plan a transition from development of the SOA shared service to management of the SOA shared service.
The drawings are not necessarily to scale. The drawings are merely schematic representations, not intended to portray specific parameters of the invention. The drawings are intended to depict only typical embodiments of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements.
Embodiments of this invention are directed to transitioning to management of a service oriented architecture (SOA) shared service. In these embodiments, a service transition tool provides this capability. Specifically, the service transition tool comprises a project component configured to provide a SOA shared service developed as part of a SOA shared services project; and a planning component configured to plan a transition from development of the SOA shared service to management of the SOA shared service. The service transition tool transitions SOA shared services that are developed in a construction phase to an operations group responsible for ongoing SOA shared service management.
Computer system 104 is intended to represent any type of computer system that may be implemented in deploying/realizing the teachings recited herein. In this particular example, computer system 104 represents an illustrative system for transitioning to management of a SOA shared service. It should be understood that any other computers implemented under the present invention may have different components/software, but will perform similar functions. As shown, computer system 104 includes a processing unit 106, memory 108 for storing a service transition tool 153, a bus 110, and device interfaces 112.
Processing unit 106 collects and routes signals representing outputs from external devices 115 (e.g., a keyboard, a pointing device, a display, a graphical user interface, etc.) to service transition tool 153. The signals can be transmitted over a LAN and/or a WAN (e.g., T1, T3, 56 kb, X.25), broadband connections (ISDN, Frame Relay, ATM), wireless links (802.11, Bluetooth, etc.), and so on. In some embodiments, the signals may be encrypted using, for example, trusted key-pair encryption. Different external devices may transmit information using different communication pathways, such as Ethernet or wireless networks, direct serial or parallel connections, USB, Firewire®, Bluetooth®, or other proprietary interfaces. (Firewire is a registered trademark of Apple Computer, Inc. Bluetooth is a registered trademark of Bluetooth Special Interest Group (SIG)).
In general, processing unit 106 executes computer program code, such as program code for operating service transition tool 153, which is stored in memory 108 and/or storage system 116. While executing computer program code, processing unit 106 can read and/or write data to/from memory 108, storage system 116, and a services registry 117. Services registry 117 stores a plurality of services and associated metadata, as well as rules against which the metadata is compared to locate and store shared services. Storage systems 116 and services registry 117 can include VCRs, DVRs, RAID arrays, USB hard drives, optical disk recorders, flash storage devices, or any other similar storage device. Although not shown, computer system 104 could also include I/O interfaces that communicate with one or more external devices 115 that enable a user to interact with computer system 104.
Implementation 100 and service transition tool 153 operate within a broader SOA services lifecycle management process (SLMP) 130, shown in
SOA SLMP 130 of the present invention consists of the following distinct processes and associated methodologies:
Each of the above processes is a complete methodology that can be implemented independently since they define key stakeholders, affected processes, and touch-points throughout the organization. It will be appreciated that each of the above listed SOA processes are non-limiting examples of the functionality and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each process (I-VIII) may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s) of SOA SLMP 130, as shown in
Next, a transition plan is established to provide guidance and oversight as the SOA shared service transitions from the construction phase to the management phase. In one embodiment, service transition tool 153 comprises a planning component 165 configured to plan a transition from development of the SOA shared service to management of the SOA shared service. Specifically, planning component 165 is configured to establish governance criteria for the management of the SOA shared service. In one embodiment, SOA enablement group 160 receives input to establish the governance criteria. For example, SOA enablement group 160 receives information regarding SOA governance compliance (e.g., architecture and design compliance), transition plan validation requirements, services portfolio and services policies, service transition infrastructure needs, and infrastructure impact analysis of service transition with existing services and infrastructure.
From this input, a series of benchmarks or maintenance guidelines may be established by SOA enablement group 160 to provide future maintenance/management of the SOA shared service. This may include any number of mechanisms, rubrics, or tools necessary for ongoing evaluation and management of the SOA shared service. Once established, planning component 165 is configured to provide the governance criteria for the management of the SOA shared services to an operations group 170 responsible for ongoing maintenance of the SOA shared service. Operations group 170 will be responsible for carrying out the maintenance/management criteria established by SOA enablement group 160. It will be appreciated that operations group 170 described herein may represent a committee or group of individuals within an organization, or may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the ongoing maintenance.
In one embodiment, service transition tool 153 further comprises a review component 175 configured to review the SOA shared service after development. Based on the review, it may be necessary to plan additional SOA shared services, as well as plan the creation and support of additional infrastructure to support those SOA shared services. For example, not all business requirements can be met through a set of services in a particular SOA shared services project. Therefore, review component 175 reviews each SOA shared service that is transitioned from development to management, and generates a gap analysis report, which identifies “gaps” in the SOA shared service. These gaps may arise in a number of situations including, but not limited to: multiple instances of a SOA shared service deployed on a distributed enterprise service bus (ESB), service deployments requiring multiple end-points because of additional requirements (e.g., varying service level agreements, consumer groups, etc.), or multiple replicated environments (e.g., user acceptance test (UAT), system and integration test, and production). Review component 175 analyzes the gap analysis report and provides business and infrastructure requirements necessary to plan additional SOA shared services to address these gaps.
Referring now to
It will be appreciated that SOA SLMP flow 180 of
Further, it can be appreciated that the methodologies disclosed herein can be used within a computer system to provide transition to management of a SOA shared service, as shown in
The exemplary computer system 104 may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, people, components, logic, data structures, and so on that perform particular tasks or implements particular abstract data types. Exemplary computer system 104 may be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.
Furthermore, an implementation of exemplary computer system 104 may be stored on or transmitted across some form of computer readable media. Computer readable media can be any available media that can be accessed by a computer. By way of example, and not limitation, computer readable media may comprise “computer storage media” and “communications media.”
“Computer storage media” include volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules, or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computer.
“Communication media” typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as carrier wave or other transport mechanism. Communication media also includes any information delivery media.
The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media. Combinations of any of the above are also included within the scope of computer readable media.
It is apparent that there has been provided with this invention an approach for transitioning to management of a SOA shared service. While the invention has been particularly shown and described in conjunction with a preferred embodiment thereof, it will be appreciated that variations and modifications will occur to those skilled in the art. Therefore, it is to be understood that the appended claims are intended to cover all such modifications and changes that fall within the true spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
7584282 | Reeves et al. | Sep 2009 | B2 |
8036909 | Whitworth et al. | Oct 2011 | B2 |
8200527 | Thompson et al. | Jun 2012 | B1 |
20030084127 | Budhiraja et al. | May 2003 | A1 |
20040019500 | Ruth | Jan 2004 | A1 |
20040093381 | Hodges et al. | May 2004 | A1 |
20050188345 | Chang et al. | Aug 2005 | A1 |
20050222931 | Mamou et al. | Oct 2005 | A1 |
20050223109 | Mamou et al. | Oct 2005 | A1 |
20050256882 | Able et al. | Nov 2005 | A1 |
20060026049 | Joseph et al. | Feb 2006 | A1 |
20060059253 | Goodman et al. | Mar 2006 | A1 |
20060069995 | Thompson et al. | Mar 2006 | A1 |
20060111921 | Chang et al. | May 2006 | A1 |
20060129992 | Oberholtzer et al. | Jun 2006 | A1 |
20060235733 | Marks | Oct 2006 | A1 |
20070022404 | Zhang et al. | Jan 2007 | A1 |
20070043724 | Senan et al. | Feb 2007 | A1 |
20070150480 | Hwang et al. | Jun 2007 | A1 |
20070220370 | Branda et al. | Sep 2007 | A1 |
20070288275 | Kumar | Dec 2007 | A1 |
20080028365 | Erl | Jan 2008 | A1 |
20080066048 | Hafermann et al. | Mar 2008 | A1 |
20080077652 | Grant et al. | Mar 2008 | A1 |
20080126390 | Day et al. | May 2008 | A1 |
20080126406 | Endabetla et al. | May 2008 | A1 |
20080140857 | Conner et al. | Jun 2008 | A1 |
20080163253 | Massmann et al. | Jul 2008 | A1 |
20080250386 | Erl | Oct 2008 | A1 |
20080282219 | Seetharaman et al. | Nov 2008 | A1 |
20080288944 | Coqueret et al. | Nov 2008 | A1 |
20090055888 | Little | Feb 2009 | A1 |
20090089078 | Bursey | Apr 2009 | A1 |
20090112646 | Bruce et al. | Apr 2009 | A1 |
20090125796 | Day et al. | May 2009 | A1 |
20090132708 | Hayward | May 2009 | A1 |
20090204660 | Chappell | Aug 2009 | A1 |
20090210499 | Upadhyayula et al. | Aug 2009 | A1 |
20100057835 | Little | Mar 2010 | A1 |
20100217633 | Channabasavaiah et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
2006099162 | Apr 2006 | JP |
2008011122 | Jan 2008 | WO |
Entry |
---|
Gu et al., “A stakeholder-driven Service Life Cycle Model for SOA”, IW-SOSWE '07, Sep. 3, 2007, 7 pages. |
Papazoglou et al., “Service oriented architectures: approaches, technologies and research issues”, The VLDB Journal (2007), 16, pp. 389-415. |
Gewald et al., “A Governance Model for Managing Outsourcing Partnerships”, Proceedings of the 39th Hawaii International Conference on System Sciences, 2006, 9 pages. |
U.S. Appl. No. 12/391,362, Office Action, Jun. 16, 2011, 51 pages. |
U.S. Appl. No. 12/391,362, Office Action, Apr. 16, 2014, 32 pages. |
U.S. Appl. No. 12/391,362, Office Action, Sep. 12, 2011, 16 pages. |
U.S. Appl. No. 12/393,110, Office Action, Nov. 8, 2011, 10 pages. |
U.S. Appl. No. 12/393,110, Notice of Allowance, Apr. 3, 2012, 9 pages. |
U.S. Appl. No. 12/392,189, Office Action, Apr. 26, 2013, 29 pages. |
U.S. Appl. No. 12/392,189, Office Action, Feb. 24, 2012, 47 pages. |
U.S. Appl. No. 12/392,189, Office Action, Sep. 11, 2012, 22 pages. |
U.S. Appl. No. 12/391,728, Office Action, Mar. 1, 2012, 15 pages. |
U.S. Appl. No. 12/391,728, Notice of Allowance, Oct. 15, 2012, 6 pages. |
U.S. Appl. No. 12/391,728, Office Action, Jul. 16, 2012, 14 pages. |
U.S. Appl. No. 12/391,728, Office Action, Oct. 27, 2011, 11 pages. |
U.S. Appl. No. 12/391,426, Office Action, Apr. 27, 2012, 7 pages. |
U.S. Appl. No. 12/391,728, Notice of Allowance, Nov. 8, 2012, 16 pages. |
U.S. Appl. No. 12/388,533, Office Action, Mar. 17, 2014, 30 pages. |
U.S. Appl. No. 12/388,533, Office Action, Jul. 11, 2011, 19 pages. |
U.S. Appl. No. 12/388,533, Office Action, Oct. 24, 2013, 19 pages. |
U.S. Appl. No. 12/388,533, Office Action, Aug. 12, 2011, 16 pages. |
U.S. Appl. No. 12/277,280, Office Action, Jul. 25, 2014, 44 pages. |
U.S. Appl. No. 12/277,280, Office Action, Jan. 16, 2014, 36 pages. |
U.S. Appl. No. 12/277,280, Office Action, Jun. 14, 2011, 12 pages. |
U.S. Appl. No. 12/277,280, Office Action, May 5, 2011, 13 pages. |
U.S. Appl. No. 12/277,280, Office Action, Sep. 13, 2011, 18 pages. |
U.S. Appl. No. 12/392,189, Office Action, Aug. 14, 2014, 33 pages. |
Arsanjani et al., “SOMA: A Method for Developing Service-Oriented Solutions”, IBM Systems J., vol. 47, No. 3., pp. 377-396, 2008. |
Thomas L. Mansfield, USPTO Office Action, U.S. Appl. No. 12/391,362, Notification Date Oct. 22, 2014, 27 pages. |
Number | Date | Country | |
---|---|---|---|
20100217634 A1 | Aug 2010 | US |