1. Field of the Invention
This invention relates to a method for coupling lightguides to fiber optic transmission lines.
2. Description of the Related Art
In the electro-optic or photonics industry, it is frequently necessary to couple lightguides with fiber optic transmission lines, e.g., when coupling an optical component on a circuit board to a light pipe. A major problem when coupling lightguides to fiber optic transmission lines is that typically lightguides have a high “refractive index difference” (Δn) percentage between the core and the cladding as compared to the Δn of fiber optic transmission lines. A typical on-chip or on-circuit board planar lightguide has a Δn of 4-5%, while a typical fiber optic transmission line has a Δn of approximately 0.5-2%. This significant drop of Δn between the lightguide and the transmission line causes problem, e.g., reflection resulting in a reduction in the amount of light that can be transmitted. To solve this problem, optical coupling techniques have been used to ease the transition from this low-to-high or high-to-low Δn's, for example, lenses are used to focus (or spread) the light, making the transition more gradual. While functioning adequately, prior art techniques are custom solutions that are costly and that take up significant space on a circuit board or other location where space is at a premium.
In accordance with the present invention, the index of refraction in doped and/or “doped-and-poled” electro-optic polymers is controlled so that a gradual transition from a low Δn to a high Δn, or vice versa, is achieved for use in, for example, a lightguide-to-fiber transition. Multiple methods for creating this gradual transition are disclosed.
a-1c illustrate top, end, and side views, respectively, of a lightguide-to-optical-transmission-line coupler in accordance with the present invention;
a-3c illustrate top, end, and side views, respectively, of a lightguide-to-optical-transmission-line coupler in accordance with an alternative embodiment of the present invention;
a-5f illustrates the selective removal process of the embodiment of
a-6c illustrate top, end, and side views, respectively, of a coupler which has formed thereon separated poling electrodes according to another embodiment of the present invention;
a-8c illustrate a common reference electrode and common poling electrode used to sandwich a tapered doped material according to another embodiment of the present invention; and
The overall concept of the present invention is the controlled changing of the index of refraction of doped and/or doped-and-poled electro-optic polymers from one region of the polymer to the next. This control can be performed by controlling the optical chromophore doping (percentage of chromophore by weight) of the polymer and the temperature of the polymer cure. In a doped-and-poled polymer, the strength of the poling field is also a major variable, coupled with the doping percentage and, to some degree, the temperature at which the poling process takes place. Both the doping and the amount of poling can be selectively accomplished by masking and the strategic placement of poling electrodes using known techniques.
By changing gradually the index of refraction along a connection between a lightguide and a fiber optic transmission line, the sudden change in the index of refraction between the lightguide and the fiber optic transmission line is alleviated, thereby alleviating the problems associated therewith. Several embodiments are described below for performing this gradual transition.
a-1c and 2 illustrate a first embodiment of the present invention.
By providing a coupler 100 with these characteristics, a fiber optic transmission line can be coupled at the end closest to region 1 (so that the low Δn percentage of the fiber optic transmission line will be close in value to that of region 1 of the coupler 100), and the lightguide can be coupled to region 5 of coupler 100 (so that the higher Δn value of the lightguide is more closely matched to region 5 of coupler 100) thereby resulting in a gradual transition from lightguide to transmission line.
A third embodiment is illustrated in
A further embodiment is illustrated in
By virtue of the present invention, transitions between lightguides and fiber can be manufactured more cheaply and easily, and the resulting transition is smaller and less costly than those of the prior art. While the above-described embodiments describe some fundamental structures and implementation methods, it is understood that other possible combinations are possible and are covered by the pending claims. The key concept is that the index of the electro-optic polymer can be changed by doping, and changed still further by poling the doped region. With such ability to change a given polymer's index, there is no need to form complex transition structures by depositing ordinary materials of different dielectric constant and thickness. Other transitions can be made, such as vertical step-up and step-down structures, for example. With the proper choice of polymer and embedded chromophore, a reversible molecular polarization (or alignment) can be created, i.e., if the field is removed, the material reverts to its unaligned state. As the applied field increases, the index shifts in proportion to the field until full alignment (maximum Δn) is reached. Such an electrically controllable index change could be useful in directing incoming light beams to different detectors, thus producing a type of switch. Similarly, controlling index changes coupled with electro-optic interactions could also be useful in the modulation and demodulation of light beams. Many polymers exhibit this behavior when appropriately doped with optical chromophores, including polyimides and acrylics.
While there has been described herein the principles of the invention, it is to be understood by those skilled in the art that this description is made only by way of example and not as a limitation to the scope of the invention. Accordingly, it is intended by the appended claims, to cover all modifications of the invention which fall within the true spirit and scope of the invention.
This application claims the benefit of prior filed U.S. provisional Application No. 60/408,763, filed on Sep. 6, 2002, incorporated fully herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/28020 | 9/8/2003 | WO | 00 | 11/16/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/023178 | 3/18/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3809732 | Chandross | Dec 1972 | A |
3953620 | Chandross | Apr 1976 | A |
4856859 | Imoto | Aug 1989 | A |
4886538 | Mahapatra | Dec 1989 | A |
5009483 | Rockwell | Apr 1991 | A |
5100589 | Ticknor | Mar 1992 | A |
5106181 | Rockwell | Apr 1992 | A |
5596671 | Rockwell | Jan 1997 | A |
5837169 | Rourke | Nov 1998 | A |
6081632 | Yoshimura | Jun 2000 | A |
6393172 | Brinkman | May 2002 | B1 |
6393186 | Deacon | May 2002 | B1 |
20030108273 | Kowalczyk et al. | Jun 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20060127031 A1 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
60408763 | Sep 2002 | US |