The present disclosure relates to devices and methods for treating spine instability, including translaminar interspinous stabilization systems and methods of using such systems for segmental stabilization of adjacent vertebrae.
Spinal instability is often attributed to undesirable excessive motion between vertebrae and can cause significant pain and morbidity. The instability may result from a number of causes, including abnormalities of the vertebrae, the intervertebral discs, the facet joints, and connective tissue around the spine. These abnormalities may arise from diseases, disorders or defects of the spine from trauma or bone degradation, such as osteoarthritis, or degenerative disc disease. When the spine becomes unstable, the vertebral column becomes misaligned and may produce micromotion between adjacent vertebrae. Vertebral misalignment and micromotion may result in wear to the vertebral bone surfaces and ultimately generate severe pain. These conditions are often chronic and create progressive problems for the sufferer.
Known treatments for spinal instability can include long-term medical management or surgery. Medical management is generally directed at controlling the symptoms, such as pain reduction, rather than correcting the underlying problem. For some patients, this may require chronic use of pain medications, which may alter patient mental state or cause other negative side effects. Surgical treatment typically includes decompression procedures to restore normal disc height, realign the column, and alleviate the pain.
Recently, a variety of interspinous stabilization devices have become available. These devices are typically implanted between the spinous processes of two or more adjacent vertebrae. By stabilizing the spinous processes in this way, significant stress may be taken off the intervertebral discs to prevent disease progression or to improve conditions such as spinal stenosis. In addition, vertebral motion may be controlled without severely altering the anatomy of the spine.
These devices, along with other interspinous stabilization systems, can be secured between adjacent spinous processes using a number of different mechanisms. For example, such devices can include sharp barbs or other surface projections that engage the bony surface of a spinous process. In addition, flexible ligaments or sutures can be placed around the implants and adjacent bone. In some cases, the devices may be rigidly attached to the spinous process using a bone screw or other suitable bone anchor to prevent the interspinous device from migrating or slipping out of position.
It may be desirable in some situations, such as where the spinous process is damaged, weakened, brittle or insufficient in size to serve as a bearing surface, to provide an interspinous stabilization device that can be anchored translaminarly. It is further desirable to provide an interspinous stabilization system that can be configured to provide either dynamic or rigid stability to the affected vertebral segment of the spinal column. For instance, it would be desirable to provide such a system whereby the dynamic stability allows for controlled motion of the adjacent vertebrae being affected. It would be even more desirable to provide the same system having the ability to allow for rigid, fusion-promoting securement if so desired or needed. Further still, it would be desirable to provide a system that can provide the option of either dynamic or rigid stability at different levels of the vertebral segment, while also allowing for multi-level vertebral stabilization.
The present disclosure describes translaminar interspinous stabilization systems and methods of using these systems to treat spinal instability conditions. The systems may include an interspinous, interlaminar stabilization device configured for interlaminar placement between the spinous processes of adjacent vertebrae and secured to the lamina using bone screws placed translaminarly. Also provided are methods for using such systems.
One aspect of the disclosure relates to an implantable translaminar, interspinous stabilization system. The system may comprise an implantable device for placement between two adjacent vertebrae. The device may comprise an inferior section, a superior section, and a flexible midsection extending therebetween. The device is configured to seat against the lamina between the adjacent vertebrae. A pair of lateral plates may extend from the inferior section and superior section for engaging a laminar surface of one of the vertebra. Each of the lateral plates includes an aperture for receiving a bone fastener therethrough. The system may also comprise a first bone fastener for placement through one of the pair of lateral plates and a second bone fastener for placement through another one of the pair of lateral plates for securing the device to the laminar surface of the one of the vertebra.
A second aspect of the present disclosure relates to an implantable interspinous, interlaminar stabilization system. The system can comprise an implantable device for placement between two adjacent vertebrae. The device may comprise an inferior section, a superior section, and a flexible midsection extending therebetween and configured to seat against the lamina of the vertebrae, and a pair of lateral plates for engaging a laminar surface of one of the vertebra. Each of the lateral plates may include an aperture for receiving a bone fastener. At least one screw may be provided for placement through at least one lateral plate for securing the device to the laminar surface of one of the vertebra.
A third aspect of the present disclosure relates to a method of segmental stabilization of a spine. The method may comprise selecting a vertebral level to be treated and then positioning an implantable device between two spinous processes of two vertebrae of the selected vertebral level. The implantable device may comprise an inferior section, a superior section, and a flexible midsection extending therebetween configured to seat against the lamina between the adjacent vertebrae. The implant may further include a pair of lateral plates extending from one of the inferior or superior sections, each of the lateral plates including an aperture for receiving a bone fastener therethrough and being configured to engage a laminar surface of one of the vertebrae. The implantable device can be secured by placing a bone fastener through one of the pair of lateral plates, securing the device to the laminar surface of one of the vertebra.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the disclosure and together with the description, serve to explain the principles of the disclosure.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the disclosure, as claimed. Additional features of the disclosure will be set forth in part in the description which follows or may be learned by practice of the disclosure. The features of the disclosure will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
As shown, the implantable device 22 may be formed as a spacer body. The device, or spacer body 22 may have various shapes and thicknesses, and can be produced from a variety of different materials alone or in combination. In one embodiment, the spacer body 22 may include a midsection 30 extending between an inferior section 32 and a superior section 34, as shown in
To engage the spinous processes of adjacent vertebrae, the spacer body 22 may be provided with a pair of lateral walls or brackets 36 that extend from the inferior and superior sections 32, 34, as shown in
In some embodiments, the lateral walls or plates 36 may be adjustable with respect to the spacer body 22. For example, the lateral walls 36 may be formed of a malleable material such that, after implantation, the surgeon may compress the lateral walls 36 together to reduce the gap between the lateral walls 36, thereby securely fixing the spacer body 22 to a spinous process located therein or an adjacent laminar surface. In addition, the lateral walls 36 may be spread apart to facilitate insertion. The lateral walls 36 may be compressed or spread apart, for example, using surgical pliers or forceps.
Each of the lateral walls or brackets 36 may include an aperture 42 for receiving a fixation element, such as, a bone fastener to fix the brackets 36 to the lamina. Such fastening elements can ensure that the brackets 36 lie flat and/or securely against the lamina in order to allow rigid fixation to the vertebrae. The aperture 42 can encompass a range of sizes and shapes. For example, the aperture 42 may be formed as an elongated slot as shown in
When system 20 is configured to allow some dynamic motion, it is contemplated that the apertures 42 of the implantable device 22, particularly at the level where the motion is to occur, would be configured to accommodate the movement of the screws 50. For instance, the apertures 42 may be elongated slots or other shapes to allow the heads of the screws to “rock” back and forth during motion. Further, in some embodiments, the system 20 can include only a single pair of fixation elements. For example, two bone screws 60 may be used to secure either the top or bottom level of the adjacent vertebrae. Thus, the spacer body 22 may be secured to one vertebra and not the other adjacent vertebra.
While
In some embodiments, a stiffening plug or insert 70 may be used to provide additional stiffness, particularly at the midsection 30.
As shown, the insert 70 may be configured with an opening to receive a fixation or attachment element 72, such as a screw, plug, rivet, spike, etc. The attachment element 72 may be configured for insertion through a hole 74 on the spacer body 22, as seen in
To further enhance the ability of the implantable device 22 to be secured to the surrounding bone and soft tissue, the implantable device 22 may include a number of surface modifications. For example, the spacer body 22 may include surface alterations that may facilitate tissue attachment, bonding, or fixation. These surface alterations may include teeth, barbs, beads, surface roughening, or the addition of bioactive agents to one or more sections of the device 22. For example, the device 22 may include one or more teeth or barbs 40 for securing the device 22 to bone and/or soft tissue. As shown, the teeth 40 may be located on the spacer body 22, such as on an outer surface of the inferior section 32 and/or superior section 34. Alternatively, or in addition, the barbs 40 may be located on an inner surface of the lateral walls 36. The barbs 40 may help the spacer body 22 securely engage connective tissue or a bony surface of a vertebra, such as the spinous process of the vertebra.
Additionally, the implantable device 22 may also include roughened or porous surfaces, for example, to promote bony ingrowth. The roughened or porous surfaces may enhance attachment between implant surfaces and bone. In addition, some porous surfaces may facilitate tissue ingrowth to form a biological bond between sections of the device 22 and the surrounding bone and/or soft tissue. Roughened or porous surfaces may be included on any portion of the device 22.
The surface of the device 22 may also include biologically active agents. These agents may include osteogenic factors to further facilitate bonding between components of the device 22 and the surrounding bone and/or soft tissue. Further, the device 22 may include therapeutic agents, such as antibiotics, steroids, anti-thrombotic agents, anti-inflammatory drugs, and/or analgesic agents. In one embodiment, the biologically active agent may be contained in a coating on the device. Alternatively, or in addition, the device may be porous, and the biologically active agent may be contained in the pores of the device. The biologically active agent may be, for example, bone morphogenic protein (BMP) for modulating cartilage or bone growth.
A number of biocompatible materials are suitable for forming the spacer body 22 of the present disclosure. In one embodiment, the spacer body 22 may be formed from a medical grade metal, such as titanium or a titanium alloy. The spacer body 22 may also be formed from a variety of other materials, such as stainless steel, cobalt chrome, ceramics, and/or polymeric materials, such as ultra-high molecular-weight polyethylene (UHMWPE) and polyetheretherketone (PEEK), either alone or in combination with other suitable materials.
Although the implantable device 22 is described and shown with superior and inferior lateral walls 36, the device 22 can also comprise a U-shaped implant with a single pair of lateral walls 36. Such devices may be used at the L5-S1 vertebral level. For example, the device 22 may include a single pair of lateral walls 36 configured to engage the spinous process and lamina of the L5 vertebra. Further, the device 22 may include a mechanism for securing the inferior section 32 to the sacrum. As noted above, the superior lateral walls can be secured to the L5 spinous process with translaminar screws 60, thereby limiting movement at the L5-S1 level and promoting fusion at that level.
As shown and described, the present disclosure provides interspinous stabilization systems that can be configured to provide either dynamic or rigid stability to the affected vertebral segment of the spinal column. For instance, the system may allow dynamic stability for controlled motion of the adjacent vertebrae being affected. One contemplated manner of achieving this is by adjusting or varying the type of translaminar screw being used. However, as further shown and described, the same system may also be easily converted or adapted to allow for rigid, fusion-promoting securement, if so desired or needed. This can be achieved through the manner of fixation, such as with the type of translaminar screw being used or the number of screws being used. Another manner of promoting fusion with the same system is with the use of a stiffening insert or plug, or fusion promoting material such as bone graft material or other bone growth inducing material.
As shown in
The systems 20, 120, 220 of the present disclosure allow the user great flexibility in adapting the systems to the current needs of the patient. As already mentioned, the systems can provide the option of either dynamic or rigid stability. The systems can also be adapted for different uses over time. For example, a clinician may initially use one of the systems for dynamic stability, and then over time as the patient's needs changes, the clinician can modify the existing implanted system to allow for more rigid stability, such as by inserting a stiffening plug into the device, or inserting some bone growth promoting material, or even inserting translaminar screws or a fastener to the implantable device where one was not already present. Thus, the dynamic stability of the initial system can be converted into a rigidly stable system without great effort.
It is contemplated that multiple systems 20, 120, 220 of the present disclosure may be used together for multi-level vertebral stabilization. These systems may be identical, or they may be different, and can be used at the same time or over time with the patient's changing needs. For example, system 20 may be used at one level while system 220 is used at a different level, either at the same time or at different times such as where system 220 is implanted after system 20 has already been implanted. Likewise, each of these systems 20, 120, 220 may be used with other implantable interspinous devices, such as those currently available and previously mentioned, thereby allowing ultimate flexibility and variability in terms of the combination of devices that can be used to address the patient's particular needs.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This application claims priority to U.S. Provisional Application No. 61/439,918 filed Feb. 6, 2011, and entitled “Translaminar Interspinous Stabilization System”, the contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5645599 | Samani | Jul 1997 | A |
6974478 | Reiley et al. | Dec 2005 | B2 |
7011685 | Arnin et al. | Mar 2006 | B2 |
7537613 | Arnin et al. | May 2009 | B2 |
7811322 | Arnin et al. | Oct 2010 | B2 |
7811330 | Arnin et al. | Oct 2010 | B2 |
7837711 | Bruneau et al. | Nov 2010 | B2 |
7850733 | Baynham et al. | Dec 2010 | B2 |
7922750 | Trautwein et al. | Apr 2011 | B2 |
8002801 | Carl et al. | Aug 2011 | B2 |
20030040746 | Mitchell et al. | Feb 2003 | A1 |
20040158246 | Assaker et al. | Aug 2004 | A1 |
20040162558 | Hegde et al. | Aug 2004 | A1 |
20050267579 | Reiley et al. | Dec 2005 | A1 |
20060229620 | Rothman et al. | Oct 2006 | A1 |
20060241601 | Trautwein et al. | Oct 2006 | A1 |
20060282077 | Labrom et al. | Dec 2006 | A1 |
20080045954 | Reiley et al. | Feb 2008 | A1 |
20080097440 | Reiley et al. | Apr 2008 | A1 |
20080097446 | Reiley et al. | Apr 2008 | A1 |
20080177263 | Freedman et al. | Jul 2008 | A1 |
20080228225 | Trautwein et al. | Sep 2008 | A1 |
20090270919 | Dos Reis, Jr. | Oct 2009 | A1 |
20100131008 | Overes et al. | May 2010 | A1 |
20100191287 | Bucci | Jul 2010 | A1 |
20110029020 | Gordon et al. | Feb 2011 | A1 |
20110040330 | Sheffer | Feb 2011 | A1 |
20110106163 | Hochschuler | May 2011 | A1 |
20110144693 | Black | Jun 2011 | A1 |
20110190819 | Trautwein et al. | Aug 2011 | A1 |
20110218572 | Lechmann et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
2722980 | Feb 1996 | FR |
WO 03007829 | Jan 2003 | WO |
2008067452 | Jun 2008 | WO |
2011109197 | Sep 2011 | WO |
Entry |
---|
International Search Report for PCT/US2012/023946 mailed May 7, 2012. |
Patent Examination Report No. 1 dated Aug. 19, 2015 issued in Austalian Patent Application No. 2012211951, pp. 1-3. |
Number | Date | Country | |
---|---|---|---|
20120226312 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
61439918 | Feb 2011 | US |