The application relates generally to gas turbine engines and, more particularly, to a bleed off valve (BOV) arrangements.
Conventional compressor bleed off valve (BOV) arrangements generally consists of a 360 degrees radial off take on the outer gaspath from which bleed air is extracted from the core flow and routed to the bypass air stream. Such BOV arrangements have a piston that closes off a bleed passage somewhere in-between the core gaspath and the bypass gaspath and relies on the pressure differential between these two gaspaths to draw out bleed air from the core flow. Since the sealing piston is located away from the core gaspath, the radial off take generates some pressure losses as the core flow passes under it, even when the BOV is closed.
BOVs may also be used to extract water and hail from the core gaspath when the BOV is open, thus reducing the concentration of water (referred to as Water to Air ratio—WAR) going into the—compressor, which can lead to combustor flame out when WAR get too high. However, conventional BOVs have heretofore only relied on bleed air flow to redirect the particles trajectories and that with limited success especially at low engine operating conditions, where the static pressure delta between the core gaspath and the bypass passage is not sufficient by itself to carry the hail and water particles out of the core gaspath through the bleed off passage.
In one aspect, there is provided a bleed off valve (BOV) for a gas turbine engine having a gaspath bounded by a radially outer annular wall extending about an axis of the gas turbine engine, the radially outer annular wall having a converging portion; the BOV comprising: a ring axially translatable between a retracted position in which the ring is configured to close an annular bleed off opening defined in the converging portion of the radially outer annular wall and a deployed position in which the ring is configured to protrude into the gaspath; and an actuator operatively connected to the ring to axially translate the ring between the retracted and deployed positions.
In another aspect, there is provided a gas turbine engine comprising: a compressor having a gaspath bounded by a radially outer annular wall extending about an axis of the engine, the radially outer annular wall having a converging portion; a bleed off valve (BOV) having a ring axially translatable between a retracted position in which the ring closes an annular bleed off opening defined in the converging portion of the radially outer annular wall and a deployed position in which the ring protrudes forwardly into the gaspath, and an actuator operable to axially translate the ring between the retracted and the deployed positions.
In a further aspect, there is provided a method of extracting water/hail particles and/or air from a core gaspath of a compressor of a gas turbine engine, the method comprising: displacing a ring from a retracted position in which the ring closes a corresponding annular bleed off opening defined in a converging portion of a radially outer annular wall of the core gaspath to a deployed position in which the ring protrudes axially forwardly into the core gaspath to scoop water/hail particles and/or air out of the core gaspath via the annular bleed off opening.
Reference is now made to the accompanying figures in which:
The BOV 20 is provided in a gaspath wall having a converging portion, such as the constricting conical portion 28 of the radially outer annular wall 30 of the gaspath 24, for selectively opening and closing an annular bleed off opening 32 strategically defined in the converging wall portion. The term “conical portion” is herein intended to generally refer to an annular wall geometry which converges radially inwardly in a downstream direction relative to a flow of fluid through the engine 10. The constricting geometry of the gaspath could also be generally referred to as a falling portion. As schematically illustrated in
The actuator 36 is operable to selectively axially translate the ring 34 between a retracted position (shown in solid lines in
According to the embodiment shown in
Seals 42a, 42b may be provided to minimize flow leakage through the bleed off opening 32 when the ring 34 is in its retracted position. According to the embodiment shown in
Referring back to
In contrast to conventional BOV arrangements which only rely on static pressure differences between the core gaspath and the bypass passage, it is herein proposed to use the total pressure rather than just the static pressure to drive the bleed flow. As described above, this may be achieved by deploying the ring 34 of the BOV 20 directly into the gaspath 24 to mechanically redirect or deflect the incoming flow. Indeed, extraction efficiency can be improved by mechanically scooping the incoming air, water and hail particles out of the gaspath 24. This is particularly advantageous at low power engine operating conditions where the static pressure delta between the core gaspath 24 and the bypass passage 26 is low.
As shown in
Also, by strategically positioning the BOV in the conical or constricting portion of the outer wall 30, it is possible to provide the ring 34 in the form of a single solid ring and to axially translate this single unitary piece into the gaspath 24 for mechanically interacting and extracting air, water and hail. For instance, such a single piece axially translating arrangement would not be possible on an axially extending cylindrical section of the gaspath 24. Indeed, a more mechanically complex BOV system would be required to permit the deployment of a deflecting structure into the outer boundary region of the gaspath 24. The above described embodiments take benefit of the constricting geometry of the gaspath 24 to provide for a mechanically simple, lightweight, easy to install and reliable BOV arrangement. Also, the use of a single translatable ring contributes to simplify the sealing system of the bleed off opening 32. From the foregoing, it can be appreciated that the positioning of the BOV 20 in the conical portion 28 of the radially outer wall 30 of the gaspath 24 allows for BOV designs having numerous advantages.
In use, air as well as water and hail particles can be efficiently extracted from the core gaspath 24 of the compressor 14 by displacing the ring 34 from its retracted position to its deployed position in which the ring 34 protrudes axially forwardly into the core gaspath 24 to mechanically scoop air and water/hail particles directly out of the gaspath 24 via the bleed off opening 32. The actuator 36 axially translates the ring 34 in a forward direction from the retracted position to the deployed position. The back surface of the ring 34 is used to deflect the incoming flow out of the core gaspath 24 of the compressor 14. As depicted by the flow arrows in
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. For example, while the BOV has been described as being disposed in the LP compressor section of the engine, it is understood that it could be disposed in other sections of the engine as well. Still other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3588268 | Hampton | Jun 1971 | A |
4674951 | Jourdain et al. | Jun 1987 | A |
4679982 | Bouiller et al. | Jul 1987 | A |
5845482 | Carscallen | Dec 1998 | A |
7624581 | Moniz | Dec 2009 | B2 |
7785066 | Bil et al. | Aug 2010 | B2 |
8944754 | Pichel | Feb 2015 | B2 |
20120288359 | Pichel | Nov 2012 | A1 |
20140245747 | Pritchard, Jr. | Sep 2014 | A1 |
20150027130 | LeBlanc et al. | Jan 2015 | A1 |
20150159560 | Kumar | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
19834530 | Feb 2000 | DE |
Entry |
---|
EPO, English Translation of Description DE19834530, retrieved on Oct. 10, 2017. |
Number | Date | Country | |
---|---|---|---|
20160348685 A1 | Dec 2016 | US |