The present description relates generally to an exercise device and, more particularly, it relates to an exercise device with a translating support assembly.
It can be appreciated that exercise devices have been in use for years and include devices that simulate walking or jogging such as cross country ski machines, elliptic motion machines, and pendulum motion machines. Also included are exercise devices that simulate climbing such as reciprocal stair climbers.
Elliptic motion exercise machines provide inertia that assists in direction change of the pedals, which makes the exercise smooth and comfortable. However, rigid coupling to a crank typically constrains the elliptic path to a fixed length. Therefore, the elliptic path may be too long for shorter users, or too short for tall users. Further, a running stride is typically longer than a walking stride, so a fixed stride length does not ideally simulate all weight bearing exercise activities. Therefore, typical elliptic machines cannot optimally accommodate all users. Some pendulum motion machines may allow variable stride length, but the user's feet typically follow the same arcuate path in both forward and rearward motion. Such a motion does not accurately simulate walking, striding, or jogging, where the user's feet typically lift and lower. Reciprocal stair climbers typically allow the user to simulate a stepping motion, but that motion is generally constrained to a vertically oriented arcuate path defined by a linkage mechanism. Such a motion does not accurately simulate a wide range of real world climbing activities such climbing stairs or climbing sloped terrain.
More recently, variable stride exercise devices utilizing crank systems have been developed. These devices, however, may be complex and have high manufacturing costs.
Various embodiments of the invention relate to exercise devices and methods for use thereof that employ a translating support assembly. In one example, an exercise device includes a frame with a base portion that is supported by the floor. A crank system is coupled to and supported by the frame. Right and left translating support assemblies each have a movable member, a foot support member, and guide elements. Flexible elements couple the crank system to the translating support assembly. Vertical movement of the right and left foot support members applies force to the crank system via the flexible support elements.
An example method for operating an exercise machine according to embodiments includes applying alternating forces to the right and left foot support members, rotating the crank shaft and tracing substantially closed paths with the foot support members.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
Various other objects, features and attendant advantages of the present invention will become fully appreciated as the same becomes better understood when considered in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the several views, and wherein:
Although the embodiment shown in
In this example, the crank system also includes brake/inertia device 119 coupled to crank shaft 114 through belt 115 and pulley 118. In other embodiments a brake inertia device may be coupled directly to crank shaft 114. Rotation of crank arms 112 about the axis of crank shaft 114 causes rotation of brake/inertia device 119. Brake/inertia device 119 may provide a braking force that provides resistance to the user during exercise, and/or it may provide inertia that smoothes the exercise by receiving, storing, and delivering energy during rotation. Although the embodiment shown in
The translating support assembly of
In the context of this specification, the term “member” includes a structure or link of various sizes, shapes, and forms. For example, a member may be straight, curved, or a combination of both. A member may be a single component or a combination of components coupled to one another. Arcuate motion member 130 has an upper portion 132. Upper portion 132 can be used as a handle by the user. Arcuate motion member 130 may be straight, curved, or bent. Foot support member 134 has foot plate 136 on which the user stands. Foot support member 134 may be straight, curved, or bent. Foot support member 134 is coupled to movable member 137 at coupling location 138. Coupling may be accomplished with a pivotal pin connection as shown in
As used herein, the term “coupling” or “coupled” includes a direct coupling or an indirect coupling. Movable member 137 is coupled to arcuate motion member 130 at location 139 and thereby also couples foot support member 134 to arcuate motion member 130. Coupling of movable member 137 to arcuate motion member 130 may be accomplished with shaft and bushing as shown in
As shown in
Flexible element 150 is coupled at one end to crank arm 112 at crank coupling location 117 and at its other end to frame 101 at location 143. Between its ends, flexible element 150 engages guide element 149 located on movable member 137 and guide element 148 located on foot support member 134. Guide elements 148 and 149 as shown in
Although the embodiment of
Arcuate motion member 130 may be oriented in a generally vertical position. In the context of this specification, an element is oriented in a “generally vertical” position if the element, as measured with respect to its connection points to other elements of the system considered within the range of motion for the element, tends to be closer to vertical than horizontal.
Foot support member 134 may be oriented in a generally horizontal position. In the context of this specification, an element is oriented in a “generally horizontal” position if the element, as measured with respect to its connection points to other elements of the system considered within the range of motion for the element, tends to be closer to horizontal than vertical.
During operation, the user ascends the exercise device, stands on foot plates 136, and initiates an exercising motion by placing his/her weight on one or more of foot plates 136. As the user steps downward, force is transmitted to flexible support element 150 by guide element 148. In turn, flexible element 150 causes rotation of crank shaft 114 and brake/inertia device 119. As crank shaft 114 continues to rotate, the distance between crank coupling location 117 on crank 112 and the coupling point 143 on frame 101 continuously changes. This continuous change in the distance described above results in a continuous alternating lifting and lowering motion of foot plate 136. This lifting and lowering motion simulates the lifting and lowering motion that a user's foot may undertake during walking, striding, jogging, and climbing. As each foot plate 136 continuously lifts and lowers, the user may simultaneously undertake a striding motion by applying a forward or rearward force to foot plates 136. This striding motion results in displacement of foot plates 136, foot members 134, movable members 137, and guide elements 148 and 149. The combination of displacement of the foot plates 136 by the user and the continuous lifting and lowering motion of foot plates 136 results in a substantially closed path that is traced by each foot support member 134.
During use of the machine, the path traced can be referred to as a “substantially closed path.” In other words, while it is generally rare for a user's exercise path to meet up at its exact beginning (thereby tracing a truly closed path), a user's path over time can be expected to trace a set of approximately repeated curves, resulting in a recognizable, curved path. Some paths may be egg-shaped, somewhat elliptical, saddle shaped (lower in the middle than at the ends of the horizontal extent), or the like.
The length of the path is instantaneously controlled by the user according to the amount of forward or rearward force applied to foot plates 136. If the user applies little rearward or forward force, the exercise path may be nearly vertical in orientation with little or no horizontal amplitude. Alternately, if the user applies significant rearward or forward force, the exercise path may have significant horizontal amplitude. Alternating weight transfer during exercise from one foot plate to the opposing foot plate transmits force to the crank 112 which sustains rotation of crank 112, crank shaft 114, and brake/inertia device 119.
Track section 104 may be curved as shown in
Some embodiments include cross-coupling. For instance, in this example, the right and left side translating support assemblies are cross coupled through the left and right arcuate motion members so that the right and left foot plates 136 move in opposition. Elements 180 are coupled to arcuate motion members 130. Thus, each of right and left elements 180 moves in unison with each right and left arcuate motion member 130, respectively. Connectors 182 couple right and left elements 180 to the right and left sides of rocker arm 184. Rocker arm 184 is pivotally coupled at its mid portion to frame 101 at location 186. As arcuate motion members 130 move, connectors 182 cause a rocking motion of rocker arm 184. This rocking motion causes right and left arcuate motion members 130 to move in opposition thus cross coupling the right and left pivotal linkage assemblies.
Additional braking systems may be included in the exercise device to resist horizontal movement of the foot plates. The embodiment of
Frame 101 includes a basic supporting framework including base 102, upper stalk 103, and vertical support 105. The crank system includes crank arms 112 attached to crank shaft 114. Crank shaft 114 is supported by frame 101 so that crank shaft 114 rotates about its longitudinal axis. One or both of crank arms 112 may include a counterweight, such as weight 113.
The crank system may also include brake/inertia device, such as device 119, coupled to crank shaft 114 through belt 115 and pulley 118. Alternately, a brake inertia device may be coupled directly to crank shaft 114. Rotation of crank arms 112 about the axis of crank shaft 114 causes rotation of brake/inertia device 119. Brake/inertia device 119 may provide a braking force that provides resistance to the user during exercise, and/or it may provide inertia that smoothes the exercise by receiving, storing, and delivering energy during rotation. The crank system of the embodiment of
The translating support assembly of this embodiment includes foot support member 134, movable member 137, arcuate motion member 130, support link 131, and guide elements 148 and 149. Arcuate motion member 130 has an upper portion 132. Upper portion 132 can be used as a handle by the user. Arcuate motion member 130 may be straight, curved, or bent. Foot support member 134 has foot plate 136 on which the user stands. Foot support member 134 may be straight, curved, or bent. Foot support member 134 is coupled to arcuate motion member 130 at coupling location 138. Movable member 137 is coupled to arcuate motion member 130 at location 139. Moveable member 137 is coupled to support link 131 at location 135. Support link 131 is coupled to vertical support 105 at location 145. Movable member 137 may be straight, curved, or bent. Arcuate motion member 130 is coupled to frame 101 at coupling location 140. Guide element 148 is coupled to foot support member 134 and guide element 149 is coupled to movable member 137.
Flexible element 150 is coupled at one end to upper stalk 103 at location 143 and at its other end to vertical support 105 at location 116. Between its ends, flexible element 150 engages guide element 149 located on movable member 137, guide element 148 located on foot member 134, and guide element 111 located on crank 112. Note that the use of guide element 111 results in coupling of the flexible element to crank 112 and that this coupling method can be used in other embodiments of the invention.
During operation, the user ascends the exercise device, stands on foot plates 136, and initiates an exercising motion by placing his/her weight on one or more of foot plates 136. As the user steps downward, force is transmitted to flexible support element 150 by guide element 148. In turn, flexible element 150 causes rotation of crank shaft 114 and brake/inertia device 119. As crank shaft 114 continues to rotate, the distance between the crank system coupling location (i.e., the portion of guide element 111 that engages flexible element 150) and frame coupling point 143 continuously changes. This continuous change in the distance described above results in a continuous alternating lifting and lowering motion of foot plate 136. This lifting and lowering motion simulates the lifting and lowering motion that a user's foot may undertake during walking, striding, jogging, and climbing. As each foot plate 136 continuously lifts and lowers, the user may simultaneously undertake a striding motion by applying a forward or rearward force to foot plates 136. This striding motion results in displacement of foot plates 136, foot members 134, movable members 137, and guide elements 148 and 149. The combination of displacement of the foot plates 136 by the user and the continuously lifting and lowering motion of foot plates 136 results in a substantially closed path. Supporting link 131 may be oriented in a generally vertical position. Such an orientation provides a restoring force that tends to restore the translating support assembly to a neutral position when the user applies weight to foot plate 136.
As in the embodiment of
As in the
Frame 101 includes a basic supporting framework including base 102, upper stalk 103, and vertical support 105. The lower portion of base 102 engages and is supported by the floor. The crank system includes crank arms 112 attached to crank shaft 114. Crank shaft 114 is supported by frame 101 so that crank shaft 114 rotates about its longitudinal axis. Though not shown in this embodiment, one or both of crank arms 112 may include a counterweight, such as weight 113.
The crank system may also include a brake/inertia device, such as device 119, coupled to the crank shaft through belt 115 and pulley 118. Alternately, a brake inertia device may be coupled directly to the crank shaft. Rotation of crank arms 112 about the axis of crank shaft 114 causes rotation of brake/inertia device 119. Brake/inertia device 119 may provide a braking force that provides resistance to the user during exercise, and/or it may provide inertia that smoothes the exercise by receiving, storing, and delivering energy during rotation.
An intermediate linkage assembly is coupled to the crank system. In this example it includes actuating link 173 and engagement roller 172. Actuating link 173 is coupled to frame 101 at location 175 and is coupled to crank 112 through engagement roller 172.
A translating support assembly may include foot support member 134, movable member 137, arcuate motion member 130, support link 131, and guide elements 148 and 149. Arcuate motion member 130 has an upper portion 132. Upper portion 132 can be used as a handle by the user. Arcuate motion member 130 may be straight, curved, or bent. Foot support member 134 has foot plate 136 on which the user stands. Foot support member 134 may be straight, curved, or bent. Foot support member 134 is coupled to arcuate motion member 130 at coupling location 138. Movable member 137 is coupled to arcuate motion member 130 at location 139. Moveable member 137 is coupled to support link 131 at location 135. Support link 131 is coupled to vertical support 105 at location 145. Movable member 137 may be straight, curved, or bent. Arcuate motion member 130 is coupled to frame 101 at coupling location 140. Guide element 148 is coupled to foot support member 134 and guide element 149 is coupled to movable member 137.
Flexible element 150 is coupled at one end to vertical support 105 at location 143 and at its other end to actuating link 173 at location 177. Between its ends, flexible element 150 engages guide element 149 located on movable member 137 and guide element 148 located on foot member 134.
During operation, the user ascends the exercise device, stands on foot plates 136, and initiates an exercising motion by placing his/her weight on one or more of foot plates 136. As the user steps downward, force is transmitted to flexible support element 150 by guide element 148. In turn, flexible element 150 causes movement of actuating link 173. Movement of actuating link 173 causes rotation of crank 112, crank shaft 114, and brake/inertia device 119. As crank shaft 114 continues to rotate, the distance between coupling point 177 on actuating member 173 and coupling point 143 on vertical support 105 continuously changes. This continuous change in the distance described above results in a continuous alternating lifting and lowering motion of foot plate 136. This lifting and lowering motion simulates the lifting and lowering motion that a user's foot may undertake during walking, striding, jogging, and climbing. As each foot plate 136 continuously lifts and lowers, the user may simultaneously undertake a striding motion by applying a forward or rearward force to foot plates 136. This striding motion results in displacement of foot plates 136, foot members 134, movable members 137, and guide elements 148 and 149. The combination of displacement of the foot plates 136 by the user and the continuously lifting and lowering motion of foot plates 136 results in a substantially closed path. Supporting link 131 may be oriented in a generally vertical position. Such an orientation provides a restoring force that tends to restore the translating support assembly to a neutral position when the user applies weight to foot plate 136.
As in the
In step 601, alternating vertical forces are applied to the right and left foot support members, changing the distance between the coupling locations of the flexible element to the frame and the crank system thereby rotating the crank shaft. Similarly, in step 602, alternating front-to-back forces are applied to the foot support members, so that the right and left foot support members trace substantially closed paths.
In step 603, one or more of the forces are changed, thereby varying a length of the substantially closed paths. Some embodiments include arcuate motion members for a user to grasp and to make forward and backward motions therewith. In such embodiments, step 604 includes alternatingly moving the left and right arcuate motion members.
Method 600 is shown as a series of discrete steps. However, other embodiments of the invention may add, delete, repeat modify and/or rearrange various portions of method 600. For example, steps 601-604 may be performed continuously for a period of time. Further, steps 601-604 will generally be performed simultaneously during the user's striding motion.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/780,599 filed on Mar. 9, 2006 entitled “BELT AND CRANK EXERCISE DEVICE” and Ser. No. 60/881,205 filed on Jan. 19, 2007, entitled “LINKAGE AND BRAKE SYSTEMS”, the disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1166304 | Albert | Dec 1915 | A |
3756595 | Hague | Sep 1973 | A |
4869496 | Colombo | Sep 1989 | A |
4940233 | Bull et al. | Jul 1990 | A |
5611756 | Miller | Mar 1997 | A |
5735773 | Vittone et al. | Apr 1998 | A |
5795268 | Husted | Aug 1998 | A |
5910072 | Rawls et al. | Jun 1999 | A |
5967944 | Vittone et al. | Oct 1999 | A |
5989163 | Rodgers, Jr. | Nov 1999 | A |
6004244 | Simonson | Dec 1999 | A |
6036622 | Gordon | Mar 2000 | A |
6045487 | Miller | Apr 2000 | A |
6113518 | Maresh et al. | Sep 2000 | A |
6123650 | Birrell | Sep 2000 | A |
6152859 | Stearns | Nov 2000 | A |
6165107 | Birrell | Dec 2000 | A |
6340340 | Stearns et al. | Jan 2002 | B1 |
6579210 | Stearns et al. | Jun 2003 | B1 |
6626802 | Rodgers, Jr. | Sep 2003 | B1 |
6689019 | Ohrt et al. | Feb 2004 | B2 |
6726600 | Miller | Apr 2004 | B2 |
6761665 | Nguyen | Jul 2004 | B2 |
6926646 | Nguyen | Aug 2005 | B1 |
7217225 | Husted et al. | May 2007 | B2 |
7244217 | Rodgers, Jr. | Jul 2007 | B2 |
20010012811 | Gordon | Aug 2001 | A1 |
20020094914 | Maresh et al. | Jul 2002 | A1 |
20040058784 | Roberts, Jr. | Mar 2004 | A1 |
20040077463 | Rodgers, Jr. | Apr 2004 | A1 |
20040235621 | Eschenbach | Nov 2004 | A1 |
20040248704 | Rodgers, Jr. | Dec 2004 | A1 |
20040248705 | Rodgers, Jr. | Dec 2004 | A1 |
20040248706 | Rodgers, Jr. | Dec 2004 | A1 |
20040248707 | Rodgers, Jr. | Dec 2004 | A1 |
20040248708 | Rodgers, Jr. | Dec 2004 | A1 |
20040248709 | Rodgers, Jr. | Dec 2004 | A1 |
20040248710 | Rodgers, Jr. | Dec 2004 | A1 |
20050043148 | Maresh | Feb 2005 | A1 |
20050049117 | Rodgers, Jr. | Mar 2005 | A1 |
20050124466 | Rodgers, Jr. | Jun 2005 | A1 |
20050124467 | Rodgers, Jr. | Jun 2005 | A1 |
20050272562 | Alessandri et al. | Dec 2005 | A1 |
20060003868 | Lull et al. | Jan 2006 | A1 |
20060199702 | Eschenbach | Sep 2006 | A1 |
20060217234 | Rodgers, Jr. | Sep 2006 | A1 |
20070179023 | Dyer | Aug 2007 | A1 |
20070219061 | Rodgers, Jr. | Sep 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20070219062 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
60780599 | Mar 2006 | US | |
60881205 | Jan 2007 | US |