Translation catheters, systems, and methods of use thereof

Information

  • Patent Grant
  • 10682232
  • Patent Number
    10,682,232
  • Date Filed
    Thursday, July 6, 2017
    7 years ago
  • Date Issued
    Tuesday, June 16, 2020
    4 years ago
Abstract
The present teachings generally relate to translation catheter systems and method of using thereof in treating defective mitral valves. Specifically, a translation catheter system includes a catheter configured to move substantially laterally along the mitral annulus and the lateral movement of the catheter is substantially continuous and substantially adjustable. Accordingly, a method of using such a translation catheter includes advancing a first wire across the mitral annulus at a first treatment location, delivering a catheter at or near the first treatment location, moving the catheter substantially laterally to a second treatment location, and advancing a second wire across the mitral annulus, where the distance between the first and second treatment locations is substantially adjustable and optionally visualized.
Description
TECHNICAL FIELD

The present invention relates generally to a delivery catheter system that is adapted to deliver multiple devices, such as guide wires, with definite spacing between each of them. The present invention further relates to a translation mechanism of the delivery catheter system which allows a delivery catheter to move to a definite distance.


BACKGROUND

The left side of a human heart includes the left atrium (LA) and the left ventricle (LV). An aorta receives oxygenated blood from the left ventricle through an aortic valve, which serves to prevent regurgitation of blood back into the left ventricle. A mitral valve is positioned between the left atrium and the left ventricle and allows one-way flow of the oxygenated blood from the left atrium to the left ventricle.


Mitral valve, which will be described below in more detail, includes an anterior leaflet and a posterior leaflet that are coupled to chordae tendineae. Chordae tendineae serve as “tension members” that prevent the leaflets of the mitral valve from moving past their closing point and prolapsing back into the left atrium. When the left ventricle contracts during systole, chordae tendineae limit the upward motion (toward the left atrium) of the anterior and posterior leaflets past the point at which the anterior and posterior leaflets meet and seal to prevent backflow from the left ventricle to the left atrium (“mitral regurgitation” or “mitral insufficiency”). Chordae tendineae arise from a columnae carnae or, more specifically, a musculi papillares (papillary muscles) of the columnae carnae. In various figures herein, some anatomical features have been deleted solely for clarity.


The anterior leaflet and the posterior leaflet of the mitral valve are generally thin, flexible membranes. When the mitral valve is closed, the anterior leaflet and the posterior leaflet are generally aligned and contact one another along a “line of coaptation” several millimeters back from their free edges, to create a seal that prevents mitral regurgitation. Alternatively, when the mitral valve is opened, blood flows downwardly through an opening created between the anterior leaflet and the posterior leaflet into left ventricle.


Many problems relating to the mitral valve may occur and may cause many types of ailments. Such problems include, but are not limited to, mitral regurgitation. Mitral regurgitation, or leakage, is the backflow of blood from the left ventricle into the left atrium due to an imperfect closure of the mitral valve. That is, leakage often occurs when the anterior and posterior leaflets do not seal against each other, resulting in a gap between the anterior leaflet and the posterior leaflet when the leaflets are supposed to be fully coapted during systole.


In general, a relatively significant systolic gap may exist between the anterior leaflet and the posterior leaflet for a variety of different reasons. For example, a gap may exist due to congenital malformations, because of ischemic disease, or because the heart has been damaged by a previous heart attack. Such a gap may also be created when congestive heart failure, e.g., cardiomyopathy, or some other type of distress which causes a heart to be enlarged. Enlargement of the heart can result in dilation (stretching) of the mitral annulus. This enlargement is usually limited to the posterior valve annulus and is associated with the posterior leaflet, because the anterior annulus is a relatively rigid fibrous structure. When the posterior annulus enlarges, it causes the posterior leaflet to move away from the anterior leaflet, causing a gap during systole because the two leaflets no longer form proper coaptation. This results in leakage of blood through the valve or regurgitation.


Blood leakage through the mitral valve generally causes a heart to operate less efficiently, as the heart pumps blood both out to the body via the aorta, and also back (in the form of mitral regurgitation) into the left atrium. Leakage through the mitral valve, or general mitral insufficiency, is thus often considered to be a precursor to congestive heart failure (CHF) or a cause of progressive worsening of heart failure. There are generally different levels of symptoms associated with heart failure. These levels are classified by the New York Heart Association (NYHA) functional classification system. The levels range from a Class 1 level which is associated with an asymptomatic patient who has substantially no physical limitations to a Class 4 level which is associated with a patient who is unable to carry out any physical activity without discomfort and has symptoms of cardiac insufficiency even at rest. In general, correcting or reducing the degree of mitral valve leakage may be successful in allowing the NYHA classification grade of a patient to be reduced. For instance, a patient with a Class 4 classification may have his classification reduced to Class 3 or Class 2 and, hence, be relatively comfortable at rest or even during mild physical exertion. By eliminating the flow of blood backwards into the left atrium, therapies that reduce mitral insufficiency reduce the workload of the heart and may prevent or slow the degradation of heart function and congestive heart failure symptoms that is common when a significant degree of mitral insufficiency remains uncorrected.


Treatments used to correct for mitral valve leakage or, more generally, CHF, are typically highly invasive, open-heart surgical procedures. In extreme cases, this may include implantation of a ventricular assist device such as an artificial heart in a patient with a failing heart. The implantation of a ventricular assist device is often expensive, and a patient with a ventricular assist device must be placed on extended anti-coagulant therapy. Anti-coagulant therapy reduces the risk of blood clot formation for example, within the ventricular assist device. Reducing the risks of blood clots associated with the ventricular assist device is desirable, but anti-coagulant therapies may increase the risk of uncontrollable bleeding in a patient, e.g., as a result of a fall.


Rather than implanting a ventricular assist device, bi-ventricular pacing devices similar to pacemakers may be implanted in some cases, e.g., cases in which a heart beats inefficiently in a particular asynchronous manner. While the implantation of a bi-ventricular pacing device may be effective, not all heart patients are suitable for receiving a bi-ventricular pacing device. Further, the implantation of a bi-ventricular pacing device is expensive, and is generally not effective in significantly reducing or eliminating the degree of mitral regurgitation.


Open-heart surgical procedures that are intended to correct for mitral valve leakage, specifically, can involve the implantation of a replacement valve. Valves from animals, e.g., pigs, may be used to replace a mitral valve in a human. While a pig valve as a replacement for the mitral valve may be relatively successful, such replacement valves generally wear out, thereby requiring additional open surgery at a later date. Mechanical valves, which are less likely to wear out, may also be used to replace a leaking mitral valve. However, when a mechanical valve is implanted, there is an increased risk of thromboembolism, and a patient is generally required to undergo extended anti-coagulant therapies.


A less invasive surgical procedure involves heart bypass surgery associated with a port access procedure. For a port access procedure, the heart may be accessed by cutting between ribs or sometimes removing parts of one or more ribs, as opposed to dividing the sternum to open the entire chest of a patient.


One open-heart surgical procedure that is particularly successful in correcting a mitral valve leakage and, in addition, mitral regurgitation, is an annuloplasty procedure. During an annuloplasty procedure, a medical device such as an annuloplasty ring may be implanted surgically on the left atrial side of mitral annulus (i.e., generally the attachment location of the base of the mitral valve to the heart). The device reduces a dilated mitral valve annulus to a relatively normal size and, specifically, moves the posterior leaflet closer to the anterior leaflet to aid anterior-posterior leaflet coaptation and thus improve the quality of mitral valve closure during systole. Annuloplasty rings are often shaped substantially like the letter “D” to correspond to the natural shape of the mitral annulus as viewed from above. Typically, the rings are formed from a rod or tube of biocompatible material, e.g., plastic, that has a DACRON mesh covering.


In order for an annuloplasty ring to be implanted, a surgeon surgically attaches the annuloplasty ring to the mitral valve on the atrial side of the mitral valve. Conventional methods for installing a ring require open-heart surgery which involves opening a patient's sternum and placing the patient on a heart bypass machine. The annuloplasty ring is sewn on a top portion of the mitral valve. In sewing the annuloplasty ring onto the mitral valve, a surgeon generally sews the straight side of the “D” to the fibrous tissue located at the junction between the posterior wall of the aorta and the base of the anterior mitral valve leaflet. As the curved part of the ring is sewn to the posterior aspect of the annulus, the surgeon alternately acquires a relatively larger amount of tissue from the mitral annulus, e.g., a one-eighth inch bite of tissue, using a needle and thread, compared to a relatively smaller bite taken of the fabric covering of the annuloplasty ring. Once the thread has loosely coupled the annuloplasty ring to the mitral valve annulus tissue, the annuloplasty ring is slid into contact with the mitral annulus. The tissue of the posterior mitral annulus that was previously stretched out, e.g., due to an enlarged heart, is effectively reduced in circumference and pulled forwards towards the anterior mitral leaflet by the tension applied by annuloplasty ring with the suture or thread. As a result, a gap between the anterior leaflet and the posterior leaflet during ventricular contraction or systole may be reduced and even substantially closed off in many cases thereby significantly reducing or even eliminating mitral insufficiency. After the mitral valve is shaped by the ring, the anterior and posterior leaflets will reform typically by pulling the posterior leaflet forward to properly meet the anterior leaflet and create a new contact line that will enable the mitral valve to appear and to function properly.


Although a patient that receives an annuloplasty ring may be subjected to anti-coagulant therapies, therapies are not extensive, as a patient is only subjected to therapies for a matter of weeks, e.g., until tissue grows over the annuloplasty ring.


Another type of procedure that is generally effective in reducing mitral valve leakage associated with prolapse of the valve leaflets involves placing a single edge-to-edge suture in the mitral valve that opposes the mid-portions of anterior and posterior leaflets. For example, in an Alfieri stitch or a bow-tie repair procedure, an edge-to-edge stitch is made at approximately the center of the gap between an anterior leaflet and a posterior leaflet of a mitral valve. Once the stitch is in place between the anterior and posterior leaflets, it is pulled in to form a suture which holds the anterior leaflet against the posterior leaflet.


Another surgical procedure that reduces mitral valve leakage involves placing sutures along a mitral valve annulus around the posterior leaflet. These sutures may be formed as a double track, e.g., in two “rows” from a single strand of suture material. The sutures are tied off at approximately a central point of posterior leaflet. Pledgets are often positioned under selected sutures to prevent the sutures from tearing through annulus. When the sutures are tightened and tied off, the circumference of the annulus may effectively be reduced to a desired size such that the size of a systolic gap between posterior leaflet and an anterior leaflet may be reduced.


While invasive surgical procedures have proven to be effective in the treatment of mitral valve leakage, invasive surgical procedures often have significant drawbacks. Any time a patient undergoes open-heart surgery, there is a risk of infection. Opening the sternum and using a cardiopulmonary bypass machine has also been shown to result in a significant incidence of both short and long term neurological deficits. Further, given the complexity of open-heart surgery, and the significant associated recovery time, people that are not greatly inconvenienced by CHF symptoms, e.g., people at a Class 1 classification, may choose not to have corrective surgery. In addition, people that need open heart surgery the most, e.g., people at a Class 4 classification, may either be too frail or too weak to undergo the surgery. Hence, many people that may benefit from a surgically repaired mitral valve may not undergo surgery.


In another method, a cinching device is placed within the coronary sinus (CS) using a catheter system, with distal, mid, and proximal anchors within the lumen of the CS to allow plication of the annulus via the CS. In practice, these anchors are cinched together and the distance between them is shortened by pulling a flexible tensile member such as a cable or suture with the intent being to shorten the valve annulus and pull the posterior leaflet closer to the anterior leaflet in a manner similar to an annuloplasty procedure. Unfortunately, since the tissue that forms the CS is relatively delicate, the anchors are prone to tear the tissue during the cinching procedure. In addition, the effect on the mitral annulus may be reduced when the CS of a particular patient is not directly aligned with the mitral annulus. Other minimally invasive techniques have been proposed but have various drawbacks related to such factors as effectiveness and/or accuracy of catheter-based implementation.


Catheter-based surgical procedures have been used to repair a defective mitral valve. Specifically, anchors are secured at a plurality of locations distributed around the annulus near the posterior leaflet of a mitral valve. Each anchor has a suture coupled thereto. The sutures are collectively gathered and pulled tight. As the sutures are pulled, the tissue between each pair of adjacent anchors is plicated, thereby shortening the length of the annulus and drawing the posterior leaflet toward the anterior leaflet. Similar techniques can also be used to repair a defective tricuspid valve.


During a surgical procedure, anchors are usually introduced and secured sequentially. A typical repair by using the catheter based surgical procedure involves a sequence that includes introducing a catheter to a proximity of the annulus, making an incision at the annulus, introducing a guide wire through the incision site, withdrawing the catheter, introducing an anchor by tracking a second catheter through the guide wire, securing the anchor in the annulus, and withdrawing the second catheter. This sequence is repeated to secure a second anchor.


Catheters capable of delivering multiple guide wires or anchors have been disclosed. Without claiming to have exhaustively examined prior art references and without attempting to characterizing any prior art reference, U.S. Patent Application Publication No. 2008-0228265 discloses a triple lumen catheter. However, distances between two of the three lumens are usually fixed. In addition, during a deployment, the two outer catheters are generally advanced lengthwise as well as laterally. In certain instances, one or both of the two outer catheters are caught by chordae tendineae during the deployment.


There is generally a need for an improved catheter to simplify the catheter-based mitral valve correction.


SUMMARY

One aspect of the present teachings generally relates to translation catheter systems. The catheter system comprises a first wire configured to be positioned at a first location, a second catheter configured to be positioned at a second location, and a translation element configured to move the second catheter from the first location to the second location in a substantially linear fashion. A first wire is positioned with the first catheter. The translation element operably connects the first and second catheters.


In one aspect of the present teachings, the translation element of the catheter system is a tether. The tether comprises a free end and the free end wraps around one of the first and second catheter. In one aspect of the present teachings, the tether comprises a fixed end and the fixed end. The fixed end is connected with one of the first and second catheter, and the free end extends into a lumen of the other catheter.


In another aspect of the present teachings, the translation element of the catheter system is a bar formed of at least two segments. In another aspect of the present teachings, the translation element of the catheter system comprises an anchor configured to track over the first wire, and a tether. The tether has a proximal end and a distal end, wherein the distal end of the tether connects the anchor.


In one aspect of the present teachings, the distal portions of the first and the second catheters are connected. In one aspect of the present teachings, the second catheter is flexible. In one aspect of the present teachings, the second catheter comprises at least one side opening. In one aspect of the present teachings, the distance between the first location and the second location is adjustable.


Another aspect of the present teachings generally relates to translation catheter systems where translation catheter systems have a first catheter configured to be positioned at a first treatment location; a second catheter configured to be positioned at a second treatment location; and a translation mechanism operably connecting the first and second catheters. In one aspect of the present teachings, the translation mechanism is configured to allow the second catheter to move laterally away from the first catheter to any distance.


Another aspect of the present teachings generally relates to translation catheter systems where translation catheter systems have a first guide wire positioned at a first treatment location; a tracking anchor configured to track over the first guide wire; a second catheter configured to be positioned at a second treatment location; and a tether having a proximal end and a distal end. The distal end of the tether connects to the tracking anchor and the proximal end of the tether extends through a central lumen of the second catheter.


Another aspect of the present teachings generally relates to translation catheter systems where translation catheter systems have a first catheter configured to be positioned at a first treatment location; a second catheter configured to be positioned at a second treatment location; and a tether having a proximal end and a distal end. The distal end of the tether connects to the first catheter and the proximal end of the tether extends through a central lumen of the second catheter.


Another aspect of the present teachings generally relates to translation catheter systems where translation catheter systems have a first catheter comprising a distal end configured to be positioned at a first treatment location; a second catheter comprising a distal end configured to be positioned at a second treatment location; and a connecting bar connecting the distal ends of the first and second catheters. The connecting bar has at least two segments with at least one pivot between the segments.


Another aspect of the present teachings generally relates to translation catheter systems where translation catheter systems have a first catheter comprising a distal end configured to be positioned at a first treatment location; and a second catheter comprising a distal end configured to be positioned at a second treatment location. The second catheter is configured to be bendable in one direction and the distal ends of the first and second catheters are joined to each other.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an exemplary wire delivery catheter in accordance with the present teachings;



FIG. 2 is a perspective view of an exemplary wire deploying across a tissue in accordance with the present teachings;



FIGS. 3A-D are perspective views of a translation catheter system in accordance with the present teachings;



FIGS. 4A-D are perspective views of a translation catheter system in accordance with the present teachings;



FIGS. 5A-5B are perspective views of a translation catheter system in accordance with the present teachings;



FIG. 5C is a close-up side elevation view of a portion of a catheter showing side openings;



FIGS. 6A-6B are perspective views of a translation catheter system in accordance with the present teachings;



FIGS. 7A-7B are perspective views of a translation catheter system in accordance with the present teachings;



FIG. 8 is a perspective view of a translation catheter system in accordance with the present teachings;



FIG. 9 is a perspective view of a translation catheter system in accordance with the present teachings;



FIG. 10A is a perspective view of a distal end of a translation catheter system in accordance with the present teachings;



FIG. 10B is a perspective view of a pair of steerable wires for use in the translation catheter system;



FIG. 10C is a perspective view showing a translation rod assembly for use in the translation catheter system; and



FIG. 10D is a perspective view of a distal end of a translation catheter system.





DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

Certain specific details are set forth in the following description and Figures to provide an understanding of various embodiments of the present teachings. Those of ordinary skill in the relevant art will understand that they can practice other embodiments of the present teachings without one or more of the details described herein. Thus, it is not the intention of the Applicants to restrict or in any way limit the scope of the appended claims to such details. While various processes are described with reference to steps and sequences in the following disclosure, the steps and sequences of steps should not be taken as required to practice all embodiments of the present teachings.


As used herein, the terms “subject” and “patient” refer to an animal, such as a mammal, such as livestock, pets, and preferably a human. Specific examples of “subjects” and “patients” include, but are not limited to, individuals requiring medical assistance and, in particular, requiring treatment for symptoms of a heart failure.


As used herein, the term “lumen” means a canal, duct, generally tubular space or cavity in the body of a subject, including veins, arteries, blood vessels, capillaries, intestines, and the like. The term “lumen” can also refer to a tubular space in a catheter, a sheath, or the like in a device.


As used herein, the term “proximal” means close to the operator (less into the body) and “distal” shall mean away from the operator (further into the body). In positioning a medical device from a downstream access point, distal is more upstream and proximal is more downstream.


While the description above refers to and the term “tether” means a tensioning member which can take forms of a suture, a wire, a strand, a cord, a fiber, a yarn, a filament, a cable, a thread, or the like. Thus, all these terms are essentially interchangeable and further include embodiments in which the wire, string, suture or filament is a hollow tube or conduit to allow another wire, as needed, to pass through its longitudinal axis. Each tether, wire, string, suture and filament can comprise one or more tethers, wires, strings, sutures and filaments. Material used to make tether could be flexible, semi-rigid, or rigid material having a suitably high tensile strength for the intended use.


As used herein, the term “catheter” or “sheath” encompasses any hollow instrument capable of penetrating body tissue or interstitial cavities and providing a conduit for selectively injecting a solution or gas. The term “catheter” or “sheath” is also intended to encompass any elongate body capable of serving as a conduit for one or more of the ablation, expandable or sensing elements. Specifically, in the context of coaxial instruments, the term “catheter” or “sheath” can encompass either the outer catheter body or sheath or other instruments that can be introduced through such a sheath. The use of the term “catheter” should not be construed as meaning only a single instrument but rather is used to encompass both singular and plural instruments, including coaxial, nested, and other tandem arrangements. Moreover, the terms “sheath” or “catheter” are sometime used interchangeably to describe catheters having at least one lumen through which instruments or treatment modalities can pass.


Unless otherwise specified, all numbers expressing quantities, measurements, and other properties or parameters used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated, it should be understood that the numerical parameters set forth in the following specification and attached claims are approximations. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, numerical parameters should be read in light of the number of reported significant digits and the application of ordinary rounding techniques.


An aspect of the present teachings provides a delivery catheter system for delivering multiple guide wires across mitral annulus at a controlled spacing between each of them. In various embodiments, the delivery catheter system has one catheter and a translation mechanism allowing the catheter to move to a second location, i.e. translate, from its first location by a distance, pre-defined or determined by a clinician during procedure. In some embodiments, the delivery catheter system includes two catheters and a translation mechanism allowing the at least one catheter to move away from the other catheter by a distance, pre-defined or determined by a clinician during procedure. In some embodiment, the distance between the first and second locations, or the distance between the first and second catheter after translation, are within the range of 1-40 mm. In some embodiment, the translation mechanism of the delivery catheter system includes a tether, a shuttle, a tracking element, a wire, a coil, a connecting bar with a pivot, or a combination thereof. In some embodiments, the translation is lateral. In other embodiments, the translation is distal-lateral. In some embodiments, the translation is continuous. In other embodiments, the translation is step-by-step. In some embodiments, the distance of the translation is adjustable. In other embodiments, the distance of the translation is pre-defined.


Another aspect of the present teachings provides method of delivering a translation catheter system to a first location at or approximate to the mitral annulus, translating the translation catheter system to a second location at or approximate to the mitral annulus. In various embodiments, the distance between the two locations is controlled by a clinician. In various embodiments, the method includes advancing a first delivery catheter to a first location at or approximate to the mitral annulus, placing a wire across the mitral annulus at this first location, translating the first catheter to a second location at or approximate to the mitral annulus, placing a second wire across the mitral annulus at the second location. In various embodiments, the method includes advancing a first delivery catheter to a first location at or approximate to the mitral annulus, placing a wire across the mitral annulus at this first location, translating the second catheter to a second location at or approximate to the mitral annulus, placing a second wire across the mitral annulus at the second location.


The following description refers to FIGS. 1 to 9. A person with ordinary skill in the art would understand that the figures and description thereto refer to various embodiments of the present teachings and, unless indicated otherwise by their contexts, do not limit the scope of the attached claims.



FIGS. 1A-B illustrate a guide wire being delivered across a mitral annulus. According to one embodiment of the present teachings, a delivery sheath (not shown) is directed into the aorta, through the aortic valve, and into the left ventricle and between the chordae tendonae. The delivery sheath (not shown) is used as a conduit to deliver a first wire delivery catheter (10) to a treatment site. One ordinarily skilled in the art would understand that the first wire delivery catheter (10) can be advanced to a treatment location without a delivery sheath.



FIG. 1 illustrates an exemplary delivery of a first wire delivery catheter (10) according to the present teachings to a selected location adjacent to or near the mitral annulus (2). In some embodiments, the first catheter (10) advances through the longitudinal lumen of the delivery sheath (not shown) and is placed below the mitral annulus (2). In certain embodiments, the first catheter (10) has a proximal portion (not shown) remaining outside of the body, a distal end (12), an elongated body (14) between the proximal portion and the distal portion, and a central lumen (16) within the elongated body. In some embodiments, the distal end of the first catheter (10) can be turned, rotated, or deflected. The deflectability or steerability of the first catheter (10) allows a clinician to manipulate the distal end (12) of the first catheter (10) from outside of the body and advance it to a first location (4) near the annulus (2). Design and construction of a steerable and deflectable catheter are well known to those with ordinary skill in the art.


In some embodiments, the distal end (12) of the first catheter (10) includes a radio-opaque and/or echogenic marker so that the device can be visualized by using a radiographic imaging equipment, for example, x-ray, magnetic resonance, ultrasound, or fluoroscopic techniques.



FIG. 2 illustrates an example of the present teachings where a first wire (20) extends from a lumen (16) of a first catheter (10) and pierces the annulus (2). In various embodiments, the first wire (20) also includes a proximal end (not shown), a distal end (22), and an elongated body (24). In some embodiments, the first wire (20) is configured to slide within the lumen (16) of the first catheter (10). In some embodiments, the first wire (20) is configured to rotate within the lumen (16).


In various embodiments, the first wire (20) has a delivery profile where the distal end (22) of the first wire (20) is disposed inside the lumen (16) of the first catheter (10). In some embodiments, when the distal end (22) of the first wire (20) is disposed within the lumen (16) of the catheter (12), the entire first wire (20) is substantially straight and parallel with the long axis of the first catheter (10). In some embodiments, the first wire (20) has a deployed profiled where the distal end (22) of the first wire (20) extends distally outside the lumen (16) of the first catheter (10), as illustrated in FIG. 2. In certain embodiments, as the distal portion of the first wire (20) extends outside of the first catheter (10), the distal portion (22) transitions to a curved profile. Without intending to limit the scope of the present teachings, such a curved profile can prevent the first wire from causing unnecessary tissue damage inside the left atrium.


In various embodiments, the first wire (20) is pre-loaded within the lumen (16) of the first catheter (10). In various other embodiments, the first wire (20) is advanced after the first catheter (10) is placed at a treatment location.


In various embodiments, the first wire delivery catheter (10) is generally perpendicular to the annulus (2) before the first wire (20) pierces and crosses the annulus (2). Once the first catheter (10) is properly positioned, a clinician extends the first wire (20) distally so that the distal tip (26) of the first wire (20) pierces and crosses the annulus (2) at the first location (4). In some embodiments, a radio frequency energy is applied to assist the distal tip (26) of the first tissue piercing wire (20) to pierce and cross the annulus (2) and reach the left atrium. To determine when to stop the distal extension force to the wire (20), in some embodiments, a change of the counter force on the first wire (20) indicates that the annulus (2) is pierced or the distal tip (26) of the first wire (20) reaches a side wall of the left atrium. Alternatively, visualization techniques, including three-dimensional echocardiogram, fluoroscopy, or magnetic resonance imaging techniques, can be used.



FIGS. 3A-3D illustrate various embodiments of the translatable catheter system according to the present teachings. FIG. 3A illustrates an embodiment of the present teachings where a second wire (40) pierce the annulus (2). In various embodiments, when the first wire (20) is placed across the annulus (2), the first catheter (10) is retracted proximally and removed, a tracking element (52) is slid over the first wire (20) from its proximal end. In some embodiments, the tracking element (52) has the form of a loop, shuttle, or another shape (for example, including a lumen) so that the tracking element (52) can slide along the first wire (20) freely or in a controlled manner from the proximal end to the distal end (22, in FIG. 2) or from the distal end (22, in FIG. 2) to the proximal end (not shown).


As illustrated in FIG. 3A, the tracking element (52) is tethered to a second wire delivery catheter (30). Similar to the first wire delivery catheter (10), the second wire delivery catheter (30) includes a proximal portion (remaining outside of the body, not shown), a distal end (34) at or near the annulus (2), an elongated body (36) between the proximal end and the distal end, and a central lumen (32) extending throughout the elongated body (36). Similarly, a clinician can manipulate the second wire delivery catheter (30) to a second location near the annulus (2).


Further referring to FIG. 3A, a second wire (40) extends from the lumen (32) of the second catheter (30) and across the annulus (2). In various embodiments, the second wire (40) includes a proximal end (not shown), a distal end (42), and an elongated body (44). One ordinarily skilled in the art would understand that the first and second wires can have the same shape, size, and/or construct or different shapes, sizes, and/or constructs. Thus, what has been described herein should not be construed as limiting to the scope of the present teachings.


In an exemplary embodiment as shown in FIG. 3A, the second catheter (30) includes a side opening (38). The tether (50) extends from the tracking element (52), enters the side opening (38), extends proximally inside the lumen (32) of the second catheter (30), and exits outside of the body. In various embodiments, a clinician controls the proximal end of the tether. For example, a clinician can tighten the tether (50), for example, by pulling the tether (50) proximally, so that the distal end (34) of the second catheter (30) is pulled adjacent to the first wire (20). Or, for example, a clinician can loosen the tether (50), for example, by extending the tether (50) distally, so that the distal end (34) of the second catheter (30) is away from the first wire (20), as illustrated in FIG. 3A. The length of the tether (50) controls the distance between the distal end (34) of the second catheter (30) and the first wire (20).


To deliver the second wire (40) across the annulus (2), a clinician slides the tracking element (52) over the proximal end of the first wire (20) and affixes the tether (50) to the tracking element. The tether (50) and the tracking element (52) are loaded inside the second wire delivery catheter (30). By tightening the tether (50), the distal end (34) of the second catheter (30) maintains a close proximity to the first wire (20). The tracking element (52) and the second catheter (30), optionally disposed inside a delivery sheath (8), tracks along the first wire (20) and extends distally. Once the distal end (34) of the second catheter (30) arrives at or near to the first location (4) of the annulus (2), the tether (50) is loosened and the second catheter (30) is steered away from the first location (4) of the annulus (2) to the second location (6) on the annulus (2). In some embodiments, the translation of the second catheter (30) from the first location (4) is lateral. In other embodiments, the translation of the second catheter (30) from the first location (4) is continuous. In yet another embodiment, the translation distance of the second catheter (30) from the first location is adjustable.


In various embodiments, the second wire delivery catheter (30) is generally perpendicular to the annulus (2) before the second wire (40) pierces the annulus (2). The second wire (40) is advanced distally to pierce and cross the annulus (2) at the second location (6) in a manner similar to those described herein in connection with FIG. 2.


In some embodiments, the distal end (34) of the second catheter (30) remains close to the annulus (2) the entire time when the second catheter is steered from the first location to the second location. Without intending to limit the scope of the present teachings, such a lateral movement avoids the distal end of the second catheter from being caught, snag, or hung up by tissues in the left ventricle, and allows the second catheter (30) pushing away any anatomy in the path of the translation. In some embodiments, the distal end (34) of the second catheter (30) remains close to the annulus (2) the entire time when it is steered from the first location to the second location.


In one embodiment, a clinician controls the distance between the first and second locations (4, 6) by controlling the length of the tether (50) between the distal end of the second catheter and the first wire. According to some embodiments, such the mechanism as shown in FIG. 3A allows a continuous translation of the second catheter (30) and an adjustable distance between the two treatment locations (4, 6). Similar to what is described in connection with FIG. 2, a second wire 40 can be advanced distally across the mitral annulus (2).


In some embodiments, during the delivery of the second catheter (30), a delivery sheath (8) is used, as seen in FIG. 3A. In one embodiment, the delivery sheath (8) has a single lumen where encloses the first wire (20), the tracking member (52), the second catheter (30), and the tether (50).


In one embodiment, the tether (50) extends from the tracking element (52), enters the side opening (38) of the second catheter (30), extends proximally along the center lumen (32) of the second catheter (30), and exits the body, as illustrated in FIG. 3A. In another embodiment, the tether (50) extends from the tracking element (52), enters the distal end (34) of the second catheter (30), extends proximally along the center lumen (32) of the second catheter (30), and exits the body, as illustrated in FIG. 3B. In yet another embodiment, the tether (50) extends from the tracking element (52), enters the distal end (34) of the second catheter (30), extends proximally along the center lumen (32) of the second catheter (30), exits a side opening (38) of the second catheter (30), and further extends proximally along the exterior of the second catheter (30), as illustrated in FIG. 3C.


In one embodiment, the first wire delivery catheter (10) and the second wire delivery catheter (30) are different, where the first catheter (10) does not have any attachment mechanism with a tether (50) but the second catheter (30) has. In another embodiment, the first wire delivery catheter (10) and the second wire delivery catheter (30) are the same. In the later embodiment, an attachable/detachable tracking system (60) is used for converting the first catheter to a tethered second catheter. As illustrated in FIG. 3D, the attachable/detachable tracking system (60) includes two tracking anchors (62, 64). The tracking anchors (62, 64) have axial lumens for sliding over the first wire (20) and guiding the second wire (40), respectively. In one embodiment, when the tracking anchor (64) joins the distal end (34) of the second catheter (30), the lumen of the tracking anchor (64) and the lumen (32) of the second catheter (30) forms a continuous conduit for passing the second wire (40).


In one embodiment, as shown in FIG. 3D, at least one tether (66) joins the two tracking anchors (62, 64). In one embodiment, the tether (66) joining two tracking anchors (62, 64) has a fixed length with one end of the tether (66) fixed to one tracking anchor (62) and the other end of the tether (66) fixed to another tracking anchor (64). Thus, the translation distance of the second catheter (30) is pre-determined by the length of the tether (66) and so is the distance between the two treatment locations (4, 6).


In another embodiment, one end of the tether (66) is fixed to one tracking anchor (62), riding over the first wire (20), and the other end of the tether (66) enters the other tracking anchor (64) in a manner similar to those described in connection with FIGS. 3A-3C. Thus, the translation of the second catheter (30) can be continuous and adjustable, similar to those described herein.


In various embodiments, at least one of the second catheter and the tether includes a radio-opaque marker or is made in part or its entirety of a radio-opaque material. By using a visualization technique, including various ultrasound, x-ray, fluoroscopic, or magnetic resonance imaging techniques, a clinician can use the marker to visualize where the first catheter, the second catheter, and/or the tether are located in the anatomy. A clinician can also use the marker to determine the translation distance of the second catheter or the distance between the two treatment locations. In one exemplary embodiment, the tether could have multiple markers which to indicate the translation distance, and allow a clinician to control the distance between the two treatment locations.



FIGS. 4A-4D illustrate various embodiments of the translatable catheter system according to the present teachings. In some embodiments, as illustrated in FIG. 4B, the first and second catheters (10, 30) are operably joined together at their distal ends (12, 34) by a tether (50) in a manner same as or similar to those described in connection with FIGS. 3A-3C. Optionally, the first and second catheters (10, 30) are operably joined to each other at other places along the catheter bodies.


Referring to FIG. 4A, in some embodiments, the first catheter (10) and the second catheter (30) are delivered together to the mitral annulus (2) while the tether (50) is tightened and the distal ends (12, 34) of the two catheters (10, 30) are held next to each other. In certain embodiments, one of the two catheters (10, 30) is steerable and deflectable, and the steerability and/or deflectability of one of the first and second catheters (10, 30) allows a clinician to advance the distal end (12) of the first catheter (10) to a first location (4) on the annulus (2). In particular embodiments, the second catheter (30) is steerable and deflectable and both the catheters (10, 30) are joined in such way that both the catheters (10, 30) are advanced to the first treatment location (4) by steering the second catheter (30). While the first wire delivery catheter is generally maintained perpendicular to the annulus (2) at the first treatment location (4), a first wire (20) is advanced across the annulus (2) in a manner similar to those described in connection with FIG. 2.


In various embodiments, a second catheter (30) continuously and adjustably translates away from a first catheter (10) via a tethering mechanism. Now referring to FIG. 4B, while holding the first wire (20) in place, a clinician loosens the tether (50), for example, by extending the tether (50) distally, to allow the distal end (34) of the second catheter (30) to be steered away from the first catheter (10), such as illustrated in FIG. 4B. Without intending to limit the scope of the present teachings, such a lateral movement avoids the distal end of the second catheter from being caught, snag, or hung up by tissues in the left ventricle, and allows the second catheter (30) pushing away any anatomy in the path of the translation. In some embodiments, the distal end (34) of the second catheter (30) remains close to the annulus (2) the entire time when it is steered from the first location to the second location. In some embodiments, the translation of the second catheter (30) from the first location (4) is lateral. In other embodiments, the translation of the second catheter (30) from the first location (4) is continuous. In yet another embodiment, the translation distance of the second catheter (30) from the first location is adjustable.


Similarly, the length of the loosened tether (50) determines the distance between the second catheter (30) and the first catheter (10). According to some embodiments, such the mechanism as shown in FIGS. 4A-4B allows a continuous translation of the second catheter (30) and an adjustable distance between the two treatment locations (4, 6). While the second wire delivery catheter is maintained generally perpendicular to the annulus (2) at its second treatment location (6), a second tissue piercing wire (40) is advanced across the annulus (2) in a manner similar to those described in connection with FIG. 2.


In some embodiments, in order to maintain a generally perpendicular position between the distal end (34) of the second catheter (30) and the annulus (2), the second catheter (30) includes a curved portion (68) near its distal end, as shown in FIG. 4B. In one embodiment, such a curved portion (68) is pre-formed and elastically recoverable to this pre-formed curve when the curved portion (68) of the second catheter (30) is free from the constraint of the tether (50) and/or sheath (8). In another embodiment, such a curved portion (68) is actuated by a mechanical means, for example, by shortening another tether (70) fixed to a portion of the second catheter (30), illustrated in FIG. 4C. One ordinarily skilled in the art would appreciate that other means can also be incorporated to achieve such a configuration. Thus, the specific embodiments disclosed herein should not be construed as limiting.



FIG. 4D illustrates another embodiment of the translatable catheter system where the second catheter (30) is configured to roll along the bottom surface of the mitral annulus (2). In such an embodiment, a distal end (58) of the tether (56) fixes to the distal end (34) of the second catheter (30) and the other end of the tether (56) enters the distal end (12) of the first catheter (10), travels proximally along the lumen (not shown) of the first catheter (10), and exits from the body. In some embodiments, the tether (56) is configured in such a way that when it is pushed by a clinician at its proximal end, the distal end (58) of the tether (56) extends laterally away from the first treatment location (4), carrying the distal end (34) of the second catheter (30) with it, as illustrated in FIG. 4D. In some embodiments, a sheath (8) is used to constrain the translation profile of the second catheter (30), as shown in FIG. 4D, so that the distal end (34) of the second catheter (30) and the portions of the second catheter (30) outside of the sheath (8) travels along the bottom surface of the annulus (2) and substantially free from tissues under the annulus, as shown in FIG. 4D. Without intending to limit the scope of the present teachings, such a lateral rolling movement of the distal portion of the second catheter (30) avoids the second catheter from being caught, snag, or hung up by tissues in the left ventricle. In some embodiments, the translation of the second catheter (30) from the first location (4) is lateral. In other embodiments, the translation of the second catheter (30) from the first location (4) is continuous. In yet another embodiment, the translation distance of the second catheter (30) from the first location is adjustable. In other embodiments, the second catheter (30) is made of a flexible tubing so that it can bend and deflect easily without restraint. In some embodiments, after the distal end (34) of the second catheter (30) reaches the second treatment location (6), the sheath (8) is retracted proximally to allow the second catheter (30) to form a more gentle bend, similar to the curve portion (68), as illustrated in FIG. 4B, thereby allowing the second wire (40) to pierce and cross the annulus. According to some embodiment, as the distal portion of the second catheter (30) assumes the more gentle end, the second catheter (30) pushes away any anatomy in the path of the translation.


According to some embodiments, a piece of rigid material could be incorporated to the distal portion of the tether (50) in between of the two catheters (10,30) to ensure a minimal translation distance. In one embodiment, either one of the catheters (10,30) is configured to be articulated. In another embodiment, both of the catheters (10,30) are configured to be articulated.


In many embodiments, the design, material, and/or construct of the first catheter and the second catheter are interchangeable. Specifically, for example, in many of the embodiments described herein, the first catheter maintains its substantially straight configuration while the second catheter is steered away towards the second treatment location. One of ordinary skill in the art would understand that it is equally feasible to have a translatable deliver catheter system where the second catheter maintain its straight profile while the first catheter is steered to push the second catheter to the second treatment site. Thus, parts or portions in connection with the first and second catheters are interchangeable without departing from the letter or the spirit of the present teachings. In various embodiments, at least one of the first catheter, the second catheter, and the tether includes a radio-opaque marker or is made in part or its entirety of a radio-opaque material. By using a visualization technique, including various ultrasound, x-ray, fluoroscopic, or magnetic resonance imaging techniques, a clinician can use the marker to visualize where the first catheter, the second catheter, and/or the tether are located in the anatomy. A clinician can also use the marker to determine the translation distance of the second catheter or the distance between the two treatment locations. In one exemplary embodiment, the tether could have multiple markers which to indicate the translation distance, and allow a clinician to control the distance between the two treatment locations.



FIGS. 5A-5B illustrates another embodiment of the translatable catheter system according to the present teachings. In the embodiment illustrated in FIG. 5B, the first and second catheters (10, 80) are joined together at their distal ends (12, 82), for example mechanically, thermally, or chemically. The first wire delivery catheter (10) has a configuration same as or similar to those described here. The second wire delivery catheter (80) includes a proximal end (not shown), a distal end (82), and an elongated body (84) with a central lumen (86) therein, where the elongated body extends from the proximal end to the distal end. In some embodiments, the second catheter (80) include a plurality of first side openings (78) located along the longitudinal surface of the catheter and generally facing the first catheter (10) and a plurality of second side openings (88) along the longitudinal surface of the catheter generally across the longitudinal axis of the second catheter (80) from the first side openings (78), as shown in FIGS. 5A-5B. In some embodiments, such a configuration (i.e., having the plurality of first and second side openings (78, 88)) results in a bendable second catheter (80), as shown in FIG. 5B. An embodiment of the second catheter, including openings 78 and 88, is illustrated in FIG. 5C. One ordinarily skilled in the art would understand that other designs can also be used to create such a “hinge” effect, thus the disclosure herein should not be construed as limiting.


As shown in FIG. 5A, a first catheter (10) and a second catheter (80) are delivered together with their distal ends (12, 82) attached to each other and their elongated body (14, 84) side-by-side through the longitudinal lumen of the delivery sheath (8) to a location near the mitral annulus (2). In certain embodiments, one of the two catheters (10, 80) is steerable and deflectable, and the steerability and/or deflectability of one of the first and second catheters (10, 80) allows a clinician to advance the distal end (12) of the first catheter (10) to a first location (4) on the annulus (2). In some embodiments, the translation of the second catheter (80) from the first location (4) is lateral. In other embodiments, the translation of the second catheter (80) from the first location (4) is continuous. In yet another embodiment, the translation distance of the second catheter (80) from the first location is adjustable. In some embodiments, the first catheter (10) is steerable and/or deflectable, so that a clinician can accurately and easily manipulate the distal end (12) of the first catheter (10) to a first location (4) on the annulus (2). A first wire (20) is advanced distally across the annulus (2), similar to what is described in connection with FIG. 2.



FIG. 5B illustrates an exemplary translation of the second catheter (80) according to the present teachings. While maintaining the first wire (20) and the first catheter (10) in place, a clinician extends the second catheter (80) distally. Because the distal end (82) of the second catheter (80) is attached to the distal end (12) of the first catheter (10) and because of the cutting pattern along the elongated body (84) of the second catheter (80), the distal portion (76) of the second catheter (80) rolls laterally outward along the bottom surface of the annulus (2) as shown in FIG. 5B. Without intending to limit the scope of the present teachings, such a lateral rolling/bending movement of the distal portion of the second catheter (80) avoids the second catheter from being caught, snag, or hung up by tissues in the left ventricle. In addition, according to some embodiment, as the distal portion of the second catheter (80) translates to the second treatment location, the second catheter (80) pushes away any anatomy in the path of the translation. The multiple side openings (88) form openings for the second wire (40). A second wire (40) is advanced distally along the lumen (86) of the second catheter (80), exits a side opening (88) of the second catheter (80), and pierces and crosses the mitral annulus (2) at the second treatment location (6). Similarly, one or both of the first catheter (10) and second catheter (80) can include a radio-opaque marker or be made in part or its entirety of a radio-opaque material. In some embodiments, the distal portion (76) of the second catheter (80) has multiple radio-opaque markers to indicate the translation distance and allow a clinician to control the distance between the two treatment locations.


According to another embodiment, instead of extending a second wire (40) directly inside the second catheter (80), a third wire delivery catheter is used to ride inside the lumen of the second catheter (80).



FIGS. 6A-6B illustrate additional exemplary translatable catheter system according to the present teachings. In various embodiments, the first and second catheters (10, 30) are joined together by at least one flexible hinge (90). In some embodiments, one end of the hinge (90) is fixed to one catheter, for example, the first catheter (10), and the other end of the hinge (90) wraps around the distal end of the other catheter, for example, the second catheter (30). In some embodiments, the hinge has a first profile where the hinge winds tightly and holds the first and second catheters (10, 30) side-by-side. In some embodiments, the hinge has a second profile where the hinge (90) loosens and allows the second catheter to translate outward laterally.


In some embodiments, the hinge (90) is in the shape of a coil, a roll, a reel, a spool or alike. In some embodiments, the hinge (90) is closed, open, or relatively neutral at its normal state. In other embodiments, by torqueing the distal end of one catheter, the hinge changes from one profile to another. In some embodiments, the hinge (90) has a contoured cross section such that it lies flat against the longitudinal surface of the catheters when wrapped around the distal end portions of the first and second catheters (10, 30). In other embodiments, when the cross section of the hinge straightens, the hinge becomes somewhat rigid, similar to the behavior of a stainless steel tape measure. In some embodiments, the hinge (90) includes multiple radio-opaque markers so that a clinician can visualize the translation distance and control the distance between the two treatment locations.


Similar to those described herein, FIG. 6A illustrates an embodiment of the present teachings where the first catheter (10) and the second catheter (30) are delivered through the longitudinal lumen of the delivery sheath (8) toward the mitral annulus (2), where the distal ends (12,34) are joined together by a hinge (90) and their elongated bodies (14, 36) are aligned side-by-side. Similarly, the steerability and/or deflectability of one of the first and second catheters (10, 30) allows a clinician to advance the distal end (12) of the first catheter (10) to a first location (4) on the annulus (2). A first wire (20) is then advanced distally across the annulus (2), similar to what is described herein.



FIG. 6B illustrates an exemplary translation of a second catheter according to the present teaching. While holding the first wire (20) in place and the first catheter (10) steady, a clinician torques the second catheter (30) to loosen the hinge (90) and translate the second catheter outward laterally. In some embodiments, this lateral translation motion of the second catheter allows the second catheter (30) to push away or ride over any tissues that might be between the two treatment locations (4, 6). In some embodiments, the translation of the second catheter (30) from the first location (4) is lateral. In other embodiments, the translation of the second catheter (30) from the first location (4) is continuous. In yet another embodiment, the translation distance of the second catheter (30) from the first location is adjustable.


In various embodiments, at least one of the first catheter, the second catheter, and the flexible hinge includes a radio-opaque marker or is made in part or its entirety of a radio-opaque material. By using a visualization technique, including various ultrasound, x-ray, fluoroscopic, or magnetic resonance imaging techniques, a clinician can use the marker to visualize where the first catheter, the second catheter, and/or the hinge are located in the anatomy. A clinician can also use the marker to determine the translation distance of the second catheter or the distance between the two treatment locations. In one exemplary embodiment, the hinge could have multiple markers which to indicate the translation distance, and allow a clinician to control the distance between the two treatment locations.



FIGS. 7A-7B illustrate additional exemplary translatable catheter systems. In the embodiments shown in FIGS. 7A-7B, a translatable catheter system includes a trident catheter with a first catheter (100), a second catheter (120), and a third catheter (130). The first catheter (100) includes an inner wire delivery catheter (102) and an outer translation catheter (104). The inner wire delivery catheter (102) is slidably disposed within an axial lumen of the outer translation catheter (104). In this particular embodiment, the inner wire delivery catheter (102) and the outer translation catheter (104) are configured to slide against each other.


In some embodiments, the second catheter (120) is operably joined to the outer translation catheter (104) of the first catheter (100) at their distal end by at least one connecting bar (140). Optionally, a third catheter (130) is operably joined to the outer translation catheter (104) of the first catheter (100) at their distal end by at least one connecting bar (140). In some embodiments, while the inner wire delivery catheter (102) is maintained steady, advancing the outer translation catheter (104) distally causes the connecting bars (140) to push the second and third catheters (120, 130) laterally outward and increase the distance among the distal ends of the catheters, as shown in FIG. 7A. In some embodiments, while the inner wire delivery catheter (102) is maintained steady, retracting the outer translation catheter (104) proximally causes the connecting bars (140) to draw the second and third catheters (120, 130) laterally inward and reduce the distance among the distal ends of the catheters, as shown in FIG. 7A.


Without intending to limit the scope of the present teachings, such a lateral movement of the distal portion of the second and third catheters (120, 130) avoids the second and third catheters (120, 130) from being caught, snag, or hung up by tissues in the left ventricle. In addition, according to some embodiment, as the distal portion of the second and third catheters (120, 130) translates to the second and third treatment location, the second and third catheters (120, 130) pushes away any anatomy in the path of the translation. In some embodiments, the translation of the second and third catheters (120, 130) from the first location (4) is lateral. In other embodiments, the translation of the second and third catheters (120, 130) from the first location (4) is continuous. In yet another embodiment, the translation distance of the second and third catheters (120, 130) from the first location is adjustable.


In some embodiments, the second catheter (120) is at one side of the first catheter (100) and the third catheter (130) is at the other side of the first catheter (100). In some embodiments, the first catheter (100) delivers a first wire (142) across the mitral annulus (2) at a first location (4), the second catheter (120) delivers a second wire (144) across the mitral annulus (2) at a second location (6), and the third catheter (130) delivers a third wire (146) across the mitral annulus (2) at a third location (5). In some embodiments, all three wires (142, 144, 146) are delivered across the annulus (2) simultaneously. In other embodiments, the second and third wires (144, 146) are delivered across the annulus (2) simultaneously. In yet other embodiments, all three wires (142, 144, 146) are delivered across the annulus (2) sequentially. In certain embodiments, the first wire (142) advances across the annulus (2) first, the second wire (144) advances across the annulus (2) second, and the third wire (146) advances across the annulus last.


In some embodiments, the first wire (142) is delivered across the annulus (2) by a single lumen wire delivery catheter (not shown) in a manner similar to those described in connection with FIGS. 1-2. In certain embodiments, when the first wire (142) is advanced across the annulus (2), the single lumen wire delivery catheter (not shown) is retracted proximally and removed from the body. In certain embodiments, the proximal end of the first wire (142) is loaded into the first catheter (100) of the translatable catheter systems, extends from the distal end of the inner wire delivery catheter (102), travels proximally along the axial lumen of the inner wire delivery catheter (102), and exits from the proximal end. Retracting the outer translation catheter (104) proximally to its limits causes the distal ends of the second and third catheters (120, 130) to move close to the distal end of the first catheter (100). This trident translatable catheter system, i.e. all three catheters (100, 120, 130), is advanced distally toward the annulus (2) by tracking the first wire and optionally within a lumen of a delivery sheath (8). In other embodiments, the first wire (142) is placed at the first treatment location (4) on the annulus (2) by the first catheter (100) of the trident catheter system.



FIG. 7A illustrates an exemplary translation of the second and third catheters (120, 130) according to the present teaching. When the distal end of the trident translatable catheter system is located adjacent to the first treatment location (4), the sheath is withdrawn proximally to expose the distal portions of the trident translatable catheter system. While holding the first wire (20) in place and the inner wire delivery catheter (102) steady, a clinician pushes the outer translation catheter (104) distally to cause the connecting bars (140) to expand and push the second and third catheters (120, 130) laterally outward as shown in FIG. 7A. In one embodiment, the further the outer translation catheter (104) is pushed, the further apart the second and third catheters (120, 130) are from the first catheter (100). When the second and third catheters (120, 130) reach the second and third treatment location (5, 6), respectively, the second and third wires (144, 146) are advanced across the annulus (2), as illustrated in FIG. 7B.


In some embodiments, the distal ends of the second and third catheters (120, 130) are always leveled with the distal end of the first catheter (100) during translation. That is, the distal ends of all three catheters are within a same proximity to the mitral annulus (2). Thus, when the second and third catheters (120, 130) translate laterally outward, they push away any tissue in their paths.


According to one embodiment of the present teachings, by visualizing the angle “θ” between the connecting bars (140) and the inner wire delivery catheter (102), as illustrated in FIG. 7A, a clinician can visualize and control the actual translation distance. Similar to various embodiments disclosed in the present teachings, the embodiments described in connection with FIGS. 7A-7B also provide a clinician with a continuous and adjustable catheter translation. Similarly, the lateral translation motions of the second and third catheters allows the catheters (120, 130) to push away or ride over any anatomy that might be between the first treatment location (4) and the second treatment location (6), and the first treatment location (4) and the third treatment location (5). One ordinarily skilled in the art would understand that although a trident catheter system is illustrated and described herein, the same or a similar mechanism can be applied to a bident translatable catheter system, including a dual catheter system. Thus, the specific embodiments described herein should not be construed as limiting.



FIG. 8 illustrates another embodiment of the translation catheter system (200) according to the present teachings, where a first and a second catheter are connected by a segmented connecting bar. As seen in FIG. 8, the first catheter (10) connects to the second catheter (30) by at least one connecting bar (110). The at least one connecting bar (110) includes at least two segments (112) and at least one pivot (114).


In some embodiments, the at least one connecting bar (110) is made of a wire and the at least one pivot (114) is made of a single or double coil in the bar. In other embodiments, the at least one pivot (114) is achieved by breaking or disconnecting at least half of the cross section of the connecting bar (110), as shown in FIG. 8. One ordinarily skilled in the art would understand that other methods can also be used to create the at least one pivot on the connecting bar without departing from the letter and spirit of the present teachings. Thus the specific embodiments described herein should not be construed as limiting to the scope of the present teachings.


In some embodiments, as shown in FIG. 8, the at least one pivot (114) on the connecting bar (110) allows the adjacent segments to turn proximally so that the at least one pivot (114) is distal to at least one segment of the connecting bar (110). In other embodiments, the at least one pivot (114) on the connecting bar (110) allows the adjacent segments to turn distally so that the at least one pivot (114) is proximal to at least one segment of the connecting bar (110).


In various embodiments, the segmented connecting bar (110) reduces the space required for the distal-lateral movement of the second catheter (30) during translation, comparing to a non-segmented connecting bar. In other embodiments, the at least one segmented connecting bar (110) each includes two or more segments. In yet other embodiments, the at least one segmented connecting bar (110) each includes three or more segments (112) and two or more pivots (114) between each pair of segments.



FIG. 8 illustrates an exemplary translation of an embodiment of the present teachings. In various embodiments, the translation includes at least one step. In some embodiments, with the first wire (20) in place and the first catheter (10) steady, the second catheter (30) is pushed distally so that the segment (112a) of the connecting bar (110) that is connected with the first catheter swings distally first, as shown in FIG. 8. When the second catheter (30) is pushed further distally, the segment (112b) of the connecting bar (110) that is connected with the second catheter (30) swings distally so that the second catheter (30) reaches the second treatment location. In some embodiments, the translation of the second catheter (30) from the first location (4) is distal-lateral. In other embodiments, the translation of the second catheter (30) from the first location (4) is step-by-step.



FIG. 9 illustrates another exemplary translation catheter system. In the embodiments shown in FIG. 9, a translatable catheter system includes a bident catheter with a first catheter (10), a second catheter (30) operably connected by a segmented connecting bar (150) at their distal end. Unlike the embodiments described in connection with FIG. 8, the pivot (154) is proximal to all segments (152a, 152b) of the connecting bar (150). In this particular embodiment, the distal ends of the second catheter (30) is always leveled with the distal end of the first catheter (10) during translation, and the distal ends of the first and second catheter (10, 30) are at a substantially same proximity to the annulus.


In some embodiment, after the first wire (20) is put in place and the first catheter (10) is held steady, a clinician steers the distal end of the second catheter (30) laterally away from the distal end of the first catheter (10) causing the connecting bar (150) to unbend. Such a lateral translation of the second catheter (30) pushes away or rides over any tissues in its path and reduces the possibility of the second catheter being caught by the tissues.


According to one embodiment of the present teachings, by visualizing the angle formed between the two segments, a clinician can visualize and control the actual translation distance. Similar to various embodiments disclosed in the present teachings, the embodiments described in connection with FIG. 9 also provide a clinician with a continuous and adjustable catheter translation up to a maximum translation distance. In some embodiments, the translation of the second catheter (30) from the first location (4) is lateral. In other embodiments, the translation of the second catheter (30) from the first location (4) is continuous. In yet another embodiment, the translation distance of the second catheter (30) from the first location is adjustable. One ordinarily skilled in the art would understand that although a bident catheter system is illustrated and described herein, the same or a similar mechanism can be applied to a trident translatable catheter system. Thus, the specific embodiments described herein should not be construed as limiting. The second catheter (30) delivers a second wire (40) across the mitral annulus (2) at a second location (6). In other embodiments, the first and second wires (20, 40) are delivered across the annulus (2) simultaneously. In yet other embodiments, the first and second wires (20, 40) are delivered across the annulus (2) sequentially.



FIGS. 10A-10D illustrates another embodiment of the present teaching where a bi-lumen translation catheter system (200) is also configured to be steerable. According to some embodiments, the steerable bi-lumen translation catheter system (200) includes a steerable sheath body (202) with a distal portion (210) and a proximal end (not shown). The steerable sheath body (202) has two wire delivery catheter lumens (204, 206) extends from its proximal end (not shown) to its distal end (212) of the steerable sheath body (202). FIG. 10A illustrates a distal portion (210) of the steerable sheath body (202) having a side slot (214) extending longitudinally from one position (216) of the sheath body (202) all the way to its distal end (212). The slot (214) also extends radially from the second wire delivery lumen (206) all the way to the outer tubular surface of the steerable sheath body (202). The slot (214) is sized and configured to allow a second wire delivery catheter (240) to pivot radially outward to the outside of the steerable sheath body (202). According to some embodiments, the two wire delivery lumens (204, 206) are symmetrical to each other on each side of the longitudinal axis of the steerable sheath body (202). In another embodiment, the two wire delivery lumens (204, 206) can be arranged any other ways suitable for the function of the system.


According to some embodiments of the present teaching, the steerable sheath body (202) is configured to be steerable. As illustrated in FIG. 10A, the steerable sheath body (202) also has two steering wire lumens (208, 218) configured to housing two steering wires (216, 220). Similar to wire delivery catheter lumens (204, 206), the steerable wire lumens (208, 218) also extend from the proximal end of the steerable sheath body (202) longitudinally to the distal end (212). In some embodiments, the two steerable wire lumens (208, 218) are arranged symmetrically on each side of the longitudinal axis of the steerable sheath body (202). One skilled in the art should understand that the two steerable wire lumens (208, 218) can be arranged in other ways suitable for the purpose of the design.



FIG. 10B illustrates an exposed view of the steerable wires (216, 220) of the steerable bi-lumen translation catheter system (200). According to one embodiment, each of the steerable wires (216, 220) has a construct of a single longitudinal wire (222a, 222b) with a wire coil (224a, 224b) wrapping around. The distal ends of the wire coil (224a, 224b) and the single longitudinal wire (222a, 222b) are fixed together, and they are also fixed to the distal end (212) of the steerable sheath body (202). The proximal end of the wire coil (224a, 224b) is fixed to the control handle, and the proximal end of the single longitudinal wire (222a, 222b) is configured to be retracted inside the helix of the wire coil (224a, 224b).


According to one embodiment, as the proximal end of a first longitudinal wire (222a) is retracted, the first wire coil (224a) is shortened, and distal portion (210) of the steerable sheath body (202) is steered toward the direction where the first steering wire (216) resides. In another embodiment, as the proximal end of a second longitudinal wire (222b) is retracted, the second wire coil (224b) is shortened, and distal portion (210) of the steerable sheath body (202) is steered toward the direction where the second steering wire (220) resides. Thus, by manipulating either the first or the second longitudinal wires (216, 220), the distal end (212) of the steerable sheath body (202) can be steered to the direction as desired.


According to some embodiments, the steerable bi-lumen translation catheter system (200) further includes two wire delivery catheters (230, 240) as illustrated in FIG. 10A. The first wire delivery catheter (230) is configured to be slidably disposed within the first longitudinal wire delivery catheter lumen (204). The second delivery catheter (240) is configured to be slidably disposed within the second longitudinal wire delivery catheter lumen (206). According to some embodiments, each of the wire delivery catheters (230, 240) also has a tubular body extending from its proximal end to its distal end. The longitudinal lumens of the wire delivery catheters are configured to house a tissue piercing wires similar to what has been described above.


According to some embodiments, the second wire delivery catheter (240) is configured to translate laterally to a first distance from sheath body (202). As described above, the second wire delivery catheter (240) is slidably disposed within the second longitudinal wire delivery catheter lumen (206). The distal portion (244) of the second wire delivery catheter (240) resides within the slot (214) at the distal portion (210) of the steerable sheath body (202) as shown in FIG. 10A.



FIG. 10C illustrates an exposed view of the distal portion (244) of the second wire delivery catheter (240) and its translation mechanism. In some embodiments, the distal end (242) of the second wire delivery catheter (240) connects to a translation rod (250). FIG. 10C illustrates two translation rods (250a, 250b) that are connected to the distal end portion of the second wire delivery catheter (240) at two locations. One skilled in the art should understand, one translation rod, or more than two translation rods could be used for the purpose. Thus the exemplary embodiments shown here should not be viewed as limiting.



FIG. 10C further illustrates a translation rod lumen (260) extending from the distal portion (210) of the steerable sheath body (202) to its proximal end. The translation rod (250) is configured to be slidably disposed within the translation rod lumen (260). The proximal end of the translation rod (250) connects to the handle and being manipulated by a clinician outside of the body. As illustrated in FIG. 10C, the distal end (262) of the translation rod lumen (260) stop proximal to the distal end (252) of the shortest translation rod (250), and therefore not necessarily at the distal end (212) of the steerable sheath body (202).


According to some embodiments of the present teaching, a clinician pushes the proximal end of the translation rod (250), the distal end (252) of the translation rod (250) then pushes on the distal end (242) of the second wire delivery catheter (240). The distal portion (244) of the second wire delivery catheter (240) is then pushed outside of the slot (214) of the steerable sheath body (202), and continue moving laterally to a first distance as illustrated in FIG. 10D According to some embodiments, the translation distance is controlled by the amount of the translation rod (250) pushed by the clinician.


According to some embodiment, as illustrated in FIG. 10C, a distal portion (254) of the translation rod (250) has a pre-bent, which is configured to making sure the translation rod (250) remains a straight line as the distal portion (244) of the second wire delivery catheter (240) moves laterally. In another embodiment, the translation rod (250) is a flat wire band as illustrated in FIG. 10C, which also is configured to ensure that the translation rod (250) remains a straight line as the distal portion (244) of the second wire delivery catheter (240) moves laterally. One skilled in the art should understand that the translation rod could have other profile, such as stepped or smooth exterior, polygon and/or round cross section etc. Thus, the exemplary embodiment in FIG. 10C should not be viewed as limiting.


In some embodiments, the distal end (252) of the translation rod (250) connects to the distal end (242) of the second wire delivery catheter (240). In another embodiment, the distal end (252) of the translation rod (250) connects to a location along the distal portion (244) of the second wire delivery catheter (240). In some embodiment, the translation rod has a cross section size of 2-25 mm, and made of nitinol. Alternatively, the translation rod could be made of any suitable material known to those skilled in the art.


According to some embodiments, the steerable bi-lumen translation catheter system (200) with the second wire delivery catheter (240) collapsed inside the slot (214) of the steerable sheath body (202) is delivered together to the mitral annulus (2). When needed, the distal end of the steerable bi-lumen translation catheter system (200) is steered to the desired location by a clinician pulling on one or both of the steering wires (216, 220). While the first wire delivery catheter (230) is generally maintained perpendicular to the annulus (2) at the first treatment location (4), a first wire is advanced across the annulus (2) in a manner similar to those described in connection with FIG. 2.


In various embodiments, a second wire delivery catheter (240) continuously and adjustably translates away from a wire delivery catheter (230) and the distal portion (210) of the steerable bi-lumen translation catheter system (200) by pushing the translation rod (250) by a clinician. While holding the first wire in place, a clinician pushes the translation rod (250) to allow the distal end (242) of the second wire delivery catheter (240) to be steered away laterally outside of the slot (214) of the steerable bi-lumen translation catheter system (200). Similar to what has been described above, without intending to limit the scope of the present teachings, such a lateral movement avoids the distal end (242) of the second wire delivery catheter (240) from being caught, snag, or hung up by tissues in the left ventricle, and allows the second wire delivery catheter (240) pushing away any anatomy in the path of the translation.


Similarly, the length of the translation rod (250) determines the distance between the second wire delivery catheter (240) and the first wire delivery catheter (230). According to some embodiments, while the second wire delivery catheter (240) is maintained generally perpendicular to the annulus (2) at its second treatment location, a second tissue piercing wire is advanced across the annulus (2) in a manner similar to those described in connection with FIG. 2. FIG. 10D illustrates two wires piercing through the annulus (2). According to some embodiments, the tissue piercing wires are extended inside the wire delivery lumen to and cross annulus after the wire delivery catheter positioned at treatment location. According to some embodiments, the tissue piercing wires are preload inside the wire delivery lumen, and together the wire delivery catheter holding the tissue piercing wires inside are then positioned at treatment location. In some embodiments, when multiple wire delivery catheters presents at treatment location, the multiple tissue piercing wires extends and crosses the annulus simultaneously. In other embodiments, when multiple wire delivery catheters presents at treatment location, the multiple tissue piercing wires extends and crosses the annulus sequentially.


The translation catheter system (200) disclosed above are useful for delivering multiple wires across mitral annulus. One skilled in the art will further recognize that the translation catheter system (200) according to the present teachings could be used to deliver multiple wires across tricuspid annulus, or other heart tissue. In addition, the translation catheter system (200) according to the present teachings could be used to deliver tissue anchors, or other medical implants across a heart tissue.


Various embodiments have been illustrated and described herein by way of examples, and one of ordinary skill in the art will appreciate that variations can be made without departing from the spirit and scope of the present teachings. The present teachings are capable of other embodiments or of being practiced or carried out in various other ways, for example in combinations. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this present teachings belong. Methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present teachings. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

Claims
  • 1. A catheter system comprising: a first wire configured to be positioned at a first location;a translatable catheter configured to be positioned at a second location and be movable between a first position at which the translatable catheter is at or proximate the first location and a second position at which the translatable catheter is at the second location; anda translation element configured to move the translatable catheter from the first position to the second position in a substantially linear fashion, while the first wire is maintained at the first location,
  • 2. The catheter system of claim 1, wherein the first wire is disposed within an other catheter that is separate from the translatable catheter, wherein both the first wire and the translatable catheter are slidingly contained within lumens formed in a delivery sheath.
  • 3. The catheter system of claim 2, wherein the translation element operably connects the other catheter and the translatable catheter and permits the translatable catheter to move away from the other catheter from the first position to the second position.
  • 4. The catheter system of claim 2, wherein the one end of the tether is a free end that wraps around the other catheter.
  • 5. The catheter system of claim 2, wherein the one end of the tether is a fixed end that is connected with the other catheter.
  • 6. The catheter system of claim 5, wherein the tether further comprises a free end and the free end extends into a lumen of the translatable catheter and is accessible by the user.
  • 7. The catheter system of claim 6, wherein the translatable catheter includes a side opening formed therealong, the free end of the tether passing through the side opening into the lumen of the translatable catheter.
  • 8. The catheter system of claim 6, wherein the translatable catheter includes a side opening formed therealong and spaced from the distal end of the translatable catheter, wherein the distal end is an open distal end, the free end of the tether passing through the open distal end of the translatable catheter and along the lumen thereof before exiting through the side opening and being routed longitudinally along an outer surface of the translatable catheter.
  • 9. The catheter system of claim 2, wherein the preformed curved portion is formed of a memory material such that the preformed curved portion is elastically recoverable to assume the preformed curved shape.
  • 10. The catheter system of claim 1, further comprising a tracking element that is configured to track over and move longitudinally along the first wire, the translation element being coupled to the tracking element.
  • 11. The catheter system of claim 1, wherein a distance between the first location and the second location is adjustable.
  • 12. A catheter system comprising: a first catheter configured to be positioned at a first treatment location;a second catheter configured to be positioned at a second treatment location;a sheath that has a first lumen in which the first catheter is disposed and a second lumen in which the second catheter is disposed; anda translation mechanism operably connecting the first and second catheters, the translation mechanism being configured and actuatable to allow the second catheter to move laterally away from the first catheter for a prescribed distance so as to space the second catheter from the first catheter and position the second catheter at the second treatment location,
  • 13. The catheter system of claim 12, further comprising a control handle that is coupled to the sheath, and wherein, for each of the first and second steering wires, a proximal end of the wire coil is fixed to the control handle and a proximal end of the longitudinal wire is configured to be retracted inside a helix defined by the wire coil.
  • 14. The catheter system of claim 12, wherein the translation mechanism comprises a pusher assembly which travels longitudinally and causes the second catheter to pass through the side slot and extend radially outward from the distal end portion and be positioned at the second treatment location.
  • 15. A catheter system comprising: a first catheter configured to be positioned at a first treatment location;a second catheter configured to be positioned at a second treatment location;a sheath that has a first lumen in which the first catheter is disposed and a second lumen in which the second catheter is disposed; anda translation mechanism operably connecting the first and second catheters, the translation mechanism being configured and actuatable to allow the second catheter to move laterally away from the first catheter for a prescribed distance so as to space the second catheter from the first catheter and position the second catheter at the second treatment location,
  • 16. The catheter system of claim 15, wherein the sheath further includes first and second steering wire lumens that receive first and second steering wires, respectively, each of the first and second steering wires including a longitudinal wire with a wire coil being wrapped around the longitudinal wire, wherein distal ends of the longitudinal wire and the wire coil of each of the first and second steering wires are attached to one another and are attached to a distal end of the sheath.
  • 17. The catheter system of claim 16, further comprising a control handle that is coupled to the sheath, and wherein, for each of the first and second steering wires, a proximal end of the wire coil is fixed to the control handle and a proximal end of the longitudinal wire is configured to be retracted inside a helix defined by the wire coil.
  • 18. A catheter system comprising: a delivery sheath;a first wire configured to be positioned at a first location;a translatable catheter configured to be positioned at a second location and be movable between a first position at which the translatable catheter is at or proximate the first location and a second position at which the translatable catheter is at the second location;an other catheter that is separate from the translatable catheter, the first wire being disposed within the other catheter; anda translation element configured to move the translatable catheter from the first position to the second position in a substantially linear fashion, while the first wire is maintained at the first location, the translation element comprising a tether having: a fixed end that is connected with a catheter selected from the group consisting of the translatable catheter and the other catheter, anda free end that extends into a lumen of the translatable catheter and is accessible by a user,
  • 19. The catheter system of claim 18, wherein the translation element operably connects the other catheter and the translatable catheter and permits the translatable catheter to move away from the other catheter from the first position to the second position.
  • 20. The catheter system of claim 18, wherein the translatable catheter includes a side opening formed therealong, the free end of the tether passing through the side opening into the lumen of the translatable catheter.
  • 21. The catheter system of claim 18, wherein the translatable catheter includes a side opening formed therealong and spaced from an open distal end of the translatable catheter, the free end of the tether passing through the open distal end of the translatable catheter and along the lumen thereof before exiting through the side opening and being routed longitudinally along an outer surface of the translatable catheter.
  • 22. The catheter system of claim 18, wherein the translatable catheter has a preformed curved portion proximate a distal end thereof, the preformed curved portion being formed of a memory material such that the curved portion is elastically recoverable to assume a preformed curved shape.
  • 23. The catheter system of claim 18, wherein the translatable catheter has a preformed curved portion proximate a distal end thereof, and a second tether is attached to the preformed curved portion and is manipulable to cause actuation of the preformed curved portion resulting in the preformed curved portion assuming a preformed curved shape.
  • 24. The catheter system of claim 18, wherein a distal end of the translatable catheter is attached to a distal end of the other catheter and the translatable catheter has a plurality of side openings formed along a length thereof which permit the translatable catheter to bend, wherein a second wire passes through one of the side openings to the second location.
  • 25. The catheter system of claim 18, further comprising a tracking element that is configured to track over and move longitudinally along the first wire, the translation element being coupled to the tracking element.
  • 26. The catheter system of claim 18, wherein a distance between the first location and the second location is adjustable.
  • 27. The catheter system of claim 18, wherein the selected catheter is the other catheter, and the fixed end of the tether is connected to the other catheter.
CROSS REFERENCE TO RELATED APPLICATION

The present application is a divisional of U.S. patent application Ser. No. 14/210,967, filed Mar. 14, 2014 (now U.S. Pat. No. 9,724,195), which claims the benefit of U.S. provisional patent application Ser. No. 61/786,373, filed Mar. 15, 2013, which are hereby incorporated by reference as if expressly set forth in their respective entireties herein.

US Referenced Citations (809)
Number Name Date Kind
3604488 Wishart et al. Sep 1971 A
3656185 Carpentier Apr 1972 A
3840018 Heifetz Oct 1974 A
3881366 Bradley et al. May 1975 A
3898701 La Russa Aug 1975 A
4042979 Angell Aug 1977 A
4118805 Reimels Oct 1978 A
4214349 Munch Jul 1980 A
4245624 Komiya Jan 1981 A
4261342 Aranguren Duo Apr 1981 A
4290151 Massana Sep 1981 A
4434828 Trincia Mar 1984 A
4473928 Johnson Oct 1984 A
4602911 Ahmadi et al. Jul 1986 A
4625727 Leiboff Dec 1986 A
4712549 Peters et al. Dec 1987 A
4769005 Ginsburg et al. Sep 1988 A
4778468 Hunt et al. Oct 1988 A
4881524 Boebel Nov 1989 A
4917698 Carpentier et al. Apr 1990 A
4961738 Mackin Oct 1990 A
5042707 Taheri Aug 1991 A
5061277 Carpentier et al. Oct 1991 A
5064431 Gilbertson et al. Nov 1991 A
5104407 Lam et al. Apr 1992 A
5108420 Marks Apr 1992 A
5201880 Wright et al. Apr 1993 A
5258008 Wilk Nov 1993 A
5300034 Behnke et al. Apr 1994 A
5325845 Adair Jul 1994 A
5346498 Greelis et al. Sep 1994 A
5383852 Stevens-Wright Jan 1995 A
5415656 Tihon May 1995 A
5449368 Kuzmak Sep 1995 A
5450860 O'Connor Sep 1995 A
5464404 Abela et al. Nov 1995 A
5474518 Farrer Velazquez Dec 1995 A
5477856 Lundquist Dec 1995 A
5593424 Northrup, III Jan 1997 A
5601572 Middleman et al. Feb 1997 A
5626609 Zvenyatsky et al. May 1997 A
5643317 Pavcnik et al. Jul 1997 A
5649908 Itoh Jul 1997 A
5669919 Sanders et al. Sep 1997 A
5676653 Taylor et al. Oct 1997 A
5683402 Cosgrove et al. Nov 1997 A
5687723 Avitall Nov 1997 A
5693059 Yoon Dec 1997 A
5702397 Goble et al. Dec 1997 A
5702398 Tarabishy Dec 1997 A
5709695 Northrup, III Jan 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5716397 Myers Feb 1998 A
5728116 Rosenman Mar 1998 A
5730150 Peppel et al. Mar 1998 A
5749371 Zadini et al. May 1998 A
5782844 Yoon et al. Jul 1998 A
5810882 Bolduc et al. Sep 1998 A
5824066 Gross Oct 1998 A
5830221 Stein et al. Nov 1998 A
5843120 Israel et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5876373 Giba et al. Mar 1999 A
5879295 Li Mar 1999 A
5935098 Blaisdell et al. Aug 1999 A
5957953 DiPoto et al. Sep 1999 A
5961440 Schweich, Jr. et al. Oct 1999 A
5961539 Northrup, III et al. Oct 1999 A
5984959 Robertson et al. Nov 1999 A
6042554 Rosenman et al. Mar 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6048329 Thompson Apr 2000 A
6050936 Schweich, Jr. et al. Apr 2000 A
6059715 Schweich, Jr. et al. May 2000 A
6071279 Whayne Jun 2000 A
6074341 Anderson et al. Jun 2000 A
6074401 Gardiner et al. Jun 2000 A
6074417 Peredo Jun 2000 A
6086582 Altman et al. Jul 2000 A
6102945 Campbell Aug 2000 A
6106550 Magovern et al. Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6132390 Cookston et al. Oct 2000 A
6143024 Campbell et al. Nov 2000 A
6159240 Sparer et al. Dec 2000 A
6165119 Schweich, Jr. et al. Dec 2000 A
6174332 Loch et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6187040 Wright Feb 2001 B1
6203525 Whayne Mar 2001 B1
6210347 Forsell Apr 2001 B1
6217528 Koblish Apr 2001 B1
6217610 Carpentier et al. Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6251092 Qin et al. Jun 2001 B1
6296656 Bolduc et al. Oct 2001 B1
6315784 Djurovic Nov 2001 B1
6319281 Patel Nov 2001 B1
6328746 Gambale Dec 2001 B1
6332880 Yang Dec 2001 B1
6332893 Mortier et al. Dec 2001 B1
6355030 Aldrich et al. Mar 2002 B1
6361559 Houser et al. Mar 2002 B1
6368348 Gabbay Apr 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6406420 McCarthy et al. Jun 2002 B1
6406493 Tu et al. Jun 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6451054 Stevens Sep 2002 B1
6458076 Pruitt Oct 2002 B1
6461366 Seguin Oct 2002 B1
6470892 Forsell Oct 2002 B1
6503274 Howanec, Jr. et al. Jan 2003 B1
6524338 Gundry Feb 2003 B1
6530952 Veseiy Mar 2003 B2
6533772 Sherts et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6542781 Koblish Apr 2003 B1
6547801 Dargent et al. Apr 2003 B1
6554845 Fleenor et al. Apr 2003 B1
6564805 Garrison et al. May 2003 B2
6565603 Cox May 2003 B2
6569198 Wilson et al. May 2003 B1
6579297 Bicek et al. Jun 2003 B2
6589160 Schweich, Jr. et al. Jul 2003 B2
6592593 Parodi et al. Jul 2003 B1
6602288 Cosgrove et al. Aug 2003 B1
6602289 Colvin et al. Aug 2003 B1
6613046 Jenkins Sep 2003 B1
6613078 Barone Sep 2003 B1
6613079 Wolinsky et al. Sep 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6626930 Allen et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6632184 Truwit Oct 2003 B1
6645195 Bhat Nov 2003 B1
6651671 Donlon et al. Nov 2003 B1
6652556 VanTassel et al. Nov 2003 B1
6682558 Tu et al. Jan 2004 B2
6689125 Keith et al. Feb 2004 B1
6689164 Seguin Feb 2004 B1
6695866 Kuehn et al. Feb 2004 B1
6702826 Liddicoat et al. Mar 2004 B2
6702846 Mikus et al. Mar 2004 B2
6706065 Langberg et al. Mar 2004 B2
6709385 Forsell Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6711444 Koblish Mar 2004 B2
6719786 Ryan et al. Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726716 Marquez Apr 2004 B2
6726717 Alfieri et al. Apr 2004 B2
6730121 Ortiz et al. May 2004 B2
6749630 McCarthy et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764310 Ichihashi et al. Jul 2004 B1
6764510 Vidlund et al. Jul 2004 B2
6764810 Ma et al. Jul 2004 B2
6770083 Seguin Aug 2004 B2
6786924 Ryan et al. Sep 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790231 Liddicoat et al. Sep 2004 B2
6797001 Mathis et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6802319 Stevens et al. Oct 2004 B2
6805710 Bolling et al. Oct 2004 B2
6805711 Quijano et al. Oct 2004 B2
6855126 Flinchbaugh Feb 2005 B2
6858039 McCarthy Feb 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6893459 Macoviak May 2005 B1
6908478 Alferness et al. Jun 2005 B2
6908482 McCarthy et al. Jun 2005 B2
6916306 Jenkins Jul 2005 B1
6918917 Nguyen et al. Jul 2005 B1
6926730 Nguyen et al. Aug 2005 B1
6960217 Bolduc Nov 2005 B2
6964684 Ortiz et al. Nov 2005 B2
6964686 Gordon Nov 2005 B2
6976995 Mathis et al. Dec 2005 B2
6986775 Morales et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6997951 Solem et al. Feb 2006 B2
7004176 Lau Feb 2006 B2
7007798 Happonen et al. Mar 2006 B2
7011669 Kimblad Mar 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7037334 Hlavka et al. May 2006 B1
7087064 Hyde Jun 2006 B1
7077850 Kortenbach Jul 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7101396 Artof et al. Sep 2006 B2
7112207 Allen et al. Sep 2006 B2
7118595 Ryan et al. Oct 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7150737 Purdy et al. Dec 2006 B2
7159593 McCarthy et al. Jan 2007 B2
7166127 Spence et al. Jan 2007 B2
7169187 Datta et al. Jan 2007 B2
7172625 Shu et al. Feb 2007 B2
7175660 Cartledge et al. Feb 2007 B2
7186262 Saadat Mar 2007 B2
7186264 Liddicoat et al. Mar 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7192443 Solem et al. Mar 2007 B2
7220277 Arru et al. May 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7226477 Cox Jun 2007 B2
7226647 Kasperchik et al. Jun 2007 B2
7229452 Kayan Jun 2007 B2
7238191 Bachmann Jul 2007 B2
7288097 Seguin Oct 2007 B2
7294148 McCarthy Nov 2007 B2
7311728 Solem et al. Dec 2007 B2
7311729 Mathis et al. Dec 2007 B2
7314485 Mathis Jan 2008 B2
7316710 Cheng et al. Jan 2008 B1
7329279 Haug et al. Feb 2008 B2
7329280 Bolling et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7361190 Shaoulian et al. Apr 2008 B2
7364588 Mathis et al. Apr 2008 B2
7377941 Rhee et al. May 2008 B2
7390329 Westra et al. Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7431692 Zollinger et al. Oct 2008 B2
7442207 Rafiee Oct 2008 B2
7452376 Lim et al. Nov 2008 B2
7455690 Cartledge et al. Nov 2008 B2
7485142 Milo Feb 2009 B2
7485143 Webler et al. Feb 2009 B2
7500989 Solem et al. Mar 2009 B2
7507252 Lashinski et al. Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7510577 Moaddeb et al. Mar 2009 B2
7527647 Spence May 2009 B2
7530995 Quijano et al. May 2009 B2
7549983 Roue et al. Jun 2009 B2
7559936 Levine Jul 2009 B2
7562660 Saadat Jul 2009 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7569062 Kuehn et al. Aug 2009 B1
7585321 Cribier Sep 2009 B2
7588562 Starksen et al. Sep 2009 B2
7591326 Alferness et al. Sep 2009 B2
7604646 Goldfarb et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7608103 McCarthy Oct 2009 B2
7625403 Krivoruchko Dec 2009 B2
7632303 Stalker et al. Dec 2009 B1
7635329 Goldfarb et al. Dec 2009 B2
7635386 Gammie Dec 2009 B1
7655015 Goldfarb et al. Feb 2010 B2
7666204 Thornton et al. Feb 2010 B2
7682319 Martin et al. Mar 2010 B2
7682369 Seguin Mar 2010 B2
7686822 Shayani Mar 2010 B2
7699892 Rafiee et al. Apr 2010 B2
7704269 St. Goar et al. Apr 2010 B2
7704277 Zakay et al. Apr 2010 B2
7713278 Hess et al. May 2010 B2
7722666 Lafontaine May 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753924 Starksen et al. Jul 2010 B2
7758632 Hojeibane et al. Jul 2010 B2
7780726 Seguin Aug 2010 B2
7824443 Salahieh et al. Nov 2010 B2
7871368 Zollinger et al. Jan 2011 B2
7871433 Lattouf Jan 2011 B2
7883475 Dupont et al. Feb 2011 B2
7883538 To et al. Feb 2011 B2
7892281 Seguin et al. Feb 2011 B2
7927370 Webier et al. Apr 2011 B2
7927371 Navia et al. Apr 2011 B2
7942927 Kaye et al. May 2011 B2
7947056 Griego et al. May 2011 B2
7955315 Feinberg et al. Jun 2011 B2
7955377 Melsheirner Jun 2011 B2
7992567 Hirotsuka et al. Aug 2011 B2
7993368 Gambale et al. Aug 2011 B2
7993397 Lashinski et al. Aug 2011 B2
8012201 Lashinski et al. Sep 2011 B2
8034103 Burriesci et al. Oct 2011 B2
8052592 Goldfarb et al. Nov 2011 B2
8057493 Goldfarb et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8070804 Hyde et al. Dec 2011 B2
8070805 Vidlund et al. Dec 2011 B2
8075616 Solem et al. Dec 2011 B2
8100964 Spence Jan 2012 B2
8123801 Milo Feb 2012 B2
8142493 Spence et al. Mar 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8142496 Berreklouw Mar 2012 B2
8147542 Maisano et al. Apr 2012 B2
8152844 Rao et al. Apr 2012 B2
8163013 Machold et al. Apr 2012 B2
8187299 Goldfarb et al. May 2012 B2
8187324 Webler et al. May 2012 B2
8202315 Hlavka et al. Jun 2012 B2
8206439 Gomez Duran Jun 2012 B2
8216302 Wilson et al. Jul 2012 B2
8231671 Kim Jul 2012 B2
8262725 Subramanian Sep 2012 B2
8265758 Policker et al. Sep 2012 B2
8277502 Miller et al. Oct 2012 B2
8287584 Salahieh et al. Oct 2012 B2
8287591 Keidar et al. Oct 2012 B2
8292884 Levine et al. Oct 2012 B2
8303608 Goldfarb et al. Nov 2012 B2
8323334 Deem et al. Dec 2012 B2
8328868 Paul et al. Dec 2012 B2
8333777 Schaller et al. Dec 2012 B2
8343173 Starksen et al. Jan 2013 B2
8343174 Goldfarb et al. Jan 2013 B2
8343213 Salahieh et al. Jan 2013 B2
8349002 Milo Jan 2013 B2
8353956 Miller et al. Jan 2013 B2
8357195 Kuehn Jan 2013 B2
8382829 Call et al. Feb 2013 B1
8388680 Starksen et al. Mar 2013 B2
8393517 Milo Mar 2013 B2
8419825 Burgler et al. Apr 2013 B2
8430926 Kirson Apr 2013 B2
8449573 Chu May 2013 B2
8449599 Chau et al. May 2013 B2
8454686 Alkhatib Jun 2013 B2
8460370 Zakay Jun 2013 B2
8460371 Hlavka et al. Jun 2013 B2
8475491 Milo Jul 2013 B2
8475525 Maisano et al. Jul 2013 B2
8480732 Subramanian Jul 2013 B2
8518107 Tsukashima et al. Aug 2013 B2
8523940 Richardson et al. Sep 2013 B2
8551161 Dolan Oct 2013 B2
8585755 Chau et al. Nov 2013 B2
8591576 Hasenkam et al. Nov 2013 B2
8602970 Muyari Dec 2013 B2
8608797 Gross et al. Dec 2013 B2
8628569 Benichou et al. Jan 2014 B2
8628571 Hacohen et al. Jan 2014 B1
8641727 Starksen et al. Feb 2014 B2
8652202 Alon et al. Feb 2014 B2
8652203 Quadri et al. Feb 2014 B2
8679174 Ottma et al. Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8728097 Sugimoto et al. May 2014 B1
8728155 Montorfano et al. May 2014 B2
8734467 Miller et al. May 2014 B2
8734699 Heideman et al. May 2014 B2
8740920 Goldfarb et al. Jun 2014 B2
8747463 Fogarty et al. Jun 2014 B2
8778021 Cartledge Jul 2014 B2
8784481 Alkhatib et al. Jul 2014 B2
8790367 Nguyen et al. Jul 2014 B2
8790394 Miller et al. Jul 2014 B2
8795298 Hernlund et al. Aug 2014 B2
8795355 Alkhatib Aug 2014 B2
8795356 Quadri et al. Aug 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8808368 Maisano et al. Aug 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8845723 Spence et al. Sep 2014 B2
8852261 White Oct 2014 B2
8852272 Gross et al. Oct 2014 B2
8858623 Miller et al. Oct 2014 B2
8864822 Spence et al. Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870949 Rowe Oct 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8889861 Skead et al. Nov 2014 B2
8894702 Quadri et al. Nov 2014 B2
8911461 Traynor et al. Dec 2014 B2
8911494 Hammer et al. Dec 2014 B2
8926696 Cabiri et al. Jan 2015 B2
8926697 Gross et al. Jan 2015 B2
8932343 Alkhatib et al. Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8940044 Hammer et al. Jan 2015 B2
8945211 Sugimoto Feb 2015 B2
8951285 Sugimoto et al. Feb 2015 B2
8951286 Sugimoto et al. Feb 2015 B2
8961595 Alkhatib Feb 2015 B2
8961602 Kovach et al. Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8992420 Maahs Mar 2015 B2
8992604 Gross et al. Mar 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9011520 Miller et al. Apr 2015 B2
9011530 Reich et al. Apr 2015 B2
9023100 Quadri et al. May 2015 B2
9072603 Tuval et al. Jul 2015 B2
9107749 Bobo et al. Aug 2015 B2
9119719 Zipory et al. Sep 2015 B2
9125632 Loulmet et al. Sep 2015 B2
9125742 Yoganathan et al. Sep 2015 B2
9138316 Bielefeld Sep 2015 B2
9173646 Fabro Nov 2015 B2
9180005 Lashinski et al. Nov 2015 B1
9180007 Reich et al. Nov 2015 B2
9192472 Gross et al. Nov 2015 B2
9198756 Aklog et al. Dec 2015 B2
9226825 Starksen et al. Jan 2016 B2
9265608 Miller et al. Feb 2016 B2
9326857 Cartledge et al. May 2016 B2
9414921 Miller et al. Aug 2016 B2
9427316 Schweich, Jr. et al. Aug 2016 B2
9474606 Zipory et al. Oct 2016 B2
9526613 Gross et al. Dec 2016 B2
9561104 Miller et al. Feb 2017 B2
9693865 Gilmore et al. Jul 2017 B2
9724195 Goodwin Aug 2017 B2
9730793 Reich et al. Aug 2017 B2
9788941 Hacohen Oct 2017 B2
9801720 Gilmore et al. Oct 2017 B2
9907547 Gilmore et al. Mar 2018 B2
10368852 Gerhardt et al. Aug 2019 B2
20010021874 Carpentier et al. Sep 2001 A1
20020022862 Grafton et al. Feb 2002 A1
20020082525 Oslund et al. Jun 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020103532 Langberg et al. Aug 2002 A1
20020151916 Muramatsu et al. Oct 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020169358 Mortier et al. Nov 2002 A1
20020177904 Huxel et al. Nov 2002 A1
20020188301 Dallara et al. Dec 2002 A1
20020188350 Arru et al. Dec 2002 A1
20020198586 Inoue Dec 2002 A1
20030050693 Quijano et al. Mar 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030078653 Vesely et al. Apr 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030114901 Loeb et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030144657 Bowe et al. Jul 2003 A1
20030171760 Gambale Sep 2003 A1
20030199974 Lee et al. Oct 2003 A1
20030204195 Keane et al. Oct 2003 A1
20030229350 Kay Dec 2003 A1
20030229395 Cox Dec 2003 A1
20040010287 Bonutti Jan 2004 A1
20040019359 Worley et al. Jan 2004 A1
20040019377 Taylor et al. Jan 2004 A1
20040024451 Johnson et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040059413 Argento Mar 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040133274 Webler et al. Jul 2004 A1
20040133374 Kattan Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040138745 Macoviak et al. Jul 2004 A1
20040148019 Vidlund et al. Jul 2004 A1
20040148020 Vidlund et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040162568 Saadat Aug 2004 A1
20040176788 Opolski Sep 2004 A1
20040181287 Gellman Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040243227 Starksen et al. Dec 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260393 Rahdert et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267358 Reitan Dec 2004 A1
20050004668 Aklog et al. Jan 2005 A1
20050010287 Macoviak et al. Jan 2005 A1
20050010787 Tarbouriech Jan 2005 A1
20050016560 Voughlohn Jan 2005 A1
20050049692 Numamoto et al. Mar 2005 A1
20050055038 Kelleher et al. Mar 2005 A1
20050055087 Starksen Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050065601 Lee et al. Mar 2005 A1
20050070999 Spence Mar 2005 A1
20050075727 Wheatley Apr 2005 A1
20050090827 Gedebou Apr 2005 A1
20050090834 Chiang et al. Apr 2005 A1
20050096740 Langberg et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050119734 Spence et al. Jun 2005 A1
20050125002 Baran et al. Jun 2005 A1
20050125011 Spence et al. Jun 2005 A1
20050131533 Alfieri et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137700 Spence Jun 2005 A1
20050159728 Armour et al. Jul 2005 A1
20050171601 Cosgrove et al. Aug 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050177228 Solem et al. Aug 2005 A1
20050187568 Klenk et al. Aug 2005 A1
20050192596 Jugenheimer et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203606 VanCamp Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050222665 Aranyi Oct 2005 A1
20050234296 Saadat Oct 2005 A1
20050256532 Nayak et al. Nov 2005 A1
20050267478 Corradi et al. Dec 2005 A1
20050272977 Saadat Dec 2005 A1
20050273138 To et al. Dec 2005 A1
20050288778 Shaoulian et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060004443 Liddicoat et al. Jan 2006 A1
20060020326 Bolduc et al. Jan 2006 A9
20060020327 Lashinski et al. Jan 2006 A1
20060020333 Lashinski et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060025858 Alameddine Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060041319 Taylor et al. Feb 2006 A1
20060069429 Spence et al. Mar 2006 A1
20060074486 Liddicoat et al. Apr 2006 A1
20060085012 Dolan Apr 2006 A1
20060095009 Lampropoulos et al. May 2006 A1
20060106423 Weisel et al. May 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060122633 To et al. Jun 2006 A1
20060129166 Lavelle Jun 2006 A1
20060149280 Harvie et al. Jul 2006 A1
20060149368 Spence Jul 2006 A1
20060161265 Levine et al. Jul 2006 A1
20060184240 Jimenez et al. Aug 2006 A1
20060184242 Lichtenstein Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060206203 Yang et al. Sep 2006 A1
20060241622 Zergiebel Oct 2006 A1
20060241656 Starksen et al. Oct 2006 A1
20060241748 Lee et al. Oct 2006 A1
20060247763 Slater Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060271175 Woolfson et al. Nov 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287661 Bolduc et al. Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20070001627 Lin et al. Jan 2007 A1
20070016287 Cartledge et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070021781 Jervis et al. Jan 2007 A1
20070027533 Douk Feb 2007 A1
20070027536 Mihaljevic et al. Feb 2007 A1
20070038221 Fine et al. Feb 2007 A1
20070038293 St Goar et al. Feb 2007 A1
20070038296 Navia et al. Feb 2007 A1
20070039425 Wang Feb 2007 A1
20070049942 Hindrichs et al. Mar 2007 A1
20070049970 Belef et al. Mar 2007 A1
20070051377 Douk et al. Mar 2007 A1
20070055206 To et al. Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070080188 Spence et al. Apr 2007 A1
20070083168 Whiting et al. Apr 2007 A1
20070100427 Perouse May 2007 A1
20070106328 Wardle et al. May 2007 A1
20070112359 Kimura et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118213 Loulmet May 2007 A1
20070118215 Moaddeb May 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070198082 Kapadia et al. Aug 2007 A1
20070219558 Deutsch Sep 2007 A1
20070239208 Crawford Oct 2007 A1
20070255397 Ryan et al. Nov 2007 A1
20070255400 Parravicini et al. Nov 2007 A1
20070270755 Von Oepen et al. Nov 2007 A1
20070276437 Call et al. Nov 2007 A1
20070282375 Hindrichs et al. Dec 2007 A1
20070282429 Hauser et al. Dec 2007 A1
20070295172 Swartz Dec 2007 A1
20070299387 Williams Dec 2007 A1
20080004697 Lichtenstein et al. Jan 2008 A1
20080027483 Cartledge et al. Jan 2008 A1
20080027555 Hawkins Jan 2008 A1
20080035160 Woodson et al. Feb 2008 A1
20080039935 Buch et al. Feb 2008 A1
20080051703 Thornton et al. Feb 2008 A1
20080058595 Snoke et al. Mar 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080065204 Macoviak et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080086138 Stone et al. Apr 2008 A1
20080086203 Roberts Apr 2008 A1
20080091169 Heideman et al. Apr 2008 A1
20080091257 Andreas et al. Apr 2008 A1
20080097523 Bolduc et al. Apr 2008 A1
20080103572 Gerber May 2008 A1
20080140116 Bonutti Jun 2008 A1
20080167713 Bolling Jul 2008 A1
20080167714 St. Goar et al. Jul 2008 A1
20080195126 Solem Aug 2008 A1
20080195200 Vidlund et al. Aug 2008 A1
20080208265 Frazier et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080228165 Spence et al. Sep 2008 A1
20080228267 Spence et al. Sep 2008 A1
20080262480 Stahler et al. Oct 2008 A1
20080262609 Gross et al. Oct 2008 A1
20080275300 Rothe et al. Nov 2008 A1
20080275469 Fanton et al. Nov 2008 A1
20080275551 Alfieri Nov 2008 A1
20080281353 Aranyi et al. Nov 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080288044 Osborne Nov 2008 A1
20080288062 Andrieu et al. Nov 2008 A1
20080300537 Bowman Dec 2008 A1
20080300629 Surti Dec 2008 A1
20090028670 Garcia et al. Jan 2009 A1
20090043381 Macoviak et al. Feb 2009 A1
20090054969 Salahieh et al. Feb 2009 A1
20090062866 Jackson Mar 2009 A1
20090076586 Hauser et al. Mar 2009 A1
20090076600 Quinn Mar 2009 A1
20090088837 Gillinov et al. Apr 2009 A1
20090093877 Keidar et al. Apr 2009 A1
20090099650 Bolduc et al. Apr 2009 A1
20090105816 Olsen et al. Apr 2009 A1
20090125102 Cartledge et al. May 2009 A1
20090163934 Raschdorf et al. Jun 2009 A1
20090171439 Nissl Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090177274 Scorsin et al. Jul 2009 A1
20090182268 Thielen Jul 2009 A1
20090204083 O'Donnell Aug 2009 A1
20090240206 Lunn et al. Sep 2009 A1
20090248148 Shaolian et al. Oct 2009 A1
20090254103 Deutsch Oct 2009 A1
20090264994 Saadat Oct 2009 A1
20090287231 Brooks et al. Nov 2009 A1
20090287304 Dahlgren et al. Nov 2009 A1
20090299409 Coe et al. Dec 2009 A1
20090306757 Meyer Dec 2009 A1
20090326648 Machold et al. Dec 2009 A1
20100001038 Levin et al. Jan 2010 A1
20100010538 Juravic et al. Jan 2010 A1
20100016655 Annest et al. Jan 2010 A1
20100023118 Medlock et al. Jan 2010 A1
20100030014 Ferrazzi Feb 2010 A1
20100030328 Seguin et al. Feb 2010 A1
20100042147 Janovsky et al. Feb 2010 A1
20100056985 Weber Mar 2010 A1
20100063542 van der Burg et al. Mar 2010 A1
20100063550 Felix et al. Mar 2010 A1
20100076499 McNamara et al. Mar 2010 A1
20100094248 Nguyen et al. Apr 2010 A1
20100114180 Rock et al. May 2010 A1
20100121349 Meier et al. May 2010 A1
20100121435 Subramanian et al. May 2010 A1
20100121437 Subramanian et al. May 2010 A1
20100130992 Machold et al. May 2010 A1
20100152845 Bloom et al. Jun 2010 A1
20100161043 Maisano et al. Jun 2010 A1
20100168845 Wright Jul 2010 A1
20100174358 Rabkin et al. Jul 2010 A1
20100179574 Longoria et al. Jul 2010 A1
20100217184 Koblish et al. Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100234935 Bashiri et al. Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100249915 Zhang Sep 2010 A1
20100249920 Bolling et al. Sep 2010 A1
20100262232 Annest Oct 2010 A1
20100262233 He Oct 2010 A1
20100280316 Dietz Nov 2010 A1
20100286628 Gross Nov 2010 A1
20100292614 Delaney Nov 2010 A1
20100305475 Hinchliffe et al. Dec 2010 A1
20100324598 Anderson Dec 2010 A1
20110004210 Johnson et al. Jan 2011 A1
20110004298 Lee et al. Jan 2011 A1
20110009956 Cartledge et al. Jan 2011 A1
20110011917 Loulmet Jan 2011 A1
20110026208 Utsuro et al. Feb 2011 A1
20110029066 Gilad et al. Feb 2011 A1
20110035000 Nieminen et al. Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110067770 Pederson et al. Mar 2011 A1
20110071626 Wright et al. Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110087146 Ryan et al. Apr 2011 A1
20110093002 Rucker et al. Apr 2011 A1
20110118832 Punjabi May 2011 A1
20110137410 Hacohen Jun 2011 A1
20110144703 Krause et al. Jun 2011 A1
20110202130 Cartledge et al. Aug 2011 A1
20110208283 Rust Aug 2011 A1
20110230941 Markus Sep 2011 A1
20110230961 Langer et al. Sep 2011 A1
20110238088 Bolduc et al. Sep 2011 A1
20110257433 Walker Oct 2011 A1
20110257633 Cartledge et al. Oct 2011 A1
20110264208 Duffy et al. Oct 2011 A1
20110276062 Bolduc Nov 2011 A1
20110288435 Christy et al. Nov 2011 A1
20110301498 Maenhout et al. Dec 2011 A1
20120078355 Zipory et al. Mar 2012 A1
20120078359 Li et al. Mar 2012 A1
20120089022 House et al. Apr 2012 A1
20120095552 Spence et al. Apr 2012 A1
20120109155 Robinson et al. May 2012 A1
20120150290 Gabbay Jun 2012 A1
20120158021 Morrill Jun 2012 A1
20120179086 Shank et al. Jul 2012 A1
20120191182 Hauser et al. Jul 2012 A1
20120226349 Tuval et al. Sep 2012 A1
20120232346 Suda Sep 2012 A1
20120239142 Liu et al. Sep 2012 A1
20120245604 Tegzes Sep 2012 A1
20120271198 Whittaker et al. Oct 2012 A1
20120296349 Smith et al. Nov 2012 A1
20120296417 Hill et al. Nov 2012 A1
20120310330 Buchbinder et al. Dec 2012 A1
20120323313 Seguin Dec 2012 A1
20130030522 Rowe et al. Jan 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130079873 Migliazza et al. Mar 2013 A1
20130085529 Housman Apr 2013 A1
20130090631 Anderson Apr 2013 A1
20130090724 Subramanian et al. Apr 2013 A1
20130096673 Hill et al. Apr 2013 A1
20130116776 Gross et al. May 2013 A1
20130123910 Cartledge et al. May 2013 A1
20130131791 Hlavka et al. May 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130184528 Onuki Jul 2013 A1
20130190863 Call et al. Jul 2013 A1
20130204361 Adams et al. Aug 2013 A1
20130226289 Shaolian et al. Aug 2013 A1
20130226290 Yellin et al. Aug 2013 A1
20130268069 Zakai et al. Oct 2013 A1
20130289718 Tsukashima et al. Oct 2013 A1
20130297013 Klima et al. Nov 2013 A1
20130304093 Serina et al. Nov 2013 A1
20140081394 Keranen et al. Mar 2014 A1
20140088368 Park Mar 2014 A1
20140094826 Sutherland et al. Apr 2014 A1
20140094903 Miller et al. Apr 2014 A1
20140094906 Spence et al. Apr 2014 A1
20140114390 Tobis et al. Apr 2014 A1
20140135799 Henderson May 2014 A1
20140142619 Serina et al. May 2014 A1
20140142695 Gross et al. May 2014 A1
20140148849 Serina et al. May 2014 A1
20140155783 Starksen et al. Jun 2014 A1
20140163670 Alon et al. Jun 2014 A1
20140163690 White Jun 2014 A1
20140188108 Goodine et al. Jul 2014 A1
20140188140 Meter et al. Jul 2014 A1
20140188215 Hlavka et al. Jul 2014 A1
20140194976 Starksen et al. Jul 2014 A1
20140207231 Hacohen et al. Jul 2014 A1
20140243859 Robinson Aug 2014 A1
20140243894 Groothuis et al. Aug 2014 A1
20140243963 Sheps et al. Aug 2014 A1
20140275757 Goodwin et al. Sep 2014 A1
20140276648 Hammer et al. Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140303649 Nguyen et al. Oct 2014 A1
20140303720 Sugimoto et al. Oct 2014 A1
20140309661 Sheps et al. Oct 2014 A1
20140309730 Alon et al. Oct 2014 A1
20140343668 Zipory et al. Nov 2014 A1
20140350660 Cocks et al. Nov 2014 A1
20140379006 Sutherland et al. Dec 2014 A1
20150018940 Quill et al. Jan 2015 A1
20150051697 Spence et al. Feb 2015 A1
20150081014 Gross et al. Mar 2015 A1
20150112432 Reich et al. Apr 2015 A1
20150127097 Neumann et al. May 2015 A1
20150182336 Zipory et al. Jul 2015 A1
20150272586 Herman et al. Oct 2015 A1
20150272734 Sheps et al. Oct 2015 A1
20150282931 Brunnett et al. Oct 2015 A1
20150351910 Gilmore et al. Dec 2015 A1
20160008132 Cabiri et al. Jan 2016 A1
20160058557 Reich et al. Mar 2016 A1
20160113767 Miller et al. Apr 2016 A1
20160120645 Alon May 2016 A1
20160158008 Miller et al. Jun 2016 A1
20160242762 Gilmore et al. Aug 2016 A1
20160262755 Zipory et al. Sep 2016 A1
20160302917 Schewel Oct 2016 A1
20160317302 Madjarov et al. Nov 2016 A1
20160361058 Bolduc et al. Dec 2016 A1
20160361168 Gross et al. Dec 2016 A1
20160361169 Gross et al. Dec 2016 A1
20170000609 Gross et al. Jan 2017 A1
20170224489 Starksen et al. Aug 2017 A1
20170245993 Gross et al. Aug 2017 A1
20180049875 Iflah et al. Feb 2018 A1
20180318080 Quill et al. Nov 2018 A1
20190038411 Alon Feb 2019 A1
Foreign Referenced Citations (11)
Number Date Country
1034753 Sep 2000 EP
3531975 Sep 2019 EP
9205093 Apr 1992 WO
9846149 Oct 1998 WO
02085250 Feb 2003 WO
03047467 Jun 2003 WO
WO2004098701 Nov 2004 WO
2010000454 Jan 2010 WO
WO 2012111761 Aug 2012 WO
2012176195 Mar 2013 WO
2014064964 May 2014 WO
Non-Patent Literature Citations (29)
Entry
Agarwal et al. International Cardiology Perspective Functional Tricuspid Regurgitation, Circ Cardiovasc Interv 2009;2;2;565-573 (2009).
Ahmadi, A., G. Spillner, and Th Johannesson. “Hemodynamic changes following experimental production and correction of acute mitral regurgitation with an adjustable ring prosthesis,” The Thoracic and cardiovascular surgeon36.06 (1988): 313-319.
Ahmadi, Ali et al. “Percutaneously adjustable pulmonary artery band.” The Annals of thoracic surgery 60 (1995): S520-S522.
Alfieri et al,“Novel Suture Device for Beating-Heart Mitral Leaflet Approximation”, Ann Thorac Surg. 2002, 74:1488-1493.
Alfieri et al., “An effective technique to correct anterior mitral leaflet prolapse,” J Card 14(6):468-470 (1999).
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic Cardiovascular Surgery 122:674-681 (2001).
Alfieri et al., “The edge to edge technique,” The European Association for Cardio-Thoracic Surgery 14th Annual Meeting Oct. 7-11, Book of Procees. (2000).
Alfieri, “The edge-to-edge repair of the mitral valve,” [Abstract] 6th Annual NewEra Cardiac Care: Innovation & Technology, Heart Surgery Forum pp. 103. (2000).
Amplatzer Cardiac Plug brochure (English pages); AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011).
AMPLATZER® Cribriform Occluder. A patient guide to Percutaneous, Transcatheter, Atrial Septal Defect Closuer, AGA Medical Corporation, Apr. 2008.
AMPLATZER® Septal Occluder. A patient guide to the Non-Surgical Closuer of the Atrial Septal Defect Using the AMPLATZER Septal Occluder System, AGA Medical Corporation, Apr. 2008.
Assad, Renato S. “Adjustable Pulmonary Artery Banding,” (2014).
Brennan, Jennifer, 510(k) Summary of safety and effectiveness, Jan. 2008.
Daebritz, S. et al. “Experience with an adjustable pulmonary artery banding device in two cases: initial success-midterm failure.” The Thoracic and cardiovascular surgeon 47.01 (1999): 51-52.
Dang NC et al. “Simplified Placement of Multiple Artificial Mitral Valve Chords,” The Heart Surgery Forum #2005-1005, 8(3) (2005).
Dictionary,com definition of “lock”, Jul. 29, 2013.
Dieter RS, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003).
Elliott, Daniel S., Gerald W. Timm, and David M. Barrett. “An implantable mechanical urinary sphincter: a new nonhydraulic design concept.” Urology52.6 (1998): 1151-1154.
Langer et al. Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation, The Journal of Thoracic Cardiovascular surgery vol. 133 No. 1, Jan. 2007.
Langer et al. RING+STRING, Successful Repair technique for ischemic mitral regurgitation with severe leaflet Tethering, The Department of Thoracic Cardiovascular surgery, Hamburg, Germany, Nov. 2008.
Maisano, “The double-orifice technique as a standardized approach to treat mitral,” European Journal of Cardio-thoracic Surgery 17 (2000) 201-205.
O'Reilly S et al., “Heart valve surgery pushes the envelope,” Medtech Insight 8(3): 73, 99-108 (2006).
Odell JA et al., “Early Results o4yf a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995).
Park, Sang C. et al. “A percutaneously adjustable device for banding of the pulmonary trunk.” International journal of cardiology 9.4 (1965): 477-484.
Swain CP et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994).
Swenson, O. An experimental implantable urinary sphincter. Invest Urol. Sep. 1976;14(2):100-3.
Swenson, O. and Malinin, T.I., 1978. An improved mechanical device for control of urinary incontinence. Investigative urology, 15(5), pp. 389-391.
Swenson, Orvar. “Internal device for control of urinary incontinence.” Journal of pediatric surgery 7.5 (1972): 542-545.
Tajik, Abdul, “Two dimensional real-time ultrasonic imaging of the heart and great vessels”, Mayo Clin Proc. vol. 53:271-303, 1978.
Related Publications (1)
Number Date Country
20180125659 A1 May 2018 US
Provisional Applications (1)
Number Date Country
61786373 Mar 2013 US
Divisions (1)
Number Date Country
Parent 14210967 Mar 2014 US
Child 15642963 US