Transmembrane proteins

Abstract
The invention provides human transmembrane proteins (TMP) and polynucleotides which identify and encode TMP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of TMP.
Description


TECHNICAL FIELD

[0001] This invention relates to nucleic acid and amino acid sequences of transmembrane proteins and to the use of these sequences in the diagnosis, treatment, and prevention of reproductive, developmental, cardiovascular, neurological, gastrointestinal, lipid metabolism, cell proliferative, and autoimmune/inflammatory disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of transmembrane proteins.



BACKGROUND OF THE INVENTION

[0002] Eukaryotic organisms are distinct from prokaryotes in possessing many intracellular membrane-bound compartments such as organelles and vesicles. Many of the metabolic reactions which distinguish eukaryotic biochemistry from prokaryotic biochemistry take place within these compartments. In particular, many cellular functions require very stringent reaction conditions, and the organelles and vesicles enable compartmentalization and isolation of reactions which might otherwise disrupt cytosolic metabolic processes. The organelles include mitochondria, smooth and rough endoplasmic reticula, sarcoplasmic reticulum, and the Golgi body. The vesicles include phagosomes, lysosomes, endosomes, peroxisomes, and secretory vesicles. Organelles and vesicles are bounded by single or double membranes.


[0003] Biological membranes surround organelles, vesicles, and the cell itself. Membranes are highly selective permeability barriers made up of lipid bilayer sheets composed of phosphoglycerides, fatty acids, cholesterol, phospholipids, glycolipids, proteoglycans, and proteins. Membranes contain ion pumps, ion channels, and specific receptors for external stimuli which transmit biochemical signals across the membranes. These membranes also contain second messenger proteins which interact with these pumps, channels, and receptors to amplify and regulate transmission of these signals.



Plasma Membrane Proteins

[0004] Transmembrane proteins (TMP) are characterized by extracellular, transmembrane, and intracellular domains. TMP domains are typically comprised of 15 to 25 hydrophobic amino acids which are predicted to adopt an α-helical conformation. TNT are classified as bitopic (Types I and II) proteins, which span the membrane once, and polytopic (Types III and IV) (Singer, S. J. (1990) Annu. Rev. Cell Biol. 6:247-96) proteins, which contain multiple membrane-spanning segments. TMP that act as cell-surface receptor proteins involved in signal transduction include growth and differentiation factor receptors, and receptor-interacting proteins such as Drosophila pecanex and frizzled proteins, LIV-1 protein, NF2 protein, and GNS1/SUR4 eukaryotic integral membrane proteins. TMP also act as transporters of ions or metabolites, such as gap junction channels (connexins) and ion channels, and as cell anchoring proteins, such as lectins, integrins, and fibronectins. TMP function as vesicle and organelle-forming molecules, such as caveolins; or cell recognition molecules, such as cluster of differentiation (CD) antigens, glycoproteins, and mucins.


[0005] The transport of hydrophilic molecules across membranes is facilitated by the presence of channel proteins which form aqueous pores which can perforate a lipid bilayer. Many channels consist of protein complexes formed by the assembly of multiple subunits, at least one of which is an integral membrane protein that contributes to formation of the pore. In some cases, the pore is constructed to allow selective passage of only one or a few molecular species. Distinct types of membrane channels that differ greatly in their distribution and selectivity include: (1) aquaporins, which transport water; (2) protein-conducting channels, which transport proteins across the endoplasmic reticulum membrane; (3) gap junctions, which facilitate diffusion of ions and small organic molecules between neighboring cells; and (4) ion channels, which regulate ion flux through various membranes.


[0006] Gap junctions (also called connexons) are specialized regions of the plasma membrane comprising transmembrane channels that function chemically and electrically to couple the cytoplasms of neighboring cells in many tissues. Gap junctions function as electrical synapses for intercellular propagation of action potentials in excitable tissues. In nonexcitable tissues, gap junctions have roles in tissue homeostasis, coordinated physiological response, metabolic cooperation, growth control, and the regulation of development and differentiation.


[0007] Each connexon, which spans the lipid bilayer of the plasma membrane, is composed of six identical subunits called connexins. At least fourteen distinct connexin proteins exist, with each having similar structures but differing tissue distributions. Structurally, the connexins consist of a short cytoplasmic N-terminal domain connected to four transmembrane spanning regions (M1, M2, M3 and M4) which separate two extracellular and one cytoplasmic loop followed by a C-terminal, cytoplasmic domain of variable length (20 resides in Cx26 to 260 residues in Cx56). The M2-M3 loop and the N- and C-termini are oriented towards the cell cytoplasm. Conserved regions include the membrane spanning regions and the two extracellular loops. Within the extracellular loops are three conserved cysteines which are involved in disulfide bond formation. Signature patterns for these two loops are either: C-[DN]-T-x-Q-P-G-C-x-(2)-V-C-Y-D or C-x(3,4)-P-C-x(3)-[LIVM]-[DEN]-C-[FY]-[LIVM]-[SA]-[KR]-P (PDOC00341, Profilescan and S. Rabman and W. H. Evans, (1991) J. Cell Sci. 100:567-578). The variable regions, which include the cytoplasmic loop and the C-terminal region, may be responsible for the regulation of different connexins. (See Hennemann, H. et al. (1992) J. Biol. Chem. 267:17225-17233; PRINTS PR00206 connexin signature; Yeager, M. et al., (1998) Curr. O. Structr. Biol. 8:517-524.)


[0008] Gap junctions help to synchronize heart and smooth muscle contraction, speed neural transmission, and propagate extracellular signals. Gap junctions can open and close in response to particular stimuli (e.g., pH, Ca+2, and cAMP). The effective pore size of a gap junction is approximately 1.5 nm, which enables small molecules (e.g., those under 1000 daltons) to diffuse freely through the pore. Transported molecules include ions, small metabolites, and second messengers (e.g., Ca+2 and cAMP).


[0009] Connexins have many disease associations. Female mice lacking connexin 37 (Cx37) are infertile due to the absence of the oocyte-granulosa cell signaling pathway. Mice lacking Cx43 die shortly after birth and show cardiac defects reminiscent of some forms of stenosis of the pulmonary artery in humans. Mutations in Cx32 are associated with the X-linked form of Charcot-Marie-Tooth disease, a motor and sensory neuropathy of the peripheral nervous system Cx26 is expressed in the placenta, and Cx26-deficient mice show decreased transplacental transport of a glucose analog from the maternal to the fetal circulation. In humans, Cx26 has been identified as the first susceptibility gene for non-syndromnic sensorineural autosomal deafness. Mutations in in Cx31 have been linked with an autosomal-dominant hearing impairment (a nonsense or missense mutation in the second extracellular loop) and in a dominantly transmitted skin disorder, erythrokeratodermia variabilis (missense mutations in either the N-terminal domain or the M2 domain.) (See A. M. Simon, (1999) Trends Cell Biol. 9:169-170). Cx46 is expressed in lens fiber cells, and Cx46-deficient mice develop early-onset cataracts that resemble human nuclear cataracts. (See Nicholson, S. M. and R. Bruzzone (1997) Curr. Biol. 7:R340-R344.)


[0010] Plasma membrane proteins (MPs) are divided into two groups based upon methods of protein extraction from the membrane. Extrinsic or peripheral membrane proteins can be released using extremes of ionic strength or pH, urea, or other disruptors of protein interactions. Intrinsic or integral membrane proteins are released only when the lipid bilayer of the membrane is dissolved by detergent.


[0011] Many membrane proteins (MPs) contain amino acid sequence motifs that serve to localize proteins to specific subcellular sites. Examples of these motifs include PDZ domains, KDEL, RGD, NGR, and GSL sequence motifs, von Willebrand factor A (vWFA) domains, and EGF-like domains. RGD, NGR, and GSL motif-containing peptides have been used as drug delivery agents in targeted cancer treatment of tumor vasculature (Arap, W. et al. (1998) Science, 279:377-380). Membrane proteins may also contain amino acid sequence motifs that serve to interact with extracellular or intracellular molecules, such as carbohydrate recognition domains.


[0012] Chemical modification of amino acid residue side chains alters the manner in which MPs interact with other molecules, such as membrane phospholipids. Examples of such chemical modifications include the formation of covalent bonds with glycosaminoglycans, oligosaccharides, phospholipids, acetyl and palmitoyl moieties, ADP-ribose, phosphate, and sulphate groups.


[0013] RNA encoding membrane proteins may have alternative splice sites which give rise to proteins encoded by the same gene but with different messenger RNA and amino acid sequences. Splice variant membrane proteins may interact with other ligand and protein isoforms.


[0014] Transmembrane proteins of the plasma membrane also include cell surface receptors. These receptors recognize hormones such as catecholamines, e.g., epinephrine, norepinephrine, and histamine; peptide hormones, e.g., glucagon, insulin, gastrin, secretin, cholecystokinin, adrenocorticotropic hormone, follicle stimulating hormone, luteinizing hormone, thyroid stimulating hormone, parathyroid hormone, and vasopressin; growth and differentiation factors, e.g., epidermal growth factor, fibroblast growth factor, transforming growth factor, insulin-like growth factor, platelet-derived growth factor, nerve growth factor, colony-stimulating factors, and erythropoietin; cytokines, e.g., chemokines, interleukins, interferons, and tumor necrosis factor; small peptide factors such as bombesin, oxytocin, endothelin, angiotensin II, vasoactive intestinal peptide, and bradykinin; neurotransmitters such as neuropeptide Y, neurotensin, neuromedin N, melanocortins, opioids, e.g., enkephalins, endorphins and dynorphins; galanin, somatostatin, and tachykinins; and circulatory system-borne signaling molecules, e.g., angiotensin, complement, calcitonin, endothelins, and formyl-methionyl peptides. Cell surface receptors on immune system cells recognize antigens, antibodies, and major histocompatibility complex (MHC)-bound peptide. Other cell surface receptors bind ligands to be internalized by the cell. This receptor-mediated endocytosis functions in the uptake of low density lipoproteins (LDL), transferrin, glucose- or mannose-terminal glycoproteins, galactose-terminal glycoproteins, immunoglobulins, phosphovitellogenins, fibrin, proteinase-inhibitor complexes, plasminogen activators, and thrombospondin. (Lodish, H. et al. (1995) Molecular Cell Biology, Scientific American Books, New York, N.Y., p. 723; and Mikhailenko, I. et al. (1997) J. Biol. Chem. 272:6784-6791.)


[0015] Many cell surface receptors have seven transmembrane regions, with an extracellular N-terminus that binds ligand and a cytoplasmic C-terminus that interacts with G proteins. (Strosberg, A. D. (1991) Eur. J. Biochem. 196:1-10.) Cysteine-rich domains are found in two families of cell surface receptors, the LDL receptor family and the tumor necrosis factor receptor/nerve growth factor (TNFR/NGFR) receptor family. Seven successive cysteine-rich repeats of about forty amino acids in the N-terminal extracellular region of the LDL receptor form the binding site for LDL and calcium; similar repeats have been found in vertebrate very low density lipoprotein receptor, vertebrate low-density lipoprotein receptor-related protein 1 (LRP1) (also known as α2-macroglobulin receptor), and vertebrate low-density lipoprotein receptor-related protein 2 (also known as gp330 or megalin) (WxPASy PROSITE d cument PDOC00929; and Bairoch, A et al. (1997) Nucl. Acids. Res. 25:217-221.) The structure f the repeat is a β-hairpin followed by a series of β-turns; there are six disulfide-bonded cysteines within each repeat.


[0016] The LDL receptor is an integral membrane protein which functions in lipid uptake by removing cholesterol from the blood. Most cells outside the liver and intestine take up cholesterol from the blood rather than synthesize it themselves. Cell surface LDL receptors bind LDL particles which are then internalized by endocytosis (Meyers, R. A (1995) Molecular Biology and Biotechnology, VCH Publishers, New York N.Y., pp. 494-501). Absence of the LDL receptor, the cause of the disease familial hypercholesterolemia, leads to increased plasma cholesterol levels and ultimately to atherosclerosis (Stryer, L. (1995) Biochemistry, W. H. Freeman, New York N.Y., pp. 691-702).



G-Protein Coupled Receptors

[0017] G-protein coupled receptors (GPCR) comprise a superfamily of integral membrane proteins which transduce extracellular signals. GPCRs include receptors for biogenic amines, lipid mediators of inflammation, peptide hormones, and sensory signal mediators.


[0018] The structure of these highly-conserved receptors consists of seven hydrophobic transmembrane (serpentine) regions, cysteine disulfide bridges between the second and third extracellular loops, an extracellular N-terminus, and a cytoplasmic C-terminus. Three extracellular loops alternate with three intracellular loops to link the seven transmembrane regions. The most conserved parts of these proteins are the transmembrane regions and the first two cytoplasmic loops. Cysteine disulfide bridges connect the second and third extracellular loops. A conserved, acidic-Arg-aromatic residue triplet present in the second cytoplasmic loop may interact with G proteins. A GPCR consensus pattern is characteristic of most proteins belonging to this superfamily (ExPASy PROSITE document PS00237; and Watson, S. and S. Arkinstall (1994) The G-protein Linked Receptor Facts Book, Academic Press, San Diego, Calif., pp 2-6). Mutations and changes in transcriptional activation of GPCR-encoding genes have been associated with neurological disorders such as schizophrenia, Parkinson's disease, Alzheimer's disease, drug addiction, and feeding disorders. The juvenile development and fertility-2 (jdf-2) locus, also called runty-jerky-sterile (rjs), is associated with deletions and point mutations in HERC2, a gene encoding a guanine nucleotide exchange factor protein involved in vesicular trafficking (Walkowicz, M. et al. (1999) Mamm. Genome 10:870-878).


[0019] A GPCR known as FP is the receptor for prostaglandin F (PGF). The prostaglandins belong to a large family of naturally occurring paracrine/autocrine mediators of physiologic and inflammatory responses. PGFplays a role in responses of certain tissues such as reproductive tract, lung, bone, and heart, including the stimulation of myometrial contraction, corpus luteum breakdown, and bronchoconstriction. An FP-associated molecule (FPRP) is copurified with FP and is expressed only in those tissues where a physiological role for PGFhas been described. FPRP is predicted to be a transmembrane protein with glycosolated extracellular immunoglobulin loops and a short, highly charged intracellular domain. FPRP appears to be a negative regulator of PGFbinding to FP. As such, FPRP may be associated with PGFrelated diseases, which may include dysmenorrhea, infertility, asthma, or cardiomyophathy (Orlicky, D. J. et al. (1996) Hum. Genet. 97:655-658).



Scavenger Receptors

[0020] Macrophage scavenger receptors with broad ligand specificity may participate in the binding of low density lipoproteins (LDL) and foreign antigens. Scavenger receptors types I and II are trimeric membrane proteins with each subunit containing a small N-terminal intracellular domain, a transmembrane domain, a large extracellular domain, and a C-terminal cysteine-rich domain. The extracellular domain contains a short spacer domain, an α-helical coiled-coil domain, and a triple helical collagenous domain. These receptors have been shown to bind a spectrum of ligands, including chemically modified lipoproteins and albumin, polyribonucleotides, polysaccharides, phospholipids, and asbestos (Matsumoto, A. et al. (1990) Proc. Natl. Acad. Sci. 87:9133-9137; and Elomaa, O. et al. (1995) Cell 80:603-609). The scavenger receptors are thought to play a key role in atherogenesis by mediating uptake of modified LDL in arterial walls, and in host defense by binding bacterial endotoxins, bacteria, and protozoa.



Tetraspan Family Proteins

[0021] The transmembrane 4 superfamily (TM4SF), or tetraspan family, is a multigene family encoding type III integral membrane proteins (Wright, M. D. and Tomlinson, M. G. (1994) Immunol. Today 15:588-594). TM4SF is comprised of membrane proteins which traverse the cell membrane four times. Members of the TM4SF include platelet and endothelial cell membrane proteins, melanoma-associated antigens, leukocyte surface glycoproteins, colonal carcinoma antigens, tumor-associated antigens, and surface proteins of the schistosome parasites (Jankowski, S. A. (1994) Oncogene 9:1205-1211). Members of the TM4SP share about 25-30% amino acid sequence identity with one another.


[0022] A number of TM4SF members have been implicated in signal transduction, control of cell adhesion, regulation of cell growth and proliferation, including development and oncogenesis, and cell motility, including tumor cell metastasis. Expression of TM4SF proteins is associated with a variety of tumors, and the level of expression may be altered when cells are growing or activated.



Tumor Antigens

[0023] Tumor antigens are surface molecules that are differentially expressed in tumor cells relative to normal cells. Tumor antigens distinguish tumor cells immunologically from normal cells and provide diagnostic and therapeutic targets for human cancers (Takagi, S. et al. (1995) Int. J. Cancer 61: 706-715; Liu, E. et al. (1992) Oncogene 7: 1027-1032).



Ion Channels

[0024] Ion channels are found in the plasma membranes of virtually every cell in the body. For example, chloride channels mediate a variety of cellular functions including regulation of membrane potential and absorption and secretion of ions across epithelial membranes. When present in intracellular membranes of the Golgi apparatus and endocytic vesicles, chloride channels also regulate organelle pH (see, e.g., Greger, R. (1988) Annu. Rev. Physiol. 50:111-122). Electrophysiological and pharmacological properties of chloride channels, including ion conductance, current-voltage relationships, and sensitivity to modulators, suggest that different chloride channels exist in muscles, neurons, fibroblasts, epithelial cells, and lymphocytes.


[0025] Many channels have sites for phosphorylation by one or more protein kinases including protein kinase A, protein kinase C, casein kinase II, and tyrosine kinases, all of which regulate ion channel activity in cells. Inappropriate phosphorylation of membrane proteins has been correlated with pathological changes in cell cycle progression and cell differentiation. Changes in the cell cycle have been linked to induction of apoptosis or cancer. Changes in cell differentiation have been linked to diseases and disorders of the reproductive system, immune system, and skeletal muscle.


[0026] Cerebellar granule neurons possess a non-inactivating potassium current which modulates firing frequency upon receptor stimulation by neurotransmitters and controls the resting membrane potential. Potassium channels that exhibit non-inactivating currents include the ether a go-go (EAG) channel. A membrane protein designated KCR1 specifically binds to rat EAG by means of its C-terminal region and regulates the cerebellar non-inactivating potassium current. KCR1 is predicted to contain 12 transmembrane domains, with intracellular amino and carboxyl termini. Structural characteristics of these transmembrane regions appear to be similar to those of the transporter superfamily, but no homology between KCR1 and known transporters was found, suggesting that KCR1 belongs to a novel class of transporters. KCR1 appears to be the regulatory component of non-inactivating potassium channels (Hoshi, N. et al. (1998) J. Biol. Chem. 273:23080-23085).



Proton Pumps

[0027] Proton ATPases are a large class of membrane proteins that use the energy of ATP hydrolysis to generate an electrochemical proton gradient across a membrane. The resultant gradient may be used to transport other ions across the membrane (Na+, K+, or Cl) or to maintain organelle pH. Proton ATPases are further subdivided into the mitochondrial F-ATPases, the plasma membrane ATPases, and the vacuolar ATPases. The vacuolar ATPases establish and maintain an acidic pH within various vesicles involved in the processes of endocytosis and exocytosis (Mellman, I. et al. (1986) Ann. Rev. Biochem. 55:663-700).


[0028] Proton-coupled, 12 membrane-spanning domain transporters such as PEPT 1 and PEPT 2 are responsible for gastrointestinal absorption and for renal reabsorption of peptides using an electrochemical H+ gradient as the driving force. Another type of peptide transporter, the TAP transporter, is a heterodimer consisting of TAP 1 and TAP 2 and is associated with antigen processing. Peptide antigens are transported across the membrane of the endoplasmic reticulum by TAP so they can be expressed on the cell surface in association with MHC molecules. Each TAP protein consists of multiple hydrophobic membrane spanning segments and a highly conserved ATP-binding cassette (Boll, M. et al. (1996) Proc. Natl. Acad. Sci. 93:284-289). Pathogenic microorganisms, such as herpes simplex virus, may encode inhibitors of TAP-mediated peptide transport in order to evade immune surveillance (Marusina, K. and Manaco, J. J. (1996) Curr. Opin. Hematol. 3:19-26).



ABC Transporters

[0029] The ATP-binding cassette (ABC) transporters, also called the “traffic ATPases,” comprise a superfamily of membrane proteins that mediate transport and channel functions in prokaryotes and eukaryotes (Higgins, C. F. (1992) Annu. Rev. Cell Biol. 8:67-113). ABC proteins share a similar overall structure and significant sequence homology. All ABC proteins contain a conserved domain of approximately two hundred amino acid residues which includes one or more nucleotide binding domains. Mutations in ABC transporter genes are associated with various disorders, such as hyperbilirubinemia II/Dubin-Johnson syndrome, recessive Stargardt's disease, X-linked adrenoluekodystrophy, multidrug resistance, celiac disease, and cystic fibrosis.



Membrane Proteins Associated with Intercellular Communication

[0030] Intercellular communication is essential for the development and survival of multicellular organisms. Cells communicate with one another through the secretion and uptake of protein signaling molecules. The uptake of proteins into the cell is achieved by endocytosis, in which the interaction of signaling molecules with the plasma membrane surface, often via binding to specific receptors, results in the formation of plasma membrane-derived vesicles that enclose and transport the molecules into the cytosol. The secretion of proteins from the cell is achieved by exocytosis, in which molecules inside of the cell are packaged into membrane-bound transport vesicles derived from the trans Golgi network. These vesicles fuse with the plasma membrane and release their contents into the surrounding extracellular space. Endocytosis and exocytosis result in the removal and addition of plasma membrane components, and the recycling of these components is essential to maintain the integrity, identity, and functionality of both the plasma membrane and internal membrane-bound compartments.


[0031] Synaptobrevins are synaptic vesicle-associated membrane proteins (VAMPs) which were first discovered in rat brain. These proteins were initially thought to be limited to neuronal cells and to function in the movement of vesicles from the plasmalemma of one cell, across the synapse, to the plasmalemma of another cell. Synaptobrevins are now known to occur and function in constitutive vesicle trafficking pathways involving receptor-mediated endocytotic and exocytotic pathways of many non-neuronal cell types. This regulated vesicle trafficking pathway may be blocked by the highly specific action of clostridial neurotoxins which cleave the synaptobrevin molecule.


[0032] In vitro studies of various cellular membranes (Galli et al. (1994) J. Cell. Biol. 125:1015-24; Link et al. (1993) J. Biol. Chem. 268:18423-6) have shown that VAMPS are widely distributed. These important membrane trafficking proteins appear to participate in axon extension via exocytosis during development, in the release of neurotransmitters and modulatory peptides, and in endocytosis. Endocytotic vesicular transport includes such intracellular events as the fusions and fissions of the nuclear membrane, endoplasmic reticulum, Golgi apparatus, and various inclusion bodies such as peroxisomes or lysosomes. Endocytotic processes appear to be universal in eukaryotic cells as diverse as yeast, Caenorhabditis elegans, Drosophila, and mammals.


[0033] VAMP-1B is involved in subcellular targeting and is an isoform of VAMP-1A (Isenmann, S. et al. (1998) Mol. Biol. Cell 9:1649-1660). Four additional splice variants (VAMP-1C to F) have recently been identified. Each variant has variable sequences only at the extreme C-terminus, suggesting that the C-terminus is important in vesicle targeting (Berglund, L. et al. (1999) Biochem. Biophys. Res. Commun. 264:777-780).


[0034] Lysosomes are the site of degradation of intracellular material during autophagy, and of extracellular molecules following endocytosis. Lysosomal enzymes are packaged into vesicles which bud from the trans-Golgi network. These vesicles fuse with endosomes to form the mature lysosome in which hydrolytic digestion of endocytosed material occurs. Lysosomes can fuse with autophagosomes to form a unique compartment in which the degradation of organelles and other intracellular components occurs.


[0035] Protein sorting by transport vesicles, such as the endosome, has important consequences for a variety of physiological processes including cell surface growth, the biogenesis of distinct intracellular organelles, endocytosis, and the controlled secretion of hormones and neurotransmitters (Rothman, J. E. and Wieland, F. T. (1996) Science 272:227-234). In particular, neurodegenerative disorders and other neuronal pathologies are associated with biochemical flaws during endosomal protein sorting or endosomal biogenesis (Mayer R. J. et al. (1996) Adv. Exp. Med. Biol. 389:261-269).


[0036] Peroxisomes are organelles independent from the secretory pathway. They are the site of many peroxide-generating oxidative reactions in the cell. Peroxisomes are unique among eukaryotic organelles in that their size, number, and enzyme content vary depending upon organism, cell type, and metabolic needs (Waterham, H. R. and Cregg, J. M. (1997) BioEssays 19:57-66). Genetic defects in peroxisome proteins which result in peroxisomal deficiencies have been linked to a number of human pathologies, including Zellweger syndrome, rhizomelic chondrodysplasia punctata, X-linked adrenoleukodystrophy, acyl-CoA oxidase deficiency, bifunctional enzyme deficiency, classical Refsum's disease, DHAP alkyl transferase deficiency, and acatalasemia (Moser, H. W. and Moser, A. B. (1996) Ann. NY Acad. Sci. 804:427-441). In addition, Gartner, J. et al. (1991; Pediatr. Res. 29:141-146) found a 22 kDa integral membrane protein associated with lower density peroxisome-like subcellular fractions in patients with Zellweger syndrome.


[0037] Normal embryonic development and control of germ cell maturation is modulated by a number of secretory proteins which interact with their respective membrane-bound receptors. Cell fate during embryonic development is determined by members of the activin/TGF-β superfamily, cadherins, IGF-2, and other morphogens. In addition, proliferation, maturation, and redifferentiation of germ cell and reproductive tissues are regulated, for example, by IGF-2, inhibins, activins, and follistatins (Petraglia, F. (1997) Placenta 18:3-8; Mather, J. P. et al. (1997) Proc. Soc. Exp. Biol. Med. 215:209-222).



Endoplasmic Reticulum Membrane Proteins

[0038] The normal functioning of the eukaryotic cell requires that all newly synthesized proteins be correctly folded, modified, and delivered to specific intra- and extracellular sites. Newly synthesized membrane and secretory proteins enter a cellular sorting and distribution network during or immediately after synthesis and are routed to specific locations inside and outside of the cell. The initial compartment in this process is the endoplasmic reticulum (ER) where proteins undergo modifications such as glycosylation, disulfide bond formation, and oligomerization. The modified proteins are then transported through a series of membrane-bound compartments which include the various cisternae of the Golgi complex, where further carbohydrate modifications occur. Transport between compartments occurs by means of vesicle budding and fusion. Once within the secretory pathway, proteins do not have to cross a membrane to reach the cell surface.


[0039] Although the majority of proteins processed through the ER are transported out of the organelle, some are retained. The signal for retention in the ER in mammalian cells consists of the tetrapeptide sequence, KDEL, located at the carboxyl terminus of resident ER membrane proteins (Munro, S. (1986) Cell 46:291-300). Proteins containing this sequence leave the ER but are quickly retrieved from the early Golgi cisternae and returned to the ER, while proteins lacking this signal continue through the secretory pathway.


[0040] Disruptions in the cellular secretory pathway have been implicated in several human diseases. In familial hypercholesterolemia the low density lipoprotein receptors remain in the ER, rather than moving to the cell surface (Pathak, R. K. (1988) J. Cell Biol. 106:1831-1841). Altered transport and processing of the β-amyloid precursor protein (βAPP) involves the putative vesicle transport protein presenilin and may play a role in early-onset Alzheimer's disease (Levy-Lahad, E. et al. (1995) Science 269:973-977). Changes in ER-derived calcium homeostasis have been associated with diseases such as cardiomyopathy, cardiac hypertrophy, myotonic dystrophy, Brody disease, Smith-McCort dysplasia, and diabetes mellitus.



Mit Chondrial Membrane Proteins

[0041] The mitochondrial electron transport (or respiratory) chain is a series of three enzyme complexes in the mitochondrial membrane that is responsible for the transport of electrons from NADH to oxygen and the coupling of this oxidation to the synthesis of ATP (oxidative phosphorylation). ATP then provides the primary source of energy for driving the many energy-requiring reactions of a cell.


[0042] Most of the protein components of the mitochondrial respiratory chain are the products of nuclear encoded genes that are imported into the mitochondria, and the remainder are products of mitochondrial genes. Defects and altered expression of enzymes in the respiratory chain are associated with a variety of disease conditions in man, including, for example, neurodegenerative diseases, myopathies, and cancer.



Lymphocyte and Leukocyte Membrane Proteins

[0043] The B-cell response to antigens is an essential component of the normal immune system. Mature B cells recognize foreign antigens through B cell receptors (BCR) which are membrane-bound, specific antibodies that bind foreign antigens. The antigen/receptor complex is internalized, and the antigen is proteolytically processed. To generate an efficient response to complex antigens, the BCR, BCR-associated proteins, and T cell response are all required. Proteolytic fragments of the antigen are complexed with major histocompatability complex-II (MHCII) molecules on the surface of the B cells where the complex can be recognized by T cells. In contrast, macrophages and other lymphoid cells present antigens in association with MHCI molecules to T cells. T cells recognize and are activated by the MHCI-antigen complex through interactions with the T cell receptor/CD3 complex, a T cell-surface multimeric protein located in the plasma membrane. T cells activated by antigen presentation secrete a variety of lymphokines that induce B cell maturation and T cell proliferation, and activate macrophages, which kill target cells.


[0044] Leukocytes have a fundamental role in the inflammatory and immune response, and include monocytes/macrophages, mast cells, polymorphonucleoleukocytes, natural killer cells, neutrophils, eosinophils, basophils, and myeloid precursors. Leukocyte membrane proteins include members of the CD antigens, N-CAM, I-CAM, human leukocyte antigen (HLA) class I and HLA class II gene products, immunoglobulins, immunoglobulin receptors, complement, complement receptors, interferons, interferon receptors, interleukin receptors, and chemokine receptors.


[0045] Abnormal lymphocyte and leukocyte activity has been associated with acute disorders such as AIDS, immune hypersensitivity, leukemias, leukopenia, systemic lupus, granulomatous disease, and eosinophilia.



Apoptosis-Associated Membrane Proteins

[0046] A variety of ligands, receptors, enzymes, tumor suppressors, viral gene products, pharmacological agents, and inorganic ions have important positive or negative roles in regulating and implementing the apoptotic destruction of a cell. Although some specific components of the apoptotic pathway have been identified and characterized, many interactions between the proteins involved are undefined, leaving major aspects of the pathway unknown.


[0047] A requirement for calcium in apoptosis was previously suggested by studies showing the involvement of calcium levels in DNA cleavage and Fas-mediated cell death (Hewish, D. R. and L. A. Burgoyne (1973) Biochem. Biophys. Res. Comm. 52:504-510; Vignaux, F. et al. (1995) J. Exp. Med. 181:781-786; Oshimi, Y. and S. Miyazaki (1995) J. Immunol. 154:599-609). Other studies show that intracellular calcium concentrations increase when apoptosis is triggered in thymocytes by either T cell receptor cross-linking or by glucocorticoids, and cell death can be prevented by blocking this increase (McConkey, D. J. et al. (1989) J. Immunol. 143:1801-1806; McConkey, D. J. et al. (1989) Arch. Biochem. Biophys. 269:365-370). Therefore, membrane proteins such as calcium channels and the Fas receptor are important for the apoptotic response.


[0048] The discovery of new transmembrane proteins, and the polynucleotides encoding them, satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of reproductive, developmental, cardiovascular, neurological, gastrointestinal, lipid metabolism, cell proliferative, and autoimmune/inflammatory disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of transmembrane proteins.



SUMMARY OF THE INVENTION

[0049] The invention features purified polypeptides, transmembrane proteins, referred to collectively as “TNT” and individually as “TMP-1,” “TMP-2,” “TMP-3,” “TMP-4,” “TMP-5,” “TMP-6,” “TMP-7,” “TMP-8,” “TMP-9,” “TMP-10,” “TMP-11,” “TMP-12,” “TMP-13,” “TMP-14,” “TMP-15,” “TMP-16,” and “TMP-17.” In one aspect, the invention provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-17.


[0050] The invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO:1-17. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:18-34.


[0051] Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.


[0052] The invention also provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.


[0053] Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17.


[0054] The invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34,c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.


[0055] Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous nucleotides.


[0056] The invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.


[0057] The invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, and a pharmaceutically acceptable excipient. In one embodiment, the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-17. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional TMP, comprising administering to a patient in need of such treatment the composition.


[0058] The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional TMP, comprising administering to a patient in need of such treatment the composition.


[0059] Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional TMP, comprising administering to a patient in need of such treatment the composition.


[0060] The invention further provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.


[0061] The invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-17, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.


[0062] The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.


[0063] The invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Alternatively, the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.



BRIEF DESCRIPTION OF THE TABLES

[0064] Table 1 summaries the nomenclature for the full length polynucleotide and polypeptide sequences of the present invention.


[0065] Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for polypeptides of the invention. The probability scores for the matches between each polypeptide and its homolog(s) are also shown. Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.


[0066] Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.


[0067] Table 5 shows the representative cDNA library for polynucleotides of the invention.


[0068] Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.


[0069] Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.



DESCRIPTION OF THE INVENTION

[0070] Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.


[0071] It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “a host cell” includes a plurality of such host cells, and a reference to “an antibody” is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.


[0072] Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.



DEFINITIONS

[0073] “TMP” refers to the amino acid sequences of substantially purified TMP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.


[0074] The term “agonist” refers to a molecule which intensifies or mimics the biological activity of TMP. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TMP either by directly interacting with TMP or by acting on components of the biological pathway in which TMP participates.


[0075] An “allelic variant” is an alternative form of the gene encoding TMP. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.


[0076] “Altered” nucleic acid sequences encoding TMP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as TMP or a polypeptide with at least one functional characteristic of TMP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding TMP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding TMP. The encoded protein may also be “altered,” and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent TMP. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of TMP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.


[0077] The terms “amino acid” and “amino acid sequence” refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where “amino acid sequence” is recited to refer to a sequence of a naturally occurring protein molecule, “amino acid sequence” and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.


[0078] “Amplification” relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.


[0079] The term “antagonist” refers to a molecule which inhibits or attenuates the biological activity of TMP. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TMP either by directly interacting with TMP or by acting on components of the biological pathway in which TMP participates.


[0080] The term “antibody” refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab′)2, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind TMP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.


[0081] The term “antigenic determinant” refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.


[0082] The term “aptamer” refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target. Aptamers are derived from an in vitro evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by Exponential Enrichment), described in U.S. Pat. No. 5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries. Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules. The nucleotide components of an aptamer may have modified sugar groups (e.g., the 2′-OH group of a ribonucleotide may be replaced by 2′-F or 2′-NH2), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood. Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system. Aptamers may be specifically cross-linked to their cognate ligands, e.g., by photo-activation of a cross-linker. (See, e.g., Brody, E. N. and L. Gold (2000) J. Biotechnol. 74:5-13.)


[0083] The term “intramer” refers to an aptamer which is expressed in vivo. For example, a vaccinia virus-based RNA expression system has been used to express specific RNA aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl. Acad. Sci. USA 96:3606-3610).


[0084] The term “spiegelmer” refers to an aptamer which includes L-DNA, L-RNA, or other left-handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right-handed nucleotides.


[0085] The term “antisense” refers to any composition capable of base-pairing with the “sense” (coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2′-methoxyethyl sugars or 2′-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2′-deoxyuracil, or 7-deaza-2′-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation “negative” or “minus” can refer to the antisense strand, and the designation “positive” or “plus” can refer to the sense strand of a reference DNA molecule.


[0086] The term “biologically active” refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, “immunologically active” or “immunogenic” refers to the capability of the natural, recombinant, or synthetic TMP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.


[0087] “Complementary” describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5′-AGT-3′ pairs with its complement, 3′-TCA-5′.


[0088] A “composition comprising a given polynucleotide sequence” and a “composition comprising a given amino acid sequence” refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding TMP or fragments of TMP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).


[0089] “Consensus sequence” refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City Calif.) in the 5′ and/or the 3′ direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison Wis.) or Phrap (University of Washington, Seattle Wash.). Some sequences have been both extended and assembled to produce the consensus sequence.


[0090] “Conservative amino acid substitutions” are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.
1Original ResidueConservative SubstitutionAlaGly, SerArgHis, LysAsnAsp, Gln, HisAspAsn, GluCysAla, SerGlnAsn, Glu, HisGluAsp, Gln, HisGlyAlaHisAsn, Arg, Gln, GluIleLeu, ValLeuIle, ValLysArg, Gln, GluMetLeu, IlePheHis, Met, Leu, Trp, TyrSerCys, ThrThrSer, ValTrpPhe, TyrTyrHis, Phe, TrpValIle, Leu, Thr


[0091] Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.


[0092] A “deletion” refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides:


[0093] The term “derivative” refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.


[0094] A “detectable label” refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.


[0095] “Differential expression” refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.


[0096] “Exon shuffling” refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled through the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.


[0097] A “fragment” is a unique portion of TMP or the polynucleotide encoding TMP which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.


[0098] A fragment of SEQ ID NO:18-34 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:18-34, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID NO:18-34is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:18-34 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:18-34 and the region of SEQ ID NO:18-34 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.


[0099] A fragment of SEQ ID NO:1-17 is encoded by a fragment of SEQ ID NO:18-34. A fragment of SEQ ID NO:1-17 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-17. For example, a fragment of SEQ ID NO:1-17 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-17. The precise length of a fragment of SEQ ID NO:1-17 and the region of SEQ ID NO:1-17 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.


[0100] A “full length” polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A “full length” polynucleotide sequence encodes a “full length” polypeptide sequence.


[0101] “Homology” refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.


[0102] The terms “percent identity” and “% identity,” as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.


[0103] Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison Wis.). CLUSTAL V is described in Higgins, D. G. and P. M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D. G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and “diagonals saved”=4. The “weighted” residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the “percent similarity” between aligned polynucleotide sequences.


[0104] Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S. F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, Md., and on the Internet at http://www.ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis programs including “blastn,” that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called “BLAST 2 Sequences” that is used for direct pairwise comparison of two nucleotide sequences. “BLAST 2 Sequences” can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/b12.html. The “BLAST 2 Sequences” tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the “BLAST 2 Sequences” tool Version 2.0.12 (Apr. 21, 2000) set at default parameters. Such default parameters may be, for example:


[0105] Matrix: BLOSUM62


[0106] Reward for match: 1


[0107] Penalty for mismatch: −2


[0108] Open Gap: 5 and Extension Gap: 2 penalties


[0109] Gap×drop-off. 50


[0110] Expect: 10


[0111] Word Size: 11


[0112] Filter: on


[0113] Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.


[0114] Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.


[0115] The phrases “percent identity” and “% identity,” as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.


[0116] Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and “diagonals saved”=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the “percent similarity” between aligned polypeptide sequence pairs.


[0117] Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the “BLAST 2 Sequences” tool Version 2.0.12 (Apr. 21, 2000) with blastp set at default parameters. Such default parameters may be, for example:


[0118] Matrix: BLOSUM62


[0119] Open Gap: 11 and Extension Gap: 1 penalties


[0120] Gap×drop-off: 50


[0121] Expect: 10


[0122] Word Size: 3


[0123] Filter: on


[0124] Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.


[0125] “Human artificial chromosomes” (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.


[0126] The term “humanized antibody” refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.


[0127] “Hybridization” refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the “washing” step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68° C. in the presence of about 6×SSC, about 1% (w/v) SDS, and about 100 μg/ml sheared, denatured salmon sperm DNA.


[0128] Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5° C. to 20° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating Tm and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview N.Y.; specifically see volume 2, chapter 9.


[0129] High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68° C. in the presence of about 0.2×SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65° C., 60° C., 55° C., or 42° C. may be used. SSC concentration may be varied from about 0.1 to 2×SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 μg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.


[0130] The term “hybridization complex” refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C0t or R0t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).


[0131] The words “insertion” and “addition” refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.


[0132] “Immune response” can refer to c nditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.


[0133] An “immunogenic fragment” is a polypeptide or oligopeptide fragment of TMP which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term “immunogenic fragment” also includes any polypeptide or oligopeptide fragment of TMP which is useful in any of the antibody production methods disclosed herein or known in the art.


[0134] The term “microarray” refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.


[0135] The terms “element” and “array element” refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.


[0136] The term “modulate” refers to a change in the activity of TMP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of TMP.


[0137] The phrases “nucleic acid” and “nucleic acid sequence” refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.


[0138] “Operably linked” refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.


[0139] “Peptide nucleic acid” (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.


[0140] “Post-translational modification” of an TMP may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of TMP.


[0141] “Probe” refers to nucleic acid sequences encoding TMP, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. “Primers” are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).


[0142] Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.


[0143] Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview N.Y.; Ausubel, F. M. et al. (1987) Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-lntersciences, New York N.Y.; Innis, M. et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego Calif. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge Mass.).


[0144] Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas Tex.) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge Mass.) allows the user to input a “mispriming library,” in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program. (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and c nserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.


[0145] A “recombinant nucleic acid” is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.


[0146] Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.


[0147] A “regulatory element” refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5′ and 3′ untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.


[0148] “Reporter molecules” are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.


[0149] An “RNA equivalent,” in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.


[0150] The term “sample” is used in its broadest sense. A sample suspected of containing TMP, nucleic acids encoding TMP, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.


[0151] The terms “specific binding” and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope “A,” the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.


[0152] The term “substantially purified” refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.


[0153] A “substitution” refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.


[0154] “Substrate” refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.


[0155] A “transcript image” or “expression profile” refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.


[0156] “Transformation” describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term “transformed cells” includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.


[0157] A “transgenic organism,” as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.


[0158] A “variant” of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the “BLAST 2 Sequences” tool Version 2.0.9 (May 7, 1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length. A variant may be described as, for example, an “allelic” (as defined above), “splice,” “species,” or “polymorphic” variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass “single nucleotide polymorphisms” (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.


[0159] A “variant” of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the “BLAST 2 Sequences” tool Version 2.0.9 (May 7, 1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides.



THE INVENTION

[0160] The invention is based on the discovery of new human transmembrane proteins (TMP), the polynucleotides encoding TMP, and the use of these compositions for the diagnosis, treatment, or prevention of reproductive, developmental, cardiovascular, neurological, gastrointestinal, lipid metabolism, cell proliferative, and autoimmune/inflammatory disorders.


[0161] Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown. Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) as shown.


[0162] Table 2 shows sequences with homology to the polypeptides of the invention as identified by BLAST analysis against the GenBank protein (genpept) database. Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for polypeptides of the invention. Column 3 shows the GenBank identification number (GenBank ID NO:) of the nearest GenBank homolog. Column 4 shows the probability scores for the matches between each polypeptide and its homolog(s). Column 5 shows the annotation of the GenBank homolog(s) along with relevant citations where applicable, all of which are expressly incorporated by reference herein.


[0163] Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and 2 show the polypeptide sequence identification number (SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for each polypeptide of the invention. Column 3 shows the number of amino acid residues in each polypeptide. Column 4 shows potential phosphorylation sites, and column 5 shows potential glycosylation sites, as determined by the MOTIFS program of the GCG sequence analysis software package (Genetics Computer Group, Madison Wis.). Column 6 shows amino acid residues comprising signature sequences, domains, and motifs. Column 7 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.


[0164] Together, Tables 2 and 3 summarize the properties of polypeptides of the invention, and these properties establish that the claimed polypeptides are transmembrane proteins. For example, SEQ ID NO:2 is 89% identical to rat prostaglandin F2a receptor regulatory protein (GenBank ID g1054884) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:2 also contains six immunoglobulin domains as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) In addition, SEQ ID NO:2 contains a signal peptide, a transmembrane domain, and an RGD motif, providing further corroborative evidence that SEQ ID NO:2 is a human transmembrane protein.


[0165] In the alternative, SEQ ID NO:4 is 56% identical to human connexin 31.1 (GenBank ID g4336903) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 5.8e-68, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:4 also contains a connexin domain as determined by searching for statistically significant matches in the hidden Markov model (HMM-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFILESCAN analyses provide further corroborative evidence that SEQ ID NO:4 is a connexin. Note that six identical connexins compose a connexon (gap junction), a transmembrane channel in the plasma membrane which functions chemically and electrically to couple the cytoplasms of neighboring cells in many tissues. SEQ ID NO:5 is 1554 amino acids in length and is 99% identical over 1157 amino acids to human MEGF7 (GenBank ID g3449306) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:5 also contains low-density lipoprotein receptor repeats and low-density lipoprotein receptor domains as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS analyses provide further corroborative evidence that SEQ ID NO:5 is a member of the LDL receptor family of proteins.


[0166] In another alternative, SEQ ID NO:6 is 36% identical to mouse low density lipoprotein receptor related protein LRP1B/LRP-DIT (GenBank ID g8926243) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 1.5e-40, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:6 also contains low-density lipoprotein receptor domains as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS analyses provide further corroborative evidence that SEQ ID NO:6 is a low-density lipoprotein receptor-related molecule. Further, SEQ ID NO:14 is 59% identical to human TNF-inducible protein CG12-1 (GenBank ID g3978246) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 1.2e-94, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. Data from HMMER analysis provides further corroborative evidence that SEQ ID NO:14 contains a transmembrane domain. SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:7-13, and SEQ ID NO:15-17 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID NO:1-17 are described in Table 7.


[0167] As shown in Table 4, the full length polynucleotide sequences of the present invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences. Columns 1 and 2 list the polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and the corresponding Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) for each polynucleotide of the invention. Column 3 shows the length of each polynucleotide sequence in basepairs. Column 4 lists fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification technologies that identify SEQ ID NO:18-34 or that distinguish between SEQ ID NO:18-34 and related polynucleotide sequences. Column 5 shows identification numbers corresponding to cDNA sequences, coding sequences (exons) predicted from genomic DNA, and/or sequence assemblages comprised of both cDNA and genomic DNA. These sequences were used to assemble the full length polynucleotide sequences of the invention. Columns 6 and 7 of Table 4 show the nucleotide start (5′) and stop (3′) positions of the cDNA and/or genomic sequences in column 5 relative to their respective full length sequences.


[0168] The identification numbers in Column 5 of Table 4 may refer specifically, for example, to Incyte cDNAs along with their corresponding cDNA libraries. For example, 6798827J1 is the identification number of an Incyte cDNA sequence, and COLENOR03 is the cDNA library from which it is derived. Incyte cDNAs for which cDNA libraries are not indicated were derived from pooled cDNA libraries (e.g., 71760758V1). Alternatively, the identification numbers in column 5 may refer to GenBank cDNAs or ESTs (e.g., g1506355) which contributed to the assembly of the full length polynucleotide sequences. In addition, the identification numbers in column 5 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (i.e., those sequences including the designation “ENST”). Alternatively, the identification numbers in column 5 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database (i.e., those sequences including the designation “NM” or “NT”) or the NCBI RefSeq Protein Sequence Records (i.e., those sequences including the designation “NP”). Alternatively, the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an “exon stitching” algorithm For example, FL_XXXXXX_N1—N2—YYYYY_N3—N4 represents a “stitched” sequence in which XXXXXX is the identification number of the cluster of sequences to which the algorithm was applied, and YYYYY is the number of the prediction generated by the algorithm, and N1,2,3 . . . , if present, represent specific exons that may have been manually edited during analysis (See Example V). Alternatively, the identification numbers in column 5 may refer to assemblages of exons brought together by an “exon-stretching” algorithm For example, FLXXXXXX_gAAAAA_gBBBBB1_N is the identification number of a “stretched” sequence, with XXXXXX being the Incyte project identification number, gAAAAA being the GenBank identification number of the human genomic sequence to which the “exon-stretching” algorithm was applied, gBBBBB being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V). In instances where a RefSeq sequence was used as a protein homolog for the “exon-stretching” algorithm, a RefSeq identifier (denoted by “NM,” “NP,” or “NT”) may be used in place of the GenBank identifier (i.e., gBBBBB).


[0169] Alternatively, a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods. The following Table lists examples of component sequence prefixes and corresponding sequence analysis methods associated with the prefixes (see Example IV and Example V).
2PrefixType of analysis and/or examples of programsGNN, GFG,Exon prediction from genomic sequences using, forENSTexample, GENSCAN (Stanford University, CA, USA) orFGENES (Computer Genomics Group, The Sanger Centre,Cambridge, UK).GBIHand-edited analysis of genomic sequences.FLStitched or stretched genomic sequences (see Example V).INCYFull length transcript and exon prediction from mappingof EST sequences to the genome. Genomic location andEST composition data are combined to predict the exonsand resulting transcript.


[0170] In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in column 5 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.


[0171] Table 5 shows the representative cDNA libraries for those full length polynucleotide sequences which were assembled using Incyte cDNA sequences. The representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotide sequences. The tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.


[0172] The invention also encompasses TMP variants. A preferred TMP variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the TMP amino acid sequence, and which contains at least one functional or structural characteristic of TMP.


[0173] The invention also encompasses polynucleotides which encode TMP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:18-34, which encodes TMP. The polynucleotide sequences of SEQ ID NO:18-34, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.


[0174] The invention also encompasses a variant of a polynucleotide sequence encoding TMP. In particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding TMP. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:18-34 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:18-34. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of TMP.


[0175] In addition, or in the alternative, a polynucleotide variant of the invention is a splice variant of a polynucleotide sequence encoding TMP. A splice variant may have portions which have significant sequence identity to the polynucleotide sequence encoding TMP, but will generally have a greater or lesser number of polynucleotides due to additions or deletions of blocks of sequence arising from alternate splicing of exons during mRNA processing. A splice variant may have less than about 70%, or alternatively less than about 60%, or alternatively less than about 50% polynucleotide sequence identity to the polynucleotide sequence encoding TMP over its entire length; however, portions of the splice variant will have at least about 70%, or alternatively at least about 85%, or alternatively at least about 95%, or alternatively 100% polynucleotide sequence identity to portions of the polynucleotide sequence encoding TMP. Any one of the splice variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of TMP.


[0176] It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding TMP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring TMP, and all such variations are to be considered as being specifically disclosed.


[0177] Although nucleotide sequences which encode TMP and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring TMP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding TMP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding TMP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.


[0178] The invention also encompasses production of DNA sequences which encode TMP and TMP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding TMP or any fragment thereof.


[0179] Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:18-34 and fragments thereof under various conditions of stringency. (See e.g., Wahl, G. M. and S. L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A. R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in “Definitions.”


[0180] Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland Ohio), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway N.J.), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg Md.). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno Nev.), PTC200 thermal cycler (MJ Research, Watertown Mass.) and ABI CATALYST 800 thermal cycler (Applied Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale Calif.), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F. M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., unit 7.7; Meyers, R. A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York, N.Y., pp. 856-853.)


[0181] The nucleic acid sequences encoding TMP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J. D. et al. (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto Calif.) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth Minn.) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68° C. to 72° C.


[0182] When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5′ regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5′ non-transcribed regulatory regions.


[0183] Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.


[0184] In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode TMP may be cloned in recombinant DNA molecules that direct expression of TMP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express TMP.


[0185] The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter TMP-encoding sequences for a variety of purposes including, but not limited to, modification of the cl ning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, product splice variants, and so forth.


[0186] The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen, Santa Clara Calif.; described in U.S. Pat. No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol: 17:793-797; Christians, F. C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of TMP, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through “artificial” breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.


[0187] In another embodiment, sequences encoding TMP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M. H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.) Alternatively, TMP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, W H Freeman, New York N.Y., pp. 55-60; and Roberge, J. Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Applied Biosystems). Additionally, the amino acid sequence of TMP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.


[0188] The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R. M. and F. Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)


[0189] In order to express a biologically active TMP, the nucleotide sequences encoding TMP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5′ and 3′ untranslated regions in the vector and in polynucleotide sequences encoding TMP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding TMP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding TMP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)


[0190] Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding TMP and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview N.Y., ch. 4, 8, and 16-17; Ausubel, F. M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., ch. 9, 13, and 16.)


[0191] A variety of expression vector/host systems may be utilized to contain and express sequences encoding TMP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. (See, e.g., Sambrook, supra; Ausubel, supra; Van Heeke, G. and S. M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307-311; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York N.Y., pp. 191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659; and Harrington, J. J. et al. (1997) Nat. Genet. 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5(6):350-356; Yu, M. et al. (1993) Pr c. Natl. Acad. Sci. USA 90(13):6340-6344; Buller, R. M. et al. (1985) Nature 317(6040):813-815; McGregor, D. P. et al. (1994) Mol. Immunol. 31(3):219-226; and Verma, I. M. and N. Somia (1997) Nature 389:239-242.) The invention is not limited by the host cell employed.


[0192] In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding TMP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding TMP can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla Calif.) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding TMP into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S. M. Schuster (1989) J. Biol. Chem 264:5503-5509.) When large quantities of TMP are needed, e.g. for the production of antibodies, vectors which direct high level expression of TMP may be used. For example, vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.


[0193] Yeast expression systems may be used for production of TMP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation (See, e.g., Ausubel, 1995, supra; Bitter, G. A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, C. A. et al. (1994) Bio/Technology 12:181-184.)


[0194] Plant systems may also be used for expression of TMP. Transcription of sequences encoding TMP may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters maybe used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York N.Y., pp. 191-196.)


[0195] In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding TMP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to btain infective virus which expresses TMP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.


[0196] Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J. J. et al. (1997) Nat. Genet. 15:345-355.)


[0197] For long term production of recombinant proteins in mammalian systems, stable expression of TMP in cell lines is preferred. For example, sequences encoding TMP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.


[0198] Any number of selection systems may be used to recover transformed cell lines. These include but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk- and apr- cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowry, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides neomycin and G-418; and als and pat confer resistance to chlorosulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 7:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hartman, S. C. and R. C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C. A. (1995) Methods Mol. Biol. 5:121-131.)


[0199] Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding TMP is inserted within a marker gene sequence, transformed cells containing sequences encoding TMP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding TMP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.


[0200] In general, host cells that contain the nucleic acid sequence encoding TMP and that express TMP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.


[0201] Immunological methods for detecting and measuring the expression of TMP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on TMP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul Minn., Sect. IV; Coligan, J. E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York N.Y.; and Pound, J. D. (1998) Immunochemical Protocols, Humana Press, Totowa N.J.).


[0202] A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding TMP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding TMP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison Wis.), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.


[0203] Host cells transformed with nucleotide sequences encoding TMP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode TMP may be designed to contain signal sequences which direct secretion of TMP through a prokaryotic or eukaryotic cell membrane.


[0204] In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a “prepro” or “pro” form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas Va.) and may be chosen to ensure the correct modification and processing of the foreign protein.


[0205] In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding TMP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric TMP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of TMP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the TMP encoding sequence and the heterologous protein sequence, so that TMP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.


[0206] In a further embodiment of the invention, synthesis of radiolabeled TMP may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35S-methionine.


[0207] TMP of the present invention or fragments thereof may be used to screen for compounds that specifically bind to TMP. At least one and up to a plurality of test compounds may be screened for specific binding to TMP. Examples of test compounds include antibodies, ligonucleotides, proteins (e.g., receptors), or small molecules.


[0208] In one embodiment, the compound thus identified is closely related to the natural ligand of TMP, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, e.g., Coligan, J. E. et al. (1991) Current Protocols in Immunology 1(2): Chapter 5.) Similarly, the compound can be closely related to the natural receptor to which TMP binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case, the compound can be rationally designed using known techniques. In one embodiment, screening for these compounds involves producing appropriate cells which express TMP, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing TMP or cell membranes fractions which contain TMP are then contacted with a test compound and binding, stimulation, or inhibition of activity of either TMP or the compound is analyzed.


[0209] An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with TMP, either in solution or affixed to a solid support, and detecting the binding of TMP to the compound. Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.


[0210] TMP of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of TMP. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for TMP activity, wherein TMP is combined with at least one test compound, and the activity of TMP in the presence of a test compound is compared with the activity of TMP in the absence of the test compound. A change in the activity of TMP in the presence of the test compound is indicative of a compound that modulates the activity of TMP. Alternatively, a test compound is combined with an in vitro or cell-free system comprising TMP under conditions suitable for TMP activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of TMP may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.


[0211] In another embodiment, polynucleotides encoding TMP or their mammalian homologs may be “knocked out” in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Pat. No. 5,175,383 and U.S. Pat. No. 5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M. R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J. D. (1996) Clin. Invest. 97:1999-2002; Wagner, K. U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.


[0212] Polynucleotides encoding TMP may also be manipulated in vitro in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J. A. et al. (1998) Science 282:1145-1147).


[0213] Polynucleotides encoding TMP can also be used to create “knockin” humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding TMP is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studies and treated with potential pharmaceutical agent to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress TMP, e.g., by secreting TMP in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).



THERAPEUTICS

[0214] Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of TMP and transmembrane proteins. In addition, the expression of TMP is closely associated with brain, prostate, smooth muscle, cardiovascular, pituitary, gastrointestinal, lung, pancreatic, and small intestine tissues. Therefore, TMP appears to play a role in reproductive, developmental, cardiovascular, neurological, gastrointestinal, lipid metabolism, cell proliferative, and autoimmune/inflammatory disorders. In the treatment of disorders associated with increased TMP expression or activity, it is desirable to decrease the expression or activity of TMP. In the treatment of disorders associated with decreased TMP expression or activity, it is desirable to increase the expression or activity of TMP.


[0215] Therefore, in one emb diment, TMP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TMP. Examples of such disorders include, but are not limited to, a reproductive disorder such as a disorder of prolactin production, infertility, including tubal disease, ovulatory defects, endometriosis, a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, an endometrial or ovarian tumor, a uterine fibroid, autoimmune disorders, ectopic pregnancy, teratogenesis, cancer of the breast, fibrocystic breast disease, galacatorrhea, a disruption of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the male breast, gynecomastia, hypergonadotropic and hypogonadotropic hypogonadism, pseudohermaphroditism, azoospermia, premature ovarian failure, acrosin deficiency, delayed puberty, retrograde ejaculation and anejaculation, haemangioblastomas, cystsphaeochromocytomas, paraganglioma, cystadenomas of the epididymis, and endolymphatic sac tumours; a developmental disorder such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss; a cardiovascular disorder such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, vascular tumors, and complications of thrombolysis, balloon angioplasty, vascular replacement, coronary artery bypass graft surgery, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, complications of cardiac transplantation, congenital lung anomalies, atelectasis, pulmonary congestion and edema, pulmonary embolism, pulmonary hemorrhage, pulmonary infarction, pulmonary hypertension, vascular sclerosis, obstructive pulmonary disease, restrictive pulmonary disease, chronic obstructive pulmonary disease, emphysema, chronic bronchitis, bronchial asthma, bronchiectasis, bacterial pneumonia, viral and mycoplasmal pneumonia, lung abscess, pulmonary tuberculosis, diffuse interstitial diseases, pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis, pulmonary eosinophilia bronchiolitis obliterans-organizing pneumonia, diffuse pulmonary hemorrhage syndromes, Goodpasture's syndromes, idiopathic pulmonary hemosiderosis, pulmonary involvement in collagen-vascular disorders, pulmonary alveolar proteinosis, lung tumors, inflammatory and noninflammatory pleural effusions, pneumothorax, pleural tumors, drug-induced lung disease, radiation-induced lung disease, and complications of lung transplantation; a neurological disorders such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a gastrointestinal disorder such as dysphagia, peptic esophagitis, esophageal spasm, esophageal stricture, esophageal carcinoma, dyspepsia, indigestion, gastritis, gastric carcinoma, anorexia, nausea, emesis, gastroparesis, antral or pyloric edema, abdominal angina, pyrosis, gastroenteritis, intestinal obstruction, infections of the intestinal tract, peptic ulcer, cholelithiasis, cholecystitis, cholestasis, pancreatitis, pancreatic carcinoma, biliary tract disease, hepatitis, hyperbilirubinemia, cirrhosis, passive congestion of the liver, hepatoma, infectious colitis, ulcerative colitis, ulcerative proctitis, Crohn's disease, Whipple's disease, Mallory-Weiss syndrome, colonic carcinoma, colonic obstruction, irritable bowel syndrome, short bowel syndrome, diarrhea, constipation, gastrointestinal hemorrhage, acquired immunodeficiency syndrome (AIDS) enteropathy, jaundice, hepatic encephalopathy, hepatorenal syndrome, hepatic steatosis, hemochromatosis, Wilson's disease, alpha1-antitrypsin deficiency, Reye's syndrome, primary sclerosing cholangitis, liver infarction, portal vein obstruction and thrombosis, centrilobular necrosis, peliosis hepatis, hepatic vein thrombosis, veno-occlusive disease, preeclampsia, eclampsia, acute fatty liver of pregnancy, intrahepatic cholestasis of pregnancy, and hepatic tumors including nodular hyperplasias, adenomas, and carcinomas; a lipid metabolism disorder such as fatty liver, cholestasis, primary biliary cirrhosis, carnitine deficiency, carnitine palmitoyltransferase deficiency, myoadenylate deaminase deficiency, hypertriglyceridemia, lipid storage disorders such Fabry's disease, Gaucher's disease, Niemann-Pick's disease, metachromatic leukodystrophy, adrenoleukodystrophy, GM2 gangliosidosis, and ceroid lipofuscinosis, abetalipoproteinemia, Tangier disease, hyperlipoproteinemia, diabetes mellitus, lipodystrophy, lipomatoses, acute panniculitis, disseminated fat necrosis, adiposis dolorosa, lipoid adrenal hyperplasia, minimal change disease, lipomas, atherosclerosis, hypercholesterolemia, hypercholesterolemia with hypertriglyceridemia, primary hypoalphalipoproteinemia, hypothyroidism, renal disease, liver disease, lecithin:cholesterol acyltransferase deficiency, cerebrotendinous xanthomatosis, sitosterolemia, hypocholesterolemia, Tay-Sachs disease, Sandhoff's disease, hyperlipidemia, hyperlipemia, lipid myopathies, and obesity; a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancer of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an autoimmune/inflammatory disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyenodocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma.


[0216] In another embodiment, a vector capable of expressing TMP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TMP including, but not limited to, those described above.


[0217] In a further embodiment, a composition comprising a substantially purified TMP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TMP including, but not limited to, those provided above.


[0218] In still another embodiment, an agonist which modulates the activity of TMP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TMP including, but not limited to, those listed above.


[0219] In a further embodiment, an antagonist of TMP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of TMP. Examples of such disorders include, but are not limited to, those reproductive, developmental, cardiovascular, neurological, gastrointestinal, lipid metabolism, cell proliferative, and autoimmune/inflammatory disorders described above. In one aspect, an antibody which specifically binds TMP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express TMP.


[0220] In an additional embodiment, a vector expressing the complement of the polynucleotide encoding the TMP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of TMP including, but not limited to, those described above.


[0221] In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one or ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.


[0222] An antagonist of TMP may be produced using methods which are generally known in the art. In particular, purified TMP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind TMP. Antibodies to TMP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.


[0223] For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with TMP or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Clamette-Guerin) and Corynebacterium parvum are especially preferable.


[0224] It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to TMP have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of TMP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.


[0225] Monoclonal antibodies to TMP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R. J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S. P. et al. (1984) Mol. Cell Biol. 62:109-120.)


[0226] In addition, techniques developed for the production of “chimeric antibodies,” such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S. L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M. S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce TMP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D. R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)


[0227] Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)


[0228] Antibody fragments which contain specific binding sites for TMP may also be generated. For example, such fragments include, but are not limited to, F(ab′)2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab′)2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W. D. et al. (1989) Science 246:1275-1281.)


[0229] Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between TMP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering TMP epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).


[0230] Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques ,ay be used to assess the affinity of antibodies for TMP. Affinity is expressed as an association constant, Ka, which is defined as the molar concentration of TMP-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The Ka determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple TMP epitopes, represents the average affinity, or avidity, of the antibodies for TMP. The Ka determined for a preparation of monoclonal antibodies, which are monospecific for a particular TMP epitope, represents a true measure of affinity. High-affinity antibody preparations with Ka ranging from about 109 to 1012 L/mole are preferred for use in immunoassays in which the TMP-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with Ka ranging from about 106 to 107 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of TMP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington, D.C.; Liddell, J. E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York N.Y.).


[0231] The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of TMP-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)


[0232] In another embodiment of the invention, the polynucleotides encoding TMP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding TMP. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding TMP. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press, Totawa N.J.)


[0233] In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J. E. et al. (1998) J. Allergy Clin. Immunol. 102(3):469-475; and Scanlon, K. J. et al. (1995) 9(13):1288-1296.) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A. D. (1990) Blood 76:271; Ausubel, supra; Uckert, W. and W. Walther (1994) Pharmacol. Ther. 63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi, J. J. (1995) Br. Med. Bull. 51(1):217-225; Boado, R. J. et al. (1998) J. Pharm. Sci. 87(11):1308-1315; and Morris, M. C. et al. (1997) Nucleic Acids Res. 25(4):2730-2736.)


[0234] In another embodiment of the invention, polynucleotides encoding TMP may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by X-linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R. M. et al. (1995) Science 270:475-480; Bordignon, C. et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R. G. et al. (1995) Hum. Gene Therapy 6:643-666; Crystal, R. G. et al. (1995) Hum. Gene Therapy 6:667-703), thalassamias, familial hypercholesterolemia, and hemophilia resulting from Factor VIII or Factor IX deficiencies (Crystal, R. G. (1995) Science 270:404-410; Verma, I. M. and N. Somia (1997) Nature 389:239-242)), (ii) express a conditionally lethal gene produce (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi). In the case where a genetic deficiency in TMP expression or regulation causes disease, the expression of TMP from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.


[0235] In a further embodiment of the invention, diseases or disorders caused by deficiencies in TMP are treated by constructing mammalian expression vectors encoding TMP and introducing these vectors by mechanical means into TMP-deficient cells. Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use DNA transposons (Morgan, R. A. and W. F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivics, Z. (1997) Cell 91:501-510; Boulay, J-L. and H. Récipon (1998) Curr. Opin. Biotechnol. 9:445-450).


[0236] Expression vectors that may be effective for the expression of TMP include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Invitrogen, Carlsbad Calif), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla Calif.), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto Calif.). TMP may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β-actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F. M. V. and H. M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F. M. V. and H. M. Blau, supra)), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding TMP from a normal individual.


[0237] Commercially available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F. L. and A. J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.


[0238] In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to TMP expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding TMP under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus cis-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. USA 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M. A. et al. (1987) J. Virol. 61:1639-1646; Adam, M. A. and A. D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Pat. No. 5,910,434 to Rigg (“Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant”) discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4+ T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M. L. (1997) J. Virol. 71:4707-4716; Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. USA 95:1201-1206; Su, L. (1997) Blood 89:2283-2290).


[0239] In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding TMP to cells which have one or more genetic abnormalities with respect to the expression of TMP. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M. E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Pat. No. 5,707,618 to Armentano (“Adenovirus vectors for gene therapy”), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P. A. et al. (1999) Annu. Rev. Nutr. 19:511-544 and Verma, I. M. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.


[0240] In another alternative, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding TMP to target cells which have one or more genetic abnormalities with respect to the expression of TMP. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing TMP to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res. 169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Pat. No. 5,804,413 to DeLuca (“Herpes simplex virus strains for gene transfer”), which is hereby incorporated by reference. U.S. Pat. No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W. F. et al. (1999) J. Virol. 73:519-532 and Xu, H. et al. (1994) Dev. Biol. 163:152-161, hereby incorporated by reference. The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.


[0241] In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding TMP to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) Curr. Opin. Biotechnol. 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for TMP into the alphavirus genome in place of the capsid-coding region results in the production of a large number of TMP-coding RNAs and the synthesis of high levels of TMP in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S. A. et al. (1997) Virology 228:74-83). The wide host range of alphaviruses will allow the introduction of TMP into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.


[0242] Oligonucleotides derived from the transcription initiation site, e.g., between about position −10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J. E. et al. (1994) in Huber, B. E. and B. I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco N.Y., pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.


[0243] Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding TMP.


[0244] Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.


[0245] Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding TMP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.


[0246] RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5′ and/or 3′ ends of the molecule, or the use of phosphorothioate or 2′O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.


[0247] An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding TMP. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased TMP expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding TMP may be therapeutically useful, and in the treatment of disorders associated with decreased TMP expression or activity, a compound which specifically promotes expression of the polynucleotide encoding TMP may be therapeutically useful.


[0248] At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding TMP is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding TMP are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding TMP. The amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Pat. No. 5,932,435; Arndt, G. M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M. L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T. W. et al. (1997) U.S. Pat. No. 5,686,242; Bruice, T. W. et al. (2000) U.S. Pat. No. 6,022,691).


[0249] Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C. K. et al. (1997) Nat. Biotechnol. 15:462-466.)


[0250] Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.


[0251] An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient. Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton Pa.). Such compositions may consist of TMP, antibodies to TMP, and mimetics, agonists, antagonists, or inhibitors of TMP.


[0252] The compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical sublingual, or rectal means.


[0253] Compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J. S. et al., U.S. Pat. No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.


[0254] Compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.


[0255] Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising TMP or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule. Alternatively, TMP or a fragment thereof may be joined to a short cationic N-terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S. R. et al. (1999) Science 285:1569-1572).


[0256] For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.


[0257] A therapeutically effective dose refers to that amount of active ingredient, for example TMP for fragments thereof, antibodies of TMP, and agonists, antagonists or inhibitors of TMP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED50 (the dose therapeutically effective in 50% of the population) or LD50 (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD50/ED50 ratio. Compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.


[0258] The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.


[0259] Normal dosage amounts may vary from about 0.1 μg to 100,000 μg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.



DIAGNOSTICS

[0260] In another embodiment, antibodies which specifically bind TMP may be used for the diagnosis of disorders characterized by expression of TMP, or in assays to monitor patients being treated with TMP or agonists, antagonists, or inhibitors of TMP. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for TMP include methods which utilize the antibody and a label to detect TMP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.


[0261] A variety of protocols for measuring TMP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of TMP expression. Normal or standard values for TMP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibodies to TMP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of TMP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.


[0262] In another embodiment of the invention, the polynucleotides encoding TMP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of TMP may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of TMP, and to monitor regulation of TMP levels during therapeutic intervention.


[0263] In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding TMP or closely related molecules may be used to identify nucleic acid sequences which encode TMP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5′ regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding TMP, allelic variants, or related sequences.


[0264] Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the TMP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:18-34 or from genomic sequences including promoters, enhancers, and introns of the TMP gene.


[0265] Means for producing specific hybridization probes for DNAs encoding TMP include the cloning of polynucleotide sequences encoding TMP or TMP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32P or 35S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.


[0266] Polynucleotide sequences encoding TMP may be used for the diagnosis of disorders associated with expression of TMP. Examples of such disorders include, but are not limited to, a reproductive disorder such as a disorder of prolactin production, infertility, including tubal disease, ovulatory defects, endometriosis, a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, an endometrial or ovarian tumor, a uterine fibroid, autoimmune disorders, ectopic pregnancy, teratogenesis, cancer of the breast, fibrocystic breast disease, galactorrhea, a disruption of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the male breast, gynecomastia, hypergonadotropic and hypogonadotropic hypogonadism, pseudohermaphroditism, azoospermia, premature ovarian failure, acrosin deficiency, delayed puberty, retrograde ejaculation and anejaculation, haemangioblastomas, cystsphaeochromocytomas, paraganglioma, cystadenomas of the epididymis, and endolymphatic sac tumours; a developmental disorder such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss; a cardiovascular disorder such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, vascular tumors, and complications of thrombolysis, balloon angioplasty, vascular replacement, coronary artery bypass graft surgery, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally biscuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, complications of cardiac transplantation, congenital lung anomalies, atelectasis, pulmonary congestion and edema, pulmonary embolism, pulmonary hemorrhage, pulmonary infarction, pulmonary hypertension, vascular sclerosis, obstructive pulmonary disease, restrictive pulmonary disease, chronic obstructive pulmonary disease, emphysema, chronic bronchitis, bronchial asthma, bronchiectasis, bacterial pneumonia, viral and mycoplasmal pneumonia, lung abscess, pulmonary tuberculosis, diffuse interstitial diseases, pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis, pulmonary eosinophilia bronchiolitis obliternas-organizing pneumonia, diffuse pulmonary hemorrhage syndromes, Goodpasture's syndromes, idiopathic pulmonary hemosiderosis, pulmonary involvement in collagen-vascular disorders, pulmonary alveolar proteinosis, lung tumors, inflammatory and noninflammatory pleural effusions, pneumothorax, pleural tumors, drug-induced lung disease, radiation-induced lung disease, and complications of lung transplantation; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral ner us system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a gastrointestinal disorder such as dysphagia, peptic esophagitis, esophageal spasm, esophageal stricture, esophageal carcinoma, dyspepsia, indigestion, gastritis, gastric carcinoma, anorexia, nausea, emesis, gastroparesis, antral or pyloric edema, abdominal angina, pyrosis, gastroenteritis, intestinal obstruction, infections of the intestinal tract, peptic ulcer, cholelithiasis, cholecystitis, cholestasis, pancreatitis, pancreatic carcinoma, biliary tract disease, hepatitis, hyperbilirubinemia, cirrhosis, passive congestion of the liver, hepatoma, infectious colitis, ulcerative colitis, ulcerative proctitis, Crohn's disease, Whipple's disease, Mallory-Weiss syndrome, colonic carcinoma, colonic obstruction, irritable bowel syndrome, short bowel syndrome, diarrhea, constipation, gastrointestinal hemorrhage, acquired immunodeficiency syndrome (AIDS) enteropathy, jaundice, hepatic encephalopathy, hepatorenal syndrome, hepatic steatosis, hemochromatosis, Wilson's disease, alpha1-antitrypsin deficiency, Reye's syndrome, primary sclerosing cholangitis, liver infarction, portal vein obstruction and thrombosis, centrilobular necrosis, peliosis hepatis, hepatic vein thrombosis, vena-occlusive disease, preeclampsia, eclampsia, acute fatty liver of pregnancy, intrahepatic cholestasis of pregnancy, and hepatic tumors including nodular hyperplasias, adenomas, and carcinomas; a lipid metabolism disorder such as fatty liver, cholestasis, primary biliary cirrhosis, carnitine deficiency, carnitine palmitoyltransferase deficiency, myoadenylate deaminase deficiency, hypertriglyceridemia, lipid storage disorders such Fabry's disease, Gaucher's disease, Niemann-Pick's disease, metachromatic leukodystrophy, adrenoleukodystrophy, GM2 gangliosidosis, and ceroid lipofuscinosis, abetalipoproteinemia, Tangier disease, hyperlipoproteinemia, diabetes mellitus, lipodystrophy, lipomatoses, acute panniculitis, disseminated fat necrosis, adiposis dolorosa, lipoid adrenal hyperplasia, minimal change disease, lipomas, atherosclerosis, hypercholesterolemia, hypercholesterolemia with hypertriglyceridemia, primary hypoalphalipoproteinemia, hypothyroidism, renal disease, liver disease, lecithin:cholesterol acyltransferase deficiency, cerebrotendinous xanthomatosis, sitosterolemia, hypocholesterolemia, Tay-Sachs disease, Sandhoff's disease, hyperlipidemia, hyperlipemia, lipid myopathies, and obesity; a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an autoimmune/inflammatory disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyenodocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Grave's disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma. The polynucleotide sequences encoding TMP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies, in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered TMP expression. Such qualitative or quantitative methods are well known in the art.


[0267] In a particular aspect, the nucleotide sequences encoding TMP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding TMP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding TMP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.


[0268] In order to provide a basis for the diagnosis of a disorder associated with expression of TMP, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding TMP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder.


[0269] Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.


[0270] With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development of further progression of the cancer.


[0271] Additional diagnostic uses for oligonucleotides designed from the sequences encoding TMP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding TMP, or a fragment of a polynucleotide complementary to the polynucleotide encoding TMP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.


[0272] In a particular aspect, oligonucleotide primers derived from the polynucleotide sequences encoding TMP may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding TMP are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSCCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed in silico SNP (isSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence. These computer-based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, San Diego Calif.).


[0273] Methods which may also be used to quantify the expression of TMP include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P. C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response give rapid quantitation.


[0274] In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, a monitor progression/regression of disease as a function of gene expression , and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.


[0275] In another embodiment, TMP, fragments of TMP, or antibodies specific for TMP may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.


[0276] A particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type. A transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., “Comparative Gene Transcript Analysis,” U.S. Pat. No. 5,840,484, expressly incorporated by reference herein.) Thus a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The resultant transcript image would provide a profile of gene activity.


[0277] Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples. The transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a cell line.


[0278] Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E. F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N. L. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released Feb. 29, 2000, available at http://www.niehs.nih.gov/oc/news/toxchip.htm.) Therefore, it is important and desirable in toxicological screening using toxicant signatures to include all expressed gene sequences.


[0279] In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.


[0280] Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or cell type. The term proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra). The proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical density of each protein spot is generally proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.


[0281] A proteomic profile may also be generated using antibodies specific for TMP to quantify the levels of TMP expression. In one embodiment, the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microarray to the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) Anal. Biochem. 270:103-111; Mendoze, L. G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.


[0282] Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N. L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.


[0283] In another embodiment, the toxicity of a test compound is assessed by treating a biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the c rresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test c mpound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.


[0284] In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.


[0285] Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T. M. et al. (1995) U.S. Pat. No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R. A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and Heller, M. J. et al. (1997) U.S. Pat. No. 5,605,662.) Various types of microarrays are well known and thoroughly described in DNA Microarrays: A Practical Approach, M. Schena, ed. (1999) Oxford University Press, London, hereby expressly incorporated by reference.


[0286] In another embodiment of the invention, nucleic acid sequences encoding TMP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J. J. et al. (1997) Nat. Genet. 15:345-355; Price, C. M. (1993) Blood Rev. 7:127-134; and Trask, B. J. (1991) Trends Genet. 7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP). (See, for example, Lander, E. S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357.)


[0287] Fluorescent in situ hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding TMP on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.


[0288] In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R. A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.


[0289] In another embodiment of the invention, TMP, is catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between TMP and the agent being tested may be measured.


[0290] Another technique for drug screening provides for throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with TMP, or fragments thereof, and washed. Bound TMP is then detected by methods well known in the art. Purified TMP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.


[0291] In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding TMP specifically compete with a test compound for binding TMP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with TMP.


[0292] In additional embodiments, the nucleotide sequences which encode TMP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.


[0293] Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.


[0294] The disclosure of all patents, applications, and publications mentioned above and below, including U.S. Ser. No. 60/244,017, U.S. Ser. No. 60/252,855, U.S. Ser. NO. 60/251,825, and U.S. Ser. No. 60/255,085, are hereby expressly incorporated by reference.







EXAMPLES

[0295] I. Construction of cDNA Libraries


[0296] Incyte cDNAs were derived from cDNA libraries described in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto Calif.) and shown in Table 4, column 5. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while other were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.


[0297] Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A)+ RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth Calif.), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin Tex.).


[0298] In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), PCDNA2.1 plasmid (Invitrogen, Carlsbad Calif.), PBK-CMV plasmid (Stratagene), PCR2-TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (Incyte Genomics, Palo Alto Calif.), or pINCY (Incyte Genomics), or derivatives thereof. Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Life Technologies.


[0299] II. Isolation of cDNA Clones


[0300] Plasmids obtained as described in Example I were recovered from host cells by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg Md.); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4° C.


[0301] Alternatively, plasmid DNA were amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V. B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA were quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene Oreg.) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).


[0302] III Sequencing and Analysis


[0303] Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VIII.


[0304] The polynucleotide sequences derived from Incyte cDNAs were validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The Incyte cDNA sequences or translations thereof were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM; PROTEOME databases with sequences from Homo sapiens, Rattus norvegicus, Mus musculus, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans (Incyte Genomics, Palo Alto Calif.); and hidden Markov model (HMM)-based protein family databases such as PFAM. (HMM is a probabilistic approach which analyzes consensus primary structures of gene families. See, for example, Eddy, S. R. (1996) Curr. Opin. Struct. Biol. 6:361-365). The queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMER. The Incyte cDNA sequences were assembled to produce full length polynucleotide sequences. Alternatively, GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences (see Examples IV and V) were used to extend Incyte cDNA assemblages to full length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length polypeptide sequences. Alternatively, a polypeptide of the invention may begin at any of the methionine residues of the full length translated polypeptide. Full length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, the PROTEOME databases, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and hidden Markov model (HMM)-based protein family databases such as PFAM. Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco Calif.) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithms as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.


[0305] Table7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters. The first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).


[0306] The programs described above for the assembly and analysis of full length polynucleotide and polypeptide sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:18-34. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies are described in Table 4, column 4.


[0307] IV. Identification and Editing of Coding Sequences from Genomic DNA


[0308] Putative transmembrane proteins were initially identified by running the Genscan gene identification program against public genomic sequence databases (e.g., gbpri and gbhtg). Genscan is a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (See Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. Karlin (1998) Curr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon. The output of Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of sequence for Genscan to analyze at once was set to 30 kb. To determine which of these Genscan predicted cDNA sequences encode transmembrane proteins, the encoded polypeptides were analyzed by querying against PFAM models for transmembrane proteins. Potential transmembrane proteins were also identified by homology to Incyte cDNA sequences that had been annotated as transmembrane proteins. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri public databases. Where necessary, the Genscan predicted sequences were then edited by comparison, to the top BLAST hit from genpept to correct errors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST analysis was also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage was available, this information was used to correct or confirm the Genscan predicted sequence. Full length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example III. Alternatively, full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences.


[0309] V. Assembly of Genomic Sequence Data with cDNA Sequence Data


[0310] “Stitched” Sequences


[0311] Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example III were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity. For example, if an interval was present on a cDNA and two genomic sequences, then all three intervals were considered to be equivalent. This process allows unrelated but consecutive genomic sequences to be brought together, bridged by cDNA sequence. Intervals thus identified were then “stitched” together by the stitching algorithm in the order that they appear along their parent sequences to generate the longest possible sequence, as well as sequence variants. Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or genomic sequence to genomic sequence) were given preference over linkages which change parent type (cDNA to genomic sequence). The resultant stitched sequences were translated and compared by BLAST analysis to the genpept and gbpri public databases. Incorrect exons predicted by Genscan were corrected by comparison to the top BLAST hit from genpept. Sequences were further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary.


[0312] “Stretched” Sequences


[0313] Partial DNA sequences were extended to full length with an algorithm based on BLAST analysis. First, partial cDNAs assembled as described in Example III were queried against pubic databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV. A chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog. The GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA sequences were therefore “stretched” or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to determine whether it contained a complete gene.


[0314] Chromosomal Mapping of TMP Encoding Polynucleotides


[0315] The sequences which were used to assemble SEQ ID NO:18-34 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:18-34 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Généthon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.


[0316] Map locations are represented by ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the public, such as the NCBI “GeneMap '99” World Wide Web site (http://www.ncbi.nlm.nih.gov/genemap/), can be employed to determine if previously identified disease genes map within or in proximity to the intervals indicated above.


[0317] In this manner, SEQ ID NO:22 was mapped to chromosome 11 within the interval from 59.50 to 62.50 centiMorgans and SEQ ID NO:26 was mapped to chromosome 1 within the interval from 179.2 to 186.4 centiMorgans.


[0318] VII. Analysis of Polynucleotide Expression


[0319] Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel (1995) supra, ch. 4 and 16.)


[0320] Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:
1BLASTScore×PercentIdentity5×minimum{length(Seq.1),length(Seq.2)}


[0321] The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and −4 for every mismatch. Two sequence may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.


[0322] Alternatively, polynucleotide sequences encoding TMP are analyzed with respect to the tissue sources from which they were derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example III). Each cDNA sequence is derived from a cDNA library constructed from a human tissue. Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract. The number of libraries in each category is counted and divided by the total number of libraries across all categories. Similarly, each human tissue is classified into one of the following disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding TMP. cDNA sequences and cDNA library/tissue information are found in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto Calif.). VIII. Extension of TMP Encoding Polynucleotides Full length polynucleotide sequences were also produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5′ extension of the known fragment, and the other primer was synthesized to initiate 3′ extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68° C. to about 72° C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.


[0323] Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.


[0324] High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg2+, (NH4)2SO4, and 2-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94° C, 3 min; Step 2: 94° C, 15 sec; Step 3: 60° C, 1 min; Step 4: 68° C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68° C, 5 min; Step 7: storage at 4° C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94° C, 3 min; Step 2: 94° C, 15 sec; Step 3: 57° C, 1 min; Step 4: 68° C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68° C., 5 min; Step 7: storage at 4° C.


[0325] The concentration of DNA in each well was determined by dispensing 100 μl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene Oreg.) dissolved in 1× TE and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton Mass.), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a 1% agarose gel to determine which reactions were successful in extending the sequence.


[0326] The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison Wis.), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly Mass.) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37° C. in 384-well plates in LB/2× carb liquid media.


[0327] The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 60° C., 1 min; Step 4: 72° C., 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72° C., 5 min; Step 7: storage at 4° C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).


[0328] In like manner, full length polynucleotide sequences are verified using the above procedure or are used to obtain 5′ regulatory sequences using the above procedure along with oligonucleotides designed for such extension, and an appropriate genomic library.


[0329] IX. Labeling and Use of Individual Hybridization Probes


[0330] Hybridization probes derived from SEQ ID NO:18-34 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μCi of [γ-32P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston Mass.). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 107 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).


[0331] The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes Nytran Plus, Schleicher & Schuell, Durham N.H.). Hybridization is carried out for 16 hours at 40° C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1× saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.


[0332] X. Microarrays


[0333] The linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, supra.), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena (1999), sung). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)


[0334] Pull length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microarray. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element. Alternatively, laser desorbtion and mass spectrometry may be used for detection of hybridization. The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below.


[0335] Tissue or Cell Sample Preparation


[0336] Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)+ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)+ RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/μl oligo-(dT) primer (21 mer), 1× first strand buffer, 0.03 units/μl RNase inhibitor, 500 μM dATP, 500 μM dGTP, 500 μM dTTP, 40 μM dCTP, 40 μM dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)+ RNA with GEMBRIGHT kits (Incyte). Specific control poly(A)+ RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37° C. for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85° C. to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories (CLONTECH), Palo Alto Calif.) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments, Holbrook N.Y.) and resuspended in 14 μl 5× SSC/0.2% SDS.


[0337] Microarray Preparation


[0338] Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 jig. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).


[0339] Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester Pa.), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110° C. oven.


[0340] Array elements are applied to the coated glass substrate using a procedure described in U.S. Pat. No. 5,807,522, incorporated herein by reference. 1 μl of the array element DNA, at an average concentration of 100 ng/μl, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.


[0341] Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Bedford Mass.) for 30 minutes at 60° C. followed by washes in 0.2% SDS and distilled water as before.


[0342] Hybridization


[0343] Hybridization reactions contain 9 μl of sample mixture consisting of 0.2 μg each of Cy3 and Cy5 labeled cDNA synthesis products in 5× SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65° C. for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm2 coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 μl of 5× SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60° C. The arrays are washed for 10 min at 45° C. in a first wash buffer (1× SSC, 0.1% SDS), three times for 10 minutes each at 45° C. in a second wash buffer (0.1× SSC), and dried.


[0344] Detection


[0345] Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Santa Clara Calif.) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20× microscope objective (Nikon, Melville N.Y.). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm×1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.


[0346] In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater N.J.) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.


[0347] The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.


[0348] The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Norwood Mass.) installed in an IBM-compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.


[0349] A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).


[0350] XI. Complementary Polynucleotides


[0351] Sequences complementary to the TMP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring TMP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of TMP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5′ sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the TMP-encoding transcript.


[0352] XII. Expression of TMP


[0353] Expression and purification of TMP is achieved using bacterial or virus-based expression systems. For expression of TMP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express TMP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of TMP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding TMP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)


[0354] In most expression systems, TMP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from TMP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified TMP obtained by these methods can be used directly in the assays shown in Examples XVI and XVII where applicable.


[0355] XIII. Functional Assays


[0356] TMP function is assessed by expressing the sequences encoding TMP at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include PCMV SPORT (Life Technologies) and PCR3.1 (Invitrogen, Carlsbad Calif.), both of which contain the cytomegalovirus promoter. 5-10 μg of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 μg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M. G. (1994) Flow Cytometry, Oxford, New York N.Y.


[0357] The influence of TMP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding TMP and either CD64 or CD64GFP. CD64 and CD64GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success N.Y.). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding TMP and other genes of interest can be analyzed by northern analysis or microarray techniques.


[0358] XIV. Production of TMP Specific Antibodies


[0359] TMP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M. G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.


[0360] Alternatively, the TMP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)


[0361] Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Applied Biosystems) using FMOC chemistry and coupled to KLH (Sigma-Aldrich, St. Louis Mo.) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-TMP activity by, for example, binding the peptide or TMP to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.


[0362] XV. Purification of Naturally Occurring TMP Using Specific Antibodies


[0363] Naturally occurring or recombinant TMP is substantially purified by immunoaffinity chromatography using antibodies specific for TMP. An immunoaffinity column is constructed by covalently coupling anti-TMP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.


[0364] Media containing TMP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of TMP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/TMP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and TMP is collected.


[0365] XVI. Identification of Molecules Which Interact with TMP


[0366] TMP, or biologically active fragments thereof, are labeled with 125I Bolton-Hunter reagent (See, e.g., Bolton, A. E. and W. M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled TMP, washed, and any wells with labeled TMP complex are assayed. Data obtained using different concentrations of TMP are used to calculate values for the number, affinity, and association of TMP with the candidate molecules.


[0367] Alternatively, molecules interacting with TMP are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).


[0368] TMP may also be used in the PATHCALLING process (CuraGen Corp., New Haven Conn.) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes Nandabalan, K. et al. (2000) U.S. Pat. No. 6,057,101).


[0369] XVII. Demonstration of TMP Activity


[0370] Gap Junction Activity of TMP


[0371] Gap junction activity of TMP is demonstrated as the ability to induce the formation of intercellular channels between paired Xenopus laevis oocytes injected with TMP cRNA (Hennemann, supra. One week prior to the experimental injection with TMP cRNA, oocytes are injected with antisense oligonucleotide to TMP to reduce background. TMP cRNA-injected oocytes are incubated overnight, stripped of vitelline membranes, and paired for recording of junctional currents by dual cell voltage clamp. The measured conductances are proportional to gap junction activity of TMP.


[0372] Alternatively, an assay for TMP activity measures the ion channel activity of TMP using an electrophysiological assay for ion conductance. TMP can be expressed by transforming a mammalian cell line such as COS7, HeLa or CHO with a eukaryotic expression vector encoding TMP. Eukaryotic expression vectors are commercially available, and the techniques to introduce them into cells are well known to those skilled in the art. A second plasmid which expresses any one of a number of marker genes, such as β-galactosidase, is co-transformed into the cells to allow rapid identification of those cells which have taken up and expressed the foreign DNA. The cells are incubated for 48-72 hours after transformation under conditions appropriate for the cell line to allow expression and accumulation of TMP and β-galactosidase.


[0373] Transformed cells expressing β-galactosidase are stained blue when a suitable colorimetric substrate is added to the culture media under c nditions that are well known in the art. Stained cells are tested for differences in membrane conductance by electrophysiological techniques that are well known in the art. Untransformed cells, and/or cells transformed with either vector sequences alone or β-galactosidase sequences alone, are used as controls and tested in parallel. Cells expressing TMP will have higher anion or cation conductance relative to control cells. The contribution of TMP to conductance can be confirmed by incubating the cells using antibodies specific for TMP. The antibodies will bind to the extracellular side of TMP, thereby blocking the pore in the ion channel, and the associated conductance.


[0374] Transmembrane Protein Activity of TMP


[0375] An assay for TMP activity measures the expression of TMP on the cell surface. cDNA encoding TMP is transfected into an appropriate mammalian cell line. Cell surface proteins are labeled with biotin as described (de la Fuente, M. A. et al. (1997) Blood 90:2398-2405). Immunoprecipitations are performed using TMP-specific antibodies, and immunoprecipitated samples are analyzed using SDS-PAGE and immunoblotting techniques. The ratio of labeled immunoprecipitant to unlabeled immunoprecipitant is proportional to the amount of TMP expressed on the cell surface.


[0376] An alternative assay for TMP activity is based on a prototypical assay for ligand/receptor-mediated modulation of cell proliferation. This assay measures the amount of newly synthesized DNA in Swiss mouse 3T3 cells expressing TMP. An appropriate mammalian expression vector containing cDNA encoding TMP is added to quiescent 3T3 cultured cells using transfection methods well known in the art. The transfected cells are incubated in the presence of [3H]thymidine and varying amounts of TMP ligand. Incorporation of [3H]thymidine into acid-precipitable DNA is measured over an appropriate time interval using a tritium radioisotope counter, and the amount incorporated is directly proportional to the amount of newly synthesized DNA. A linear dose-response curve over at least a hundred-fold TMP ligand concentration range is indicative of receptor activity. One unit of activity per milliliter is defined as the concentration of TMP producing a 50% response level, where 100% represents maximal incorporation of [3H]thymidine into acid-precipitable DNA (McKay, I. and Leigh, I., eds. (1993) Growth Factors: A Practical Approach, Oxford University Press, New York, N.Y., p. 73).


[0377] Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.
3TABLE 1IncyteIncytePoly-IncyteProjectPolypeptidePolypeptidenucleotidePolynucleotideIDSEQ ID NO:IDSEQ ID NO:ID643147816431478CD1186431478CB1358465423584654CD1193584654CB1373708433737084CD1203737084CB171426238471426238CD12171426238CB1747512357475123CD1227475123CB1748195267481952CD1237481952CB13826547382654CD124382654CB1186735181867351CD1251867351CB1332310493323104CD1263323104CB14769306104769306CD1274769306CB12720058112720058CD1282720058CB17481255127481255CD1297481255CB11510242131510242CD1301510242CB116213114162131CD131162131CB11837725151837725CD1321837725CB13643847163643847CD1333643847CB16889872176889872CD1346889872CB1


[0378]

4









TABLE 2








Polypeptide
Incyte
GenBank
Probability



SEQ ID NO:
Polypeptide ID
ID NO:
score
GenBank Homolog



















1
6431478CD1
g310100
4.0E−216
[Rattus norvegicus] developmentally






regulated protein


2
3584654CD1
g1054884
0.0
[Rattus norvegicus] prostaglandin






F2a receptor regulatory protein






Orlicky, D. J. (1996) Negative






regulatory activity of a






prostaglandin F2a receptor






associated protein (FPRP).






Prostaglandins Leukot. Essent. Fatty






Acids 54, 247-259


3
3737084CD1
g3513451
1.7E−233
[Rattus norvegicus] potassium






channel regulator 1






Hoshi, N., et al (1998) KCR1, a






membrane protein that facilitates






functional expression of non-






inactivating K+ currents associates






with rat EAG voltage-dependent K+






channels. J. Biol. Chem. 273, 23080-






23085


4
71426238CD1
g15990851
1.0E−130
[f1] [Homo sapiens] (AJ414563)






connexin25


5
7475123CD1
g3449306
0.0
[Homo sapiens] MEGF7 (multiple






EGF-like 7 protein)






Nakayama, M. et al., (1998)






Genomics 51:27-34


6
7481952CD1
g8926243
1.5E−40
[Mus musculus] low density






lipoprotein receptor related protein






LRP1B/LRP-DIT


9
3323104CD1
g11414879
0.0
[f1] [Homo sapiens]






mannosyltransferase






Maeda, Y. et al. (2001) PIG-M






transfers the first mannose to






glycosylphosphatidylinositol on the






lumenal side of the ER. EMBO J.






20:250-261


11
2720058CD1
g6013381
1.5E−12
TM6P1 (integral membrane protein)






[Rattus norvegicus] (Zhang, J. et






al. (2000) Biochim. Biophys. Acta






1492:280-284)


12
7481255CD1
g4150939
4.2E−27
[Mus musculus] GSG1


13
1510242CD1
g4263743
5.3E−163
similar to UNC-93; similar to U89424






(PID:g3642687)


14
162131CD1
g13374351
0.0
[f1] [Homo sapiens] apolipoprotein L4


15
1837725CD1
g6850311
6.0E−52
Contains similarity to a vacuolar






sorting receptor homolog from






[Arabidopsis thaliana] gb | U79959


16
3643847CD1
g9944332
2.8E−95
[Mus musculus] Ttyh1






Campbell, H. D. et al. (2000)






Genomics 68:89-92


17
6889872CD1
g3191975
1.3E−95
dJ63G5.3 (putative Leucine rich






protein) [Homo sapiens]










[0379]

5











TABLE 3










Amino






SEQ
Incyte
Acid
Potential
Potential

Analytical


ID
Polypeptide
Resi-
Phosphorylation
Glycosylation
Signature Sequences,
Methods and


NO:
ID
dues
Sites
Sites
Domains and Motifs
Databases





















1
 6431478CD1
461
S117 S190 S225
N113 N183
Transmembrane domains:
HMMER





S280 S336 S34
N294
M38-T56, V94-I112, Y156-V174,





T109 T221 T333

Y195-M216, I231-I248, Y388-M406,





T386

PROTEIN PLACENTAL DIFF33 DEVELOPMENTALLY
BLAST_PRODOM







REGULATED R11H6.2 PD011773: I76-P283,







K192-S460







PROTEIN PLACENTAL DIFF33 R11H6.2
BLAST_PRODOM







DEVELOPMENTALLY REGULATED PD018175: M1-







E70


2
 3584654CD1
879
S150 S158 S244
N286 N300
Signal cleavage: M1-G21
SPSCAN





S288 S349 S46
N383 N413
Signal peptide: M1-R25
HMMER





S574 S580 S598
N44 N525
Transmembrane domain: L833-G851
HMMER





S623 S66 S72
N600 N618
Immunoglobulin domains:
HMMER_PFAM





S747 S758 S772
N691
G36-T121, G162-V249, G292-V375,





T303 T402 T472

D422-V517, G564-V657, G704-V795





T505 T506 T570

PROTEIN PROSTAGLANDIN F2ALPHA RECEPTOR
BLAST_PRODOM





T757 T820 T866

REGULATORY PRECURSOR ASSOCIATED SIGNAL





T97 Y640

IMMUNOGLOBULIN FOLD







PD025644: L9-S814







PROSTAGLANDIN F2ALPHA RECEPTOR
BLAST_PRODOM







REGULATORY PROTEIN PRECURSOR







ASSOCIATED SIGNAL







IMMUNOGLOBULIN FOLD TRANSMEMBRANE







GLYCOPROTEIN PD185779: K815-D879







IMMUNOGLOBULIN
BLAST_DOMO







DM00001|I39207|25-139: V26-Y132







DM00001|I39207|141-259: V140-E255







RGD motif: R703-D705
MOTIFS


3
 3737084CD1
473
S243 S280 S383
N246 N457
Transmembrane domains:
HMMER





S387 S56 T368

M95-Y112, P141-M166, Y257-G277,





T434 Y417 Y444

N396-I419







PROTEIN CHANNEL DIE2 POTASSIUM REGULATOR
BLAST_PRODOM







IONIC C56F8.06C CHROMOSOME I PRECURSOR







PD025171:







E33-S387, W395-N428, S435-W473







POTASSIUM CHANNEL REGULATOR 1
BLAST_PRODOM







IONIC CHANNEL PD184319: M1-R32


4
71426238CD1
223
T132 T174

Connexin: M1-L201
HMMER_PFAM







CONNEXINS DM00590
BLAST_DOMO







|Q02739|1-268: M1-P218







|P28231|1-269: M1-K208







|Q02738|1-262: M1-L206







|P08034|1-276: M1-K204







GAP JUNCTION CONNEXIN PROTEIN
BLAST_PRODOM







TRANSMEMBRANE ALPHA1 CX43 ALPHA8 ALPHA5







BETA1 PD001135: W3-K108, M16-L201







GAP JUNCTION PROTEIN CONNEXIN
BLAST_PRODOM







TRANSMEMBRANE BETA2 CX26 BETA4 CX31.1







DISEASE PD001118: G119-L201







Connexins proteins. BL00407: S2-V38,
BLIMPS_BLOCKS







A39-F69, P70-Y97, G118-D147, C157-L201







CONNEXIN SIGNATURE PR00206: I20-W44, F51-
BLIMPS_PRINTS







Q73, L76-A96, L120-Y146, C157-T177, I178-







L201







transmembrane domain: I23-A39, L120-Y143,
HMMER







T177-F200







Connexins signature 2: C157-P173
MOTIFS







Connexins signatures connexins_1: L33-T86
PROFILESCAN







Connexins signatures connexins_2: I136-L193
PROFILESCAN


5
 7475123CD1
1553
S1007 S1011
N1063 N1115
signal_cleavage: M1-A20
SPSCAN





S1016 S1065
N1409 N1449
LDL RECEPTOR LIGAND-BINDING REPEAT
BLAST_DOMO





S1103 S1108
N549 N725
DM00045 |P01130|37-111: C44-D113,





S1117 S1152

G81-S149, G120-P183





S1234 S1313

LDL RECEPTOR LIGAND-BINDING REPEAT
BLAST_DOMO





S1337 S1346

DM00045|P98160|295-336: G81-C122





S1416 S1420

LDL RECEPTOR LIGAND-BINDING REPEAT
BLAST_DOMO





S1465 S1479

DM00045|I48623|82-120: C83-C122





S149 S1504

GLYCOPROTEIN PROTEIN RECEPTOR EGF-LIKE
BLAST_PRODOM





S1535 S1548

DOMAIN LIPOPROTEIN PRECURSOR SIGNAL





S177 S21 S287

TRANSMEMBRANE RECEPTOR RELATED PD149641:





S366 S390 S404

R431-D559, D1044-D1171, Q739-D867





S430 S496 S529

LOW DENSITY LIPOPROTEIN RECEPTOR RELATED
BLAST_PRODOM





S540 S562 S583

PROTEIN PRECURSOR LRP RECEPTOR





S61 S72 S761

TRANSMEMBRANE REPEAT ENDOCYTOSIS





S804 S816 S843

GLYCOPROTEIN SIGNAL CALCIUM BINDING EGF-





S848

LIKE DOMAIN COATED PITS PD126644: V440-





T1095 T1174

I707, I753-Y1040, I1057-C1287





T1211 T1331

HYPOTHETICAL 294.4 KD PROTEIN HYPOTHETICAL
BLAST_PRODOM





T1336 T1508

PROTEIN PD126659: C661-I1015





T384 T389 T453

LDL-receptor class A (LDLRA) domain
BLIMPS_BLOCKS





T461 T475 T485

proteins BL01209: C90-E102





T623 T629 T727

LOW DENSITY LIPOPROTEIN PR00261: G81-E102,
BLIMPS_PRINTS





T793 T880 T907

C42-E63, G158-E179, G201-E222







signal peptide: M1-G18
HMMER







transmembrane domain: I1372-A1390
HMMER







Low-density lipoprotein receptor repeat:
HMMER_PFAM







D433-V474 N476-M517 G519-G561 Q563-E604







R605-R645 G741-I782 R784-E825 G827-A869







S871-S911 Y912-A953 G1045-V1086 R1088-R1129







G1131-D1173 R1175-T1220







Low-density lipoprotein receptor domain:
HMMER_PFAM







P23-L68, P69-P107, Q237-W275, P189-E227,







R146-S184, R108-M145,


6
 7481952CD1
1718
S1027 S1031
N1235 N126
Transmembrane domain: I1642-A1660
HMMER





S1095 S1111
N1299 N1345
Low-density lipoprotein receptor domain:
HMMER_PFAM





S1165 S1273
N1545 N1634
E383-P423, H610-M649, G1043-S1081,





S1310 S1463
N1684 N183
S1463-L1502, P1507-N1545, K1546-E1586,





S1482 S1510
N260 N375
R824-T864, E1244-H1283





S1517 S1544
N496 N551
MAN domain:
HMMER_PFAM





S1583 S1686
N611 N703
C38-I199, C216-L378, C427-L586,





S200 S214 S240
N761 N910
C652-P818, C869-S1027, C1083-T1238,





S274 S28 S366
N969 N976
C1291-T1454





S553 S565 S580

LDL-receptor class A BL01209:
BLIMPS_BLOCKS





S812 S866 S877

C1485-E1497





S938 T1178

MAM domain proteins:
BLIMPS_BLOCKS





T1238 T133

BL00740A: C434-W446,





T1359 T1371

BL00740B: R1011-S1031





T1391 T468 T504

Low density lipoprotein receptor PR00261:
BLIMPS_PRINTS





T597 T613 T676

L1476-E1497, R397-E418, K836-E857





T763 T827

MAM domain proteins:
BLAST_DOMO







DM01344|P98072|352-509: E418-D578







DM01344|P28824|595-796: E424-D577







DM01344|A55620|961-1128: C421-I576







Cell attachment sequences (RGD):
MOTIFS







R1011-D1013, R1138-D1140


7
 382654CD1
224
S139 S165 S48

Transmembrane domain: I51-W71
HMMER





S74 T179 T202


8
 1867351CD1
570
S317 S336 S356
N82
Signal peptide: M1-C63
SPScan





S538 S94 T367

Transmembrane domains:
HMMER







L38-I58, A302-N322, V338-C357,







I414-M436, L438-I457, L542-R564







Uncharacterized membrane protein family
HMMER_PFAM







UPF0013:







G43-L204, I264-A426







Integral membrane protein PD004336:
BLAST_PRODOM







V344-W462







Integral membrane protein PD149928:
BLAST_PRODOM







I55-P129







Leucine zipper pattern: L537-L558
MOTIFS


9
 3323104CD1
423
S141 S203 S3
N400
Transmembrane domains:
HMMER





T263 T417 T48

L228-Y247, F386-I405





T73 Y52

Leucine zipper pattern: L215-L236
MOTIFS







Intergenic region transmembrane protein:
BLAST_PRODOM







PD040574: W131-I408


10
 4769306CD1
388
S141 S188 S232
N161 N195
Transmembrane domain: V200-I220
HMMER





S279 S294 S303
N301 N336
CUB domain: C27-F139
HMMER_PFAM





S357 S361 S377
N384
Low-density lipoprotein receptor domain:
HMMER_PFAM





S4 S96 S97 T187

P145-E183





T252 T385 T50

LDL-receptor class A BL01209: C166-E178
BLIMPS_BLOCKS


11
2720058CD1
231
S137 T177 T220
N54 N75
Signal peptide: M1-A14
SPScan





T42 Y190

Transmembrane domains:
HMMER







F6-S26, V95-H115, I196-D215


12
 7481255CD1
293
S109 S148 S251
N243 N277
Signal peptide: M1-S28
HMMER





S95 T236 T35
N59 N67
Signal peptide: M1-S22
SPScan







Transmembrane domains:
HMMER







I126-G144, W156-I184







PMP-22/EMP/MP20 family BL01221:
BLIMPS_BLOCKS







F88-N101, Y203-T229


13
 1510242CD1
526
S279 S479 T22
N180 N201
Transmembrane domains:
HMMER





Y125
N378
L146-L172, V217-L235, P333-W351


14
 162131CD1
348
S45 S187 S344

transmembrane domain: I149-L175
HMMER





T33 T54 T207

APOLIPOPROTEIN L PRECURSOR APOL PLASMA
BLAST_PRODOM





T246 T271 Y39

LIPID TRANSPORT GLYCOPROTEIN SIGNAL





Y77

DJ6802.1 PD042084: T9-A347


15
 1837725CD1
520
S8 S54 S141 T37
N35 N58
signal_cleavage: M1-A25
SPSCAN





T151 T157 T202
N66 N74
signal_peptide: M1-A28
HMMER





T331 T505
N116 N126
transmembrane domain: M172-G191, F218-L237,
HMMER






N149 N155
W243-Y261, V287-F306, L346-E371


16
 3643847CD1
534
S35 S40 S124
N31 N129
signal_cleavage: M1-G57
SPSCAN





S133 S338 S512
N283 N352
transmembrane domain: L46-F62, L214-G233,
HMMER





S519 T143 T170

L390-C408





T339 T418 Y207

TWEETY F42E11.2 PROTEIN PD043235: V20-D429
BLAST_PRODOM







Cell attachment sequence R164-D166
MOTIFS


17
 6889872CD1
820
S92 S160 S164
N54 N80 N85
signal_cleavage: M1-A22
SPSCAN





S217 S289 S363
N117 N205
signal_peptide: M1-A22
HMMER





S367 S530 S568
N247 N329
transmembrane domain: T394-Y416
HMMER





S636 S639 S672
N371
Leucine Rich Repeat: T56-G79, N80-S103,
HMMER_PFAM





S725 S737 S741

S104-S127, R128-P151, S152-A175





S747 S757 T56





T87 T338 T378





T437 T483 T493





T625 T766 Y443





Y743 Y785










[0380]

6











TABLE 4








Polynucleotide
Incyte
Sequence
Selected


3′


SEQ ID NO:
Polynucleotide ID
Length
Fragment(s)
Sequence Fragments
5′ Position
Position





















18
 6431478CB1
2653
1-606, 2109-2306
6798827J1 (COLENOR03)
2076
2653






6882379J1 (BRAHTDR03)
1679
2342






7162277F8 (PLACNOR01)
1427
2173






7757207J1 (SPLNTUE01)
418
1133






6109577F6 (MCLDTXT03)
870
1464






7196064F8 (LUNGFER04)
1
735


19
 3584654CB1
3531
1-1782
71760758V1
2094
2675






71760788V1
2684
3350






71761160V1
2577
3331






7658349J1 (UTREDME06)
1341
1989






70815172V1
1481
2064






71764416V1
2978
3531






71754337V1
1965
2648






7183593H1 (BONRFEC01)
1
603






7709623J1 (PANCNOE02)
895
1480






6807068F6 (SKIRNOR01)
293
1156


20
 3737084CB1
2280
947-997, 1840-2280
70409519D1
1372
1947






70408370D1
1720
2280






70400676D1
859
1371






2310625T6 (NGANNOT01)
1282
1832






71685057V1
609
1268






71683716V1
1
748


21
71426238CB1
1104
1-115, 550-624,
1947421R6 (PITUNOT01)
1
508





198-513






71433875V1
435
1104


22
 7475123CB1
4966
1-957, 1328-3163
70879893V1
4038
4682






8124425H1 (HEAONOC01)
4309
4966






8253556H1 (BRAHDIT10)
3948
4663






6891485J1 (BRAITDR03)
2762
3423






6885135H1 (BRAHTDR03)
1
468






593337R6 (BRAVUNT02)
3439
3968






70673072V1
3303
3965






GBI.g7705145_17_12_25
337
3773






27.regenscan ()


23
 7481952CB1
5401
4237-4630, 2834-3834,
55153856J1
1947
2415





1-2283,





4757-4851






GNN.g10120165_000001
1
342






006.edit






6933885R6 (SINTTMR02)
2518
3182






6933885H1 (SINTTMR02)
2339
3011






72434542D1
4614
5401






55153330J1
3010
3752






899395H1 (BRSTTUT03)
1589
1891






55153261H1
311
899






71876387V1
4346
5105






71932270V1
3716
4305






55153293H1
364
1151






55153285J1
886
1816






72432008D1
4234
5099






GNN.g9843576_000009_006
1678
2105


24
 382654CB1
1949
1-247, 1882-1949
7629906H1 (BRAFTUE03)
1
517






6618349J2 (BRAUTDR03)
1282
1949






6884626H1 (BRAHTDR03)
541
1060






6952509H1 (BRAITDR02)
1035
1600






6891983H1 (BRAITDR03)
468
1056






6891983J1 (BRAITDR03)
1121
1671


25
 1867351CB1
2133
987-1049, 1927-2133,
70571014V1
1520
2133





779-832






70568556V1
1259
1924






7261108H1 (UTRETMC01)
646
1135






8004078H1 (MUSCTDC01)
1
704






70570876V1
1151
1828






55026730J1
692
1215






(ADMEDNV22)


26
 3323104CB1
2090
1-34, 415-1111
702759T6 (SYNORAT03)
1128
1767






71220067V1
585
1119






70833651V1
553
1114






70769661V1
1061
1692






8133288H1 (SCOMDIC01)
1
578






70771538V1
1625
2090


27
 4769306CB1
1618
1-208, 561-723
70954880V1
1126
1618






3269667H1 (BRAINOT20)
1
244






70955603V1
648
1272






8103247H1 (MIXDDIE02)
229
797






7076427H1 (BRAUTDR04)
49
677






70953588V1
795
1368


28
 2720058CB1
3269
2536-2564, 1-220,
2657501T6 (LUNGTUT09)
2502
3056





2785-3269






71520348V1
1839
2547






71524606V1
1139
1824






2657501F6 (LUNGTUT09)
594
1126






7225843H1 (LUNGTMC01)
392
983






71670642V1
1721
2424






1305113F6 (PLACNOT02)
1
571






1955363F6 (CONNNOT01)
2570
3058






1375665F6 (LUNGNOT10)
2677
3269






71521430V1
1054
1714


29
 7481255CB1
1227
1-1227
3269676H1 (BRAINOT20)
5
96






GBI.g7622436_000021_000024.
1
1227






edit






FL7481255_g8469082_000035
99
304






g4150939_1_1






4538535F6 (THYRTMT01)
654
1227


30
 1510242CB1
2618
1-515, 2475-2618
6823120J1 (SINTNOR01)
1889
2437






7036758F7 (UTRSTMR02)
1
705






7355340H1 (HEARNON03)
2005
2618






7930760H1 (COLNDIS02)
1224
1900






6837255H1 (BRSTNON02)
673
1368






70366002D1
1430
1904






3413605H1 (PTHYNOT04)
2456
2618






71808592V1
806
1433






6823120H1 (SINTNOR01)
1820
2436


31
 162131CB1
2188
1-25, 1173-1633
g1506355
1667
2188






7243158H2 (PROSTMY01)
1351
1878






1998635R6 (BRSTTUT03)
1632
2172






70559145V1
454
1196






70558921V1
1069
1787






2818229F6 (BRSTNOT14)
1
540






70558931V1
549
1305


32
 1837725CB1
1969
1-400, 1927-1969
70377507D1
1400
1955






g1378655
1517
1969






70378490D1
639
1268






6799889J1 (COLENOR03)
1
673






8227475H1 (BRAUTDR02)
778
1463






2352377H1 (COLSUCT01)
1763
1959


33
 3643847CB1
3006
796-1137, 2849-3006
1478479H1 (CORPNOT02)
2745
3006






6993355H1 (BRAQTDR02)
1129
1755






5964485H1 (BRATNOT05)
1772
2489






1419930H1 (KIDNNOT09)
2650
2892






6789167H1 (BRACNOK01)
2091
2801






6118619H1 (BRAHNON05)
1992
2546






7436931H1 (ADRETUE02)
594
1202






72018042V1
1
579






72018222V1
413
1028






1992275F6 (CORPNOT02)
1268
1809


34
 6889872CB1
2884
1-319, 2090-2884,
8230901H1 (BRAUTDR02)
873
1610





803-1585,





379-418, 1991-2017






8230892H1 (BRAUTDR02)
1
725






8230892J1 (BRAUTDR02)
676
1356






7634710H1 (SINTDIE01)
1577
2162






GNN: g3191973_012
422
2884










[0381]

7







TABLE 5








Polynucleotide
Incyte
Representative


SEQ ID NO:
Project ID
Library







18
6431478CB1
BRAHTDR03


19
3584654CB1
PROSNOT11


20
3737084CB1
PROSNON01


21
71426238CB1
PITUNOT01


22
7475123CB1
CONUTUT01


23
7481952CB1
SINTTMR02


24
382654CB1
BRAHTDR03


25
1867351CB1
BRAITUT21


26
3323104CB1
LUNGNOT27


27
4769306CB1
BRAMNOT01


28
2720058CB1
LUNGTUT10


29
7481255CB1
THYRTMT01


30
1510242CB1
SINTFER02


31
162131CB1
PANCNOT15


32
1837725CB1
SINDNOT01


33
3643847CB1
CORPNOT02


34
6889872CB1
SINTDIE01










[0382]

8







TABLE 6








Library
Vector
Library Description







BRAHTDR03
PCDNA2.1
This random primed library was constructed using RNA isolated from archaecortex,




anterior hippocampus tissue removed from a 55-year-old Caucasian female who died from




cholangiocarcinoma. Pathology indicated mild meningeal fibrosis predominately over




the convexities, scattered axonal spheroids in the white matter of the cingulate




cortex and the thalamus, and a few scattered neurofibrillary tangles in the




entorhinal cortex and the periaqueductal gray region. Pathology for the associated




tumor tissue indicated well-differentiated cholangiocarcinoma of the liver with




residual or relapsed tumor. Patient history included cholangiocarcinoma, post-




operative Budd-Chiari syndrome, biliary ascites, hydrothorax, dehydration,




malnutrition, oliguria and acute renal failure. Previous surgeries included




cholecystectomy and resection of 85% of the liver.


BRAITUT21
pINCY
Library was constructed using RNA isolated from brain tumor tissue removed from the




midline frontal lobe of a 61-year-old Caucasian female during excision of a cerebral




meningeal lesion. Pathology indicated subfrontal meningothelial meningioma with no




atypia. One ethmoid and mucosal tissue sample indicated meningioma. Family history




included cerebrovascular disease, senile dementia, hyperlipidemia, benign




hypertension, atherosclerotic coronary artery disease, congestive heart failure, and




breast cancer.


BRAMNOT01
pINCY
Library was constructed using RNA isolated from medulla tissue removed from the brain




of a 35-year-old Caucasian male who died from cardiac failure. Pathology indicated




moderate leptomeningeal fibrosis and multiple microinfarctions of the cerebral




neocortex. Microscopically, the cerebral hemisphere revealed moderate fibrosis of the




leptomeninges with focal calcifications. There was evidence of shrunken and slightly




eosinophilic pyramidal neurons throughout the cerebral hemispheres. In addition,




scattered throughout the cerebral cortex, there were multiple small microscopic areas




of cavitation with surrounding gliosis. Patient history included dilated




cardiomyopathy, congestive heart failure, cardiomegaly and an enlarged spleen and




liver.


CONUTUT01
pINCY
Library was constructed using RNA isolated from sigmoid mesentery tumor tissue




obtained from a 61-year-old female during a total abdominal hysterectomy and




bilateral salpingo-oophorectomy with regional lymph node excision. Pathology




indicated a metastatic grade 4 malignant mixed mullerian tumor present in the sigmoid




mesentery at two sites.


CORPNOT02
pINCY
Library was constructed using RNA isolated from diseased corpus callosum tissue




removed from the brain of a 74-year-old Caucasian male who died from Alzheimer's




disease.


LUNGNOT27
pINCY
Library was constructed using RNA isolated from lung tissue removed from a 17-year-




old Hispanic female.


LUNGTUT10
pINCY
Library was constructed using RNA isolated from lung tumor tissue removed from the




left upper lobe of a 65-year-old Caucasian female during a segmental lung resection.




Pathology indicated a metastatic grade 2 myxoid liposarcoma and a metastatic grade 4




liposarcoma. Patient history included soft tissue cancer, breast cancer, and




secondary lung cancer.


PANCNOT15
pINCY
Library was constructed using RNA isolated from diseased pancreatic tissue removed




from a 15-year-old Caucasian male during a exploratory laparotomy with distal




pancreatectomy and total splenectomy. Pathology indicated islet cell hyperplasia




Family history included prostate cancer and cardiovacular disease.


PITUNOT01
PBLUESCRIPT
Library was constructed using RNA obtained from Clontech (CLON 6584-2, lot 35278).




The RNA was isolated from the pituitary glands removed from a pool of 18 male and




female Caucasian donors, 16 to 70 years old, who died from trauma.


PROSNON01
PSPORT1
This normalized prostate library was constructed from 4.4 M independent clones from a




prostate library. Starting RNA was made from prostate tissue removed from a 28-year-




old Caucasian male who died from a self-inflicted gunshot wound. The normalization




and hybridization conditions were adapted from Soares, M.B. et al. (1994) Proc. Natl.




Acad. Sci. U.S.A. 91: 9228-9232, using a longer (19 hour) reannealing hybridization




period.


PROSNOT11
pINCY
Library was constructed using RNA isolated from the prostate tissue of a 28-year-old




Caucasian male, who died from a self-inflicted gunshot wound.


SINDNOT01
pINCY
Library was constructed using RNA isolated from duodenum tissue removed from the




small intestine of a 16-year-old Caucasian male who died from head trauma. Patient




history included a kidney infection.


SINTDIE01
PCDNA2.1
This 5′ biased random primed library was constructed using RNA isolated from small




intestine tissue removed from a 49-year-old Caucasian female during




gastroenterostomy, exploratory laparotmy, and vagotomy. The patient presented with




acute stomach ulcer with obstruction, nausea and vomiting, and abnormal weight loss.




Patient history included backache, acute stomach ulcer with perforation, and normal




delivery. Previous surgeries included adenotonsillectomy and total abdominal




hysterectomy. Patient medications included Premarin. Family history included benign




hypertension, type II diabetes and congestive heart failure in the father.


SINTFER02
pINCY
This random primed library was constructed using RNA isolated from small intestine




tissue removed from a Caucasian male fetus who died from fetal demise.


SINTTMR02
PCDNA2.1
This random primed library was constructed using RNA isolated from small intestine




tissue removed from a 59-year-old male. Pathology for the matched tumor tissue




indicated multiple (9) carcinoid tumors, grade 1, in the small bowel. The largest




tumor was associated with a large mesenteric mass. Multiple convoluted segments of




bowel were adhered to the tumor. A single (1 of 13) regional lymph node was positive




for malignancy. The peritoneal biopsy indicated focal fat necrosis.


THYRTMT01
pINCY
Library was constructed using RNA isolated from left thyroid tissue removed from a




56-year-old Caucasian male during a unilateral thyroid lobectomy and fine needle




thyroid biopsy. Pathology for the associated tumor tissue indicated medullary




carcinoma invading the overlying skeletal muscle. Metastatic medullary carcinoma




involved one carotid sheath lymph node (of 9), one left neck lymph node with extra




nodular extension, and a central compartment node. A microscopic focus of grade 1




papillary carcinoma was identified within the right lobe of the thyroid lobe. The




left thyroid vein biopsy was negative for tumor. Patient history included




hyperlipidemia, headache, and atherosclerotic coronary artery disease. Family history




included cerebrovascular disease, cardiovasclar disease and bone cancer.










[0383]

9








TABLE 7








Program
Description
Reference
Parameter Threshold







ABI
A program that removes vector sequences and
Applied Biosystems, Foster City, CA.



FACTURA
masks ambiguous bases in nucleic acid sequences.


ABI/
A Fast Data Finder useful in comparing and
Applied Biosystems, Foster City, CA;
Mismatch < 50%


PARACEL
annotating amino acid or nucleic acid sequences.
Paracel Inc., Pasadena, CA.


FDF


ABI Auto-
A program that assembles nucleic acid sequences.
Applied Biosystems, Foster City, CA.


Assembler


BLAST
A Basic Local Alignment Search Tool useful in
Altschul, S. F. et al. (1990) J. Mol. Biol.
ESTs: Probability value = 1.0E−8



sequence similarity search for amino acid and
215: 403-410; Altschul, S. F. et al. (1997)
or less



nucleic acid sequences. BLAST includes five
Nucleic Acids Res. 25: 3389-3402.
Full Length sequences: Probability



functions: blastp, blastn, blastx, tblastn, and tblastx.

value = 1.0E−10 or less


FASTA
A Pearson and Lipman algorithm that searches for
Pearson, W. R. and D. J. Lipman (1988) Proc.
ESTs: fasta E value = 1.06E−6



similarity between a query sequence and a group of
Natl. Acad Sci. USA 85: 2444-2448; Pearson,
Assembled ESTs: fasta Identity =



sequences of the same type. FASTA comprises as
W. R. (1990) Methods Enzymol. 183: 63-98;
95% or greater and



least five functions: fasta, tfasta, fastx, tfastx, and
and Smith, T. F. and M. S. Waterman (1981)
Match length = 200 bases or great-



ssearch.
Adv. Appl. Math. 2: 482-489.
er; fastx E value = 1.0E−8 or less





Full Length sequences:





fastx score = 100 or greater


BLIMPS
A BLocks IMProved Searcher that matches a
Henikoff, S. and J. G. Henikoff (1991) Nucleic
Probability value = 1.0E−3 or less



sequence against those in BLOCKS, PRINTS,
Acids Res. 19: 6565-6572; Henikoff, J. G. and



DOMO, PRODOM, and PFAM databases to search
S. Henikoff (1996) Methods Enzymol.



for gene families, sequence homology, and
266: 88-105; and Attwood, T. K. et al.



structural fingerprint regions.
(1997) J. Chem. Inf. Comput. Sci. 37:




417-424.


HMMER
An algorithm for searching a query sequence against
Krogh, A. et al. (1994) J. Mol. Biol.
PFAM hits: Probability value =



hidden Markov model (HMM)-based databases of
235: 1501-1531; Sonnhammer, E. L. L. et al.
1.0E−3 or less



protein family consensus sequences, such as PFAM.
(1988) Nucleic Acids Res. 26: 320-322;
Signal peptide hits: Score = 0 or




Durbin, R. et al. (1998) Our World View, in a
greater




Nutshell, Cambridge Univ. Press, pp. 1-350.


ProfileScan
An algorithm that searches for structural and
Gribskov, M. et al. (1988) CABIOS 4: 61-66;
Normalized quality score ≧ GCG-



sequence motifs in protein sequences that match
Gribskov, M. et al. (1989) Methods Enzymol.
specified “HIGH” value for that



defined in Prosite.
183: 146-159; Bairoch, A. et al. (1997)
particular Prosite motif.




Nucleic Acids Res. 25: 217-221.
Generally, score = 1.4-2.1.


Phred
A base-calling algorithm that examines automated
Ewing, B. et al. (1998) Genome Res.



sequencer traces with high sensitivity and
8: 175-185; Ewing, B. and P. Green



probability.
(1998) Genome Res. 8: 186-194.


Phrap
A Phils Revised Assembly Program including
Smith, T. F. and M. S. Waterman (1981) Adv.
Score = 120 or greater;



SWAT and CrossMatch, programs based on
Appl. Math. 2: 482-489; Smith, T. F. and
Match length = 56 or greater



efficient implementationof the Smith-Waterman
M. S. Waterman (1981) J. Mol. Biol. 147:



algorithm, useful in searching sequence homology
195-197; and Green, P., University of



and assembling DNA sequences.
Washington, Seattle, WA.


Consed
A graphical tool for viewing and editing Phrap
Gordon, D. et al. (1998) Genome Res.



assemblies.
8: 195-202.


SPScan
A weight matrix analysis program that scans protein
Nielson, H. et al. (1997) Protein Engineering
Score = 3.5 or greater



sequences for the presence of secretory
10: 1-6; Claverie, J. M. and S. Audic (1997)



signal peptides.
CABIOS 12: 431-439.


TMAP
A program that uses weight matrices to delineate
Persson, B. and P. Argos (1994) J. Mol. Biol.



transmembrane segments on protein sequences and
237: 182-192; Persson, B. and P. Argos (1996)



determine orientation.
Protein Sci. 5: 363-371.


TMHMMER
A program that uses a hidden Markov
Sonnhammer, E. L. et al. (1998) Proc. Sixth



model (HMM) to delineate transmembrane segments
Intl. Conf. on Intelligent Systems for Mol.



on protein sequences and determine orientation.
Biol., Glasgow et al., eds., The Am.




Assoc. for Artificial Intelligence Press,




Menlo Park, CA, pp. 175-182.


Motifs
A program that searches amino acid sequences for
Bairoch, A. et al. (1997) Nucleic Acids Res.



patterns that matched those defined in Prosite.
25: 217-221; Wisconsin Package Program




Manual, version 9, page M51-59, Genetics




Computer Group, Madison, WI.










[0384]


Claims
  • 1. An isolated polypeptide selected from the group consisting of: a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-17.
  • 2. An isolated polypeptide of claim 1 comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17.
  • 3. An isolated polynucleotide encoding a polypeptide of claim 1.
  • 4. An isolated polynucleotide encoding a polypeptide of claim 2.
  • 5. An isolated polynucleotide of claim 4 comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34.
  • 6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
  • 7. A cell transformed with a recombinant polynucleotide of claim 6.
  • 8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
  • 9. A method of producing a polypeptide of claim 1, the method comprising: a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and b) recovering the polypeptide so expressed.
  • 10. A method of claim 9, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-17.
  • 11. An isolated antibody which specifically binds to a polypeptide of claim 1.
  • 12. An isolated polynucleotide selected from the group consisting of: a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:18-34, c) a polynucleotide complementary to a polynucleotide of a), d) a polynucleotide complementary to a polynucleotide of b), and e) an RNA equivalent of a)-d).
  • 13. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 12.
  • 14. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 12, the method comprising: a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
  • 15. A method of claim 14, wherein the probe comprises at least 60 contiguous nucleotides.
  • 16. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 12, the method comprising: a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, an, optionally, if present, the amount thereof.
  • 17. A composition comprising a polypeptide of claim 1 and a pharmaceutically acceptable excipient.
  • 18. A composition of claim 17, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 1-17.
  • 19. A method for treating a disease or condition associated with decreased expression of functional TMP, comprising administering to a patient in need of such treatment the composition of claim 17.
  • 20. A method of screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising: a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting agonist activity in the sample.
  • 21. A composition comprising an agonist compound identified by a method of claim 20 and a pharmaceutically acceptable excipient.
  • 22. A method for treating a disease or condition associated with decreased expression of functional TMP, comprising administering to a patient in need of such treatment a composition of claim 21.
  • 23. A method of screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising: a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting antagonist activity in the sample.
  • 24. A composition comprising an antagonist compound identified by a method of claim 23 and a pharmaceutically acceptable excipient.
  • 25. A method for treating a disease or condition associated with overexpression of functional TNT, comprising administering to a patient in need of such treatment a composition of claim 24.
  • 26. A method of screening for a compound that specifically binds to the polypeptide of claim 1, the method comprising: a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.
  • 27. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, the method comprising: a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1, b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.
  • 28. A method of screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising: a) exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide, b) detecting altered expression of the target polynucleotide, and c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
  • 29. A method of assessing toxicity of a test compound, the method comprising: a) treating a biological sample containing nucleic acids with the test compound, b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 12 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 12 or fragment thereof, c) quantifying the amount of hybridization complex, and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
  • 30. A diagnostic test for a condition or disease associated with the expression of TMP in a biological sample, the method comprising: a) combining the biological sample with an antibody of claim 11, under conditions suitable for the antibody to bind the polypeptide and form an antibody:polypeptide complex, and b) detecting the complex, wherein the presence of the complex correlates with the presence of the polypeptide in the biological sample.
  • 31. The antibody of claim 11, wherein the antibody is: a) a chimeric antibody, b) a single chain antibody, c) a Fab fragment, d) a F(ab′)2 fragment, or e) a humanized antibody.
  • 32. A composition comprising an antibody of claim 11 and an acceptable excipient.
  • 33. A method of diagnosing a condition or disease associated with the expression of TMP in a subject, comprising administering to said subject an effective amount of the composition of claim 32.
  • 34. A composition of claim 32, wherein the antibody is labeled.
  • 35. A method of diagnosing a condition or disease associated with the expression of TMP in a subject, comprising administering to said subject an effective amount of the composition of claim 34.
  • 36. A method of preparing a polyclonal antibody with the specificity of the antibody f claim 11, the method comprising: a) immunizing an anal with a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, or an immunogenic fragment thereof, under conditions to elicit an antibody response, b) isolating antibodies from said animal, and c) screening the isolated antibodies with the polypeptide, thereby identifying a polyclonal antibody which binds specifically to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17.
  • 37. A polyclonal antibody produced by a method of claim 36.
  • 38. A composition comprising the polyclonal antibody of claim 37 and a suitable carrier.
  • 39. A method of making a monoclonal antibody with the specificity of the antibody of claim 11, the method comprising: a) immunizing an animal with a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ ID NO:1-17, or an immunogenic fragment thereof, under conditions to elicit an antibody response, b) isolating antibody producing cells from the animal, c) fusing the antibody producing cells with immortalized cells to form monoclonal antibody-producing hybridoma cells, d) culturing the hybridoma cells, and e) isolating from the culture monoclonal antibody which binds specifically to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17.
  • 40. A monoclonal antibody produced by a method of claim 39.
  • 41. A composition comprising the monoclonal antibody of claim 40 and a suitable carrier.
  • 42. The antibody of claim 11, wherein the antibody is produced by screening a Fab expression library.
  • 43. The antibody of claim 11, wherein the antibody is produced by screening a recombinant immunoglobulin library.
  • 44. A method of detecting a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17 in a sample, the method comprising: a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and b) detecting specific binding, wherein specific binding indicates the presence of a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17 in the sample.
  • 45. A method of purifying a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17 from a sample, the method comprising: a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and b) separating the antibody from the sample and obtaining the purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-17.
  • 46. A microarray wherein at least one element of the microarray is a polynucleotide of claim 13.
  • 47. A method of generating an expression profile of a sample which contains polynucleotides, the method comprising: a) labeling the polynucleotides of the sample, b) contacting the elements of the microarray of claim 46 with the labeled polynucleotides of the sample under conditions suitable for the formation of a hybridization complex, and c) quantifying the expression of the polynucleotides in the sample.
  • 48. An array comprising different nucleotide molecules affixed in distinct physical locations on a solid substrate, wherein at least one of said nucleotide molecules comprises a first oligonucleotide or polynucleotide sequence specifically hybridizable with at least 30 contiguous nucleotides of a target polynucleotide, and wherein said target polynucleotide is a polynucleotide of claim 12.
  • 49. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to at least 30 contiguous nucleotides of said target polynucleotide.
  • 50. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to at least 60 contiguous nucleotides of said target polynucleotide.
  • 51. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to said target polynucleotide.
  • 52. An array of claim 48, which is a microarray.
  • 53. An array of claim 48, further comprising said target polynucleotide hybridized to a nucleotide molecule comprising said first oligonucleotide or polynucleotide sequence.
  • 54. An array of claim 48, wherein a linker joins at least one of said nucleotide molecules to said solid substrate.
  • 55. An array of claim 48, wherein each distinct physical location on the substrate contains multiple nucleotide molecules, and the multiple nucleotide molecules at any single distinct physical location have the same sequence, and each distinct physical location on the substrate contains nucleotide molecules having a sequence which differs from the sequence of nucleotide molecules at another distinct physical location on the substrate.
  • 56. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:1.
  • 57. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:2.
  • 58. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:3.
  • 59. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:4.
  • 60. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:5.
  • 61. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:6.
  • 62. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:7.
  • 63. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:8.
  • 64. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:9.
  • 65. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:10.
  • 66. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:11.
  • 67. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:12.
  • 68. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:13.
  • 69. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:14.
  • 70. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:15.
  • 71. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:16.
  • 72. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:17.
  • 73. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:18.
  • 74. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:19.
  • 75. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:20.
  • 76. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:21.
  • 77. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:22.
  • 78. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:23.
  • 79. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:24.
  • 80. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:25.
  • 81. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:26.
  • 82. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:27.
  • 83. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:28.
  • 84. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:29.
  • 85. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:30.
  • 86. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:31.
  • 87. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:32.
  • 88. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:33.
  • 89. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:34.
PCT Information
Filing Document Filing Date Country Kind
PCT/US01/49670 10/26/2001 WO