Transmission control protocol congestion window

Abstract
Techniques for managing a TCP congestion window. Such techniques include incrementing an acknowledgement (ACK) count for non-duplicate Transmission Control Protocol ACKs received, comparing the ACK count to a congestion window factor representing the ratio of a congestion window size associated with a connection to a maximum segment size associated with the connection, and, based on the comparing, incrementing the congestion window factor.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graph illustrating management of a congestion window.



FIGS. 2 and 3 are listings of source code to manage a congestion window.



FIG. 4 illustrates flow-charts of processes to manage a congestion window.



FIGS. 5 and 6 are diagrams of processors having multiple cores.





DETAILED DESCRIPTION

Transmission Control Protocol (TCP) provides a variety of mechanisms that enable senders and receivers to tailor a connection to the capabilities of the different devices participating in a connection and the underlying network. For example, TCP enables a receiver to specify a receive window that the sender can use to limit the amount of unacknowledged data sent. For example, during connection setup, the receiver can set a window value in a TCP segment header that corresponds to an amount of buffer space reserved for receiving connection data. The sender may maintain a send window to ensure that the amount of unacknowledged data does not exceed the receive window.


As another example, TCP permits a receiver to specify a maximum segment size header option that identifies the largest TCP segment that the receiver can handle. Again, a sender may size outgoing segments to conform to the receiver's declared maximum segment size limit.


In addition to these receiver reported capabilities, TCP uses a technique known as a “slow start” to prevent a sender from overwhelming a network when a connection begins. The slow start uses a congestion window that limits unacknowledged data transmissions to an amount that is, at least initially, much smaller than the receive window. For example, a congestion window may initially be set to one maximum segment size. While starting at a relatively small value, the congestion window can grow exponentially and soon reach the size of the receive window. For example, the congestion window size may be incremented by the maximum segment size for each non-duplicate (“new”) ACK received.


At any time, congestion may be detected by a TCP sender, for example, by receiving duplicate ACKs, detecting transmission time-outs of data sent but unacknowledged, or other techniques. To cure this congestion, a TCP sender can reduce its congestion window in an attempt to reduce traffic in a congested network. In addition, the sender can determine a slow start threshold that slows growth of the congestion window when the window reaches a size that may have overwhelmed the underlying network. After congestion detection, the congestion window can again grow exponentially until the congestion window reaches the slow start threshold. Thereafter, the sender can adjust the congestion window in smaller, more linear growth. For example, a sender may increment the congestion window by [(maximum segment size/congestion window)*maximum segment size] for each non-duplicate ACK received. Computing the division of maximum segment size by the congestion window, however, can be a very expensive operation in terms of compute cycles. Instead of this division, FIG. 1 illustrates a technique that adjusts the congestion window size in a series of maximum segment size 104 steps 110 after the slow start threshold 102 is exceeded. To contrast these steps with conventional operation, FIG. 1 depicts conventional linear growth 108 (shown as a dotted line) of a congestion window corresponding to an increase of [(maximum segment size/congestion window)*maximum segment size] for each non-duplicate ACK received. As shown, while likewise situated points within the steps 110 retain the same slope as conventional linear growth, managing the congestion window in this manner can permit avoidance of a computationally expensive division operation.



FIG. 2 depicts a sample listing of code 120 to implement “division-less” management of a congestion window. As shown, the code maintains the congestion window size (“cwnd”) 130 as a multiple of the maximum segment size (“maxseg”) and a congestion window factor (“cwnd_factor”). The congestion window factor (“cwnd_factor”) is defined as an integer representing (congestion window size/maximum segment size). To clarify, though the congestion window factor represents the number of maximum segment size segments in the congestion window, this division is not computed. Instead, the ratio is maintained implicitly by adjustment of the congestion window factor. As shown in the code 120, the cwnd_factor increases monotonically during the TCP slow start, increasing by ‘1’ for every non-duplicate ACK received 128.


As shown, the code 120 also represents the slow start threshold 102 as an integer value, “ssthread_factor” that represents a ratio of a slow start threshold 102 to the maximum segment size. Again, this division need not be implemented, but is implied by the handling of the “ssthread_factor”. As shown, when the congestion window factor (“cwnd_factor”) exceeds the ssthresh_factor 122, the code increments a congestion window count (“cwnd_count”) that represents a count of non-duplicate ACKs received since a count reset. When the congestion window count (“cwnd_count”) equals the congestion window factor 126, the congestion window factor is incremented by 1, the count is reset, and the congestion window is determined 130 to be an amount increased by the maximum segment size. The code 120 dispenses with largely insignificant fractional increases in the congestion window until an entire maximum segment size adjustment occurs. Since TCP typically sends data in maximum segment size segments when enough data is ready to be sent, an increase of the congestion window by a fraction of the maximum segment size does not alter the number of segments transmitted within the window. Thus, the technique avoids an expensive division while operating in an equivalent manner to an implementation that performs the division.


Generally, TCP implementations maintain state information for a connection in a set of state data known as a TCB (Transmission Control Block). The state data is generally read and updated for each segment transmitted and received, for example, to update the next expected sequence number, adjust a send window, etc. The code in FIG. 2 need not store the congestion window size in the per-connection state data. Instead the congestion window factor (“cwnd_factor”) can be stored and the congestion window size can be derived as needed by multiplying 130 the congestion window factor (“cwnd_factor”) with the maximum segment size (“maxseg”). Such an approach can reduce the amount of state data stored in the TCB.


The implementation of FIG. 2 can be altered to avoid multiplication by maintaining the congestion window size in a connection's state data. For example, FIG. 3 depicts a listing of source code 140 that adds a maximum segment size amount 140 to the congestion window (“cwnd”) with each increment of the congestion window factor (cwnd_factor). This implementation avoids both multiplication and division and has the same behavior as the code shown in FIG. 2. The implementation shown in FIG. 3 may be better suited to an architecture that does not have multiplication and division instructions.



FIG. 4 depicts flow-charts 160, 170 illustrating sample operation. As shown, a non-duplicate ACK causes comparison 172 of the congestion window factor with the slow start threshold factor. If the congestion window factor is less than the threshold, the process 170 implements the conventional exponential slow start by incrementing the congestion window factor 174. Otherwise, the process 170 increments an ACK count 176 for the non-duplicate ACK. If the count equals the congestion window factor 178, the count is reset 180, and the congestion window factor 182 is incremented. The congestion window size can then be altered (e.g., using the techniques illustrated in FIG. 2 or FIG. 3).


As shown, a TCP sender may respond 160 to detected congestion. In this case, a slow start threshold factor is determined 162. For example, a slow start threshold may be computed by floor (½ [(min (congestion window size, receive window size)]/maximum segment size). Alternately, such a computation may be determined based on a representation of the congestion window and receive window as factors as described above (e.g., floor (½ [min (congestion window factor, receive window factor)])). In addition, the sender may 164 reduce the congestion window factor and/or congestion window size to permit the underlying network to recover.


The techniques describe above can be implemented in a variety of ways and in different environments. For example, the techniques may be implemented with a network processor. As an example, FIG. 5 depicts an example of a network processor 200 that can be programmed to process packets. The network processor 200 shown is an Intel® Internet eXchange network Processor (IXP). Other processors feature different designs. The network processor 200 shown features a collection of programmable processing cores (e.g., programmable engines 220 and general purpose core 206) on a single integrated semiconductor die. Each engine 220 may be a Reduced Instruction Set Computer (RISC) processor tailored for packet processing. For example, the engine 220 may not provide floating point or integer division instructions commonly provided by the instruction sets of general purpose processors. Individual engines 220 may provide multiple threads of execution. For example, a engines 220 may store multiple program counters and other context data for different threads. FIG. 6 depicts another multi-core processor 250 that features multiple engines 254 and a general purpose core 252 that share a memory controller hub, I/O controller hub (e.g., PCI interface), and memory controller.


Both processors 200, 250 may be coupled to or include Media Access Devices (MACs) to receive network data (e.g., a wireless or Ethernet MAC). In both processors 200, 250, TCP processing may be offloaded to one or more of the cores. Such cores may not feature division instructions. In such circumstances the congestion management techniques can save substantial compute cycles over techniques that implement division as repeated subtractions and/or shifting. For example, implementing the techniques described above can potentially reduce congestion window computations from 235 cycles to 15 cycles. This low-cycle consumption can, for example, help a processor attain 10-Gigabit/s wire-speed processing.


While FIGS. 5-6 described specific examples of processors, the techniques may be implemented in a variety of architectures having designs other than those shown.


Techniques described above can be implemented in a wide variety of circuitry (e.g., ASICs (Application Specific Integrated Circuits), PGA (Programmable Gate Arrays), and so forth). The term circuitry as used herein includes digital circuitry and analog circuitry. The circuitry design may be generated by encoding logic described above in a hardware description language (e.g., Verilog or VHDL). The circuitry may also include programmable circuitry. The programmable circuitry may include a processor that operates on computer programs, disposed on computer readable storage mediums.


Other embodiments are within the scope of the following claims.

Claims
  • 1. A processor-implemented method, comprising: incrementing an acknowledgement (ACK) count for non-duplicate Transmission Control Protocol ACKs received by a Transmission Control Protocol sender in a connection between the Transmission Control Protocol sender and a Transmission Control Protocol receiver;comparing the ACK count to a congestion window factor representing the ratio of a congestion window size associated with a connection to a maximum segment size associated with the connection; andbased on the comparing, incrementing the congestion window factor.
  • 2. The method of claim 1, further comprising determining a new value for the congestion window size.
  • 3. The method of claim 2, wherein the determining the new value for the congestion window size comprises an add operation of the congestion window size and the maximum segment size.
  • 4. The method of claim 2, wherein the determining the new value for the congestion window size comprises a multiplication operation of the congestion window factor and the maximum segment size.
  • 5. The method of claim 2, wherein the determining the new value for the congestion window size comprises determining without a division operation of the congestion window size by the maximum segment size.
  • 6. The method of claim 1, further comprising determining if a congestion window threshold has been exceeded.
  • 7. The method of claim 6, wherein the congestion window threshold comprises an integer representing the ratio of a congestion window threshold size to the maximum segment size.
  • 8. The method of claim 7, further comprising if the congestion window threshold has not been exceeded, increasing a congestion window size associated with the connection by the maximum segment size for each non-duplicate ACK received.
  • 9. The method of claim 1, wherein the incrementing the ACK count and incrementing the congestion window factor comprise incrementing in accordance with the following logic:
  • 10. A computer program, disposed on a computer readable storage medium, comprising instructions for causing a processor to: increment an acknowledgement (ACK) count for non-duplicate Transmission Control Protocol ACKs received by a Transmission Control Protocol sender in a connection between the Transmission Control Protocol sender and a Transmission Control Protocol receiver;compare the ACK count to a congestion window factor representing the ratio of a congestion window size associated with a connection to a maximum segment size associated with the connection; andbased on the comparing, increment the congestion window factor.
  • 11. The program of claim 10, further comprising instructions for causing the processor to determine a new value for the congestion window size.
  • 12. The program of claim 11, wherein the instructions for causing the processor to determine the new value for the congestion window size comprise instructions for causing the processor to perform an add operation of the congestion window size and the maximum segment size.
  • 13. The program of claim 11, wherein the instructions for causing the processor to determine the new value for the congestion window size comprise instructions for causing the processor to perform a multiplication operation of the congestion window factor and the maximum segment size.
  • 14. The program of claim 10, further comprising instructions for causing the processor to determine if a congestion window threshold has been exceeded.
  • 15. The program of claim 14, wherein the congestion window threshold comprises an integer representing the ratio of a congestion window threshold size to the maximum segment size.
  • 16. The program of claim 14, further comprising instructions for causing the processor to, if the congestion window threshold has not been exceeded, increase a congestion window size associated with the connection by the maximum segment size for each non-duplicate ACK received.
  • 17. The program of claim 1, wherein the instructions comprise instructions implementing the following logic:
  • 18. An apparatus, comprising: at least one Ethernet Media Access Controller (MAC);a processor coupled to the at least one Ethernet MAC, the processor comprising: multiple cores; andlogic to cause at least one of the multiple cores to: perform a Transmission Control Protocol slow start for a Transmission Control Protocol connection that exponentially increases a congestion window size associated with the connection; andafter exceeding a slow start threshold for the congestion window size, adjusting the congestion window size in a series of steps, wherein the steps comprise steps differing in an amount equal to the maximum segment size, and wherein the adjusting comprises adjusting without performing a division by the congestion window size.
  • 19. The system of claim 18, where the logic comprises logic to: increment an acknowledgement (ACK) count for non-duplicate Transmission Control Protocol ACKs received by a Transmission Control Protocol sender in a connection between the Transmission Control Protocol sender and a Transmission Control Protocol receiver;compare the ACK count to a congestion window factor representing the ratio of a congestion window size associated with a connection to a maximum segment size associated with the connection; andbased on the comparing, increment the congestion window factor.
  • 20. The system of claim 19, further comprising logic to determine a new value for the congestion size window in accordance with at least one selected from the following group: an add operation of the congestion window size and the maximum segment size; anda multiplication operation of the congestion window factor and the maximum segment size.