The present disclosure relates to a transmission device, a reception device, a communication system, a transmission method, a reception method, and a communication method.
Devices can use global positioning system (GPS) as a method for obtaining location information. In such cases, devices receive a modulated signal transmitted from a satellite, and estimate location by positioning calculation. However, it is difficult for the device to estimate location information when the device is indoors, where reception of the radio waves transmitted by the GPS satellite is difficult.
For example, one method for overcoming such a problem is disclosed in non-patent literature (NPTL) 1. As disclosed in NPTL 1, there is a method by which the device uses radio waves transmitted from an access point in a wireless local area network (LAN) to estimate location.
However, the performance of the transmission device and the reception device can be improved upon.
A transmission device according to one aspect of the present disclosure includes: a light source; and a transmitter that generates a modulated signal based on an input signal and transmits the modulated signal from the light source as visible light by changing a luminance of the light source in accordance with the modulated signal. The modulated signal includes a plurality of items of information related to service set identifiers (SSIDs) of a plurality of mutually different access points in a wireless local area network (LAN).
Additional benefits and advantages of the disclosed embodiments will be apparent from the Specification and Drawings. The benefits and/or advantages may be individually obtained by the various embodiments and features of the Specification and Drawings, which need not all be provided in order to obtain one or more of such benefits and/or advantages.
According to the present disclosure, it is possible to improve upon the performance of a communication device and a reception device.
These and other objects, advantages and features of the disclosure will become apparent from the following description thereof taken in conjunction with the accompanying drawings that illustrate a specific embodiment of the present disclosure.
Underlying Knowledge Forming Basis of the Present Disclosure
Devices can use global positioning system (GPS) as a method for obtaining location information. In such cases, devices receive a modulated signal transmitted from a satellite, and estimate location by positioning calculation. However, it is difficult for the device to estimate location information when the device is indoors, where reception of the radio waves transmitted by the GPS satellite is difficult.
For example, one method for overcoming such a problem is disclosed in NPTL 1 described above. As disclosed in NPTL 1, there is a method by which the device uses radio waves transmitted from an access point in a wireless local area network (LAN) to estimate location. However, since it is not easy to know the service set identifier (SSID) of an access point that can be securely accessed, when the device attempts to obtain location information, there is a possibility that the device will connect to an insecure SSID access point, leading to the possibility of a compromise of information.
In view of this, in the present disclosure, a (optical) modulated signal including information related to a location is transmitted, for example, from, for example, a light emitting diode (LED) lamp, light source, or light that is provided in a room and emits visible light. For example, a terminal (device) receives a (optical) modulated signal via, for example, an image sensor such as a complementary metal oxide semiconductor (CMOS) or organic photoconductive film (OPF) CMOS (i.e., organic CMOS) image sensor, performs demodulation and such, and obtains at least the information related to a location. With this, the terminal can achieve the advantageous effect of being able to securely obtain information related to a location.
Alternatively, in the present disclosure, for example, a (optical) modulated signal including information related to an SSID is transmitted, for example, from, for example, a light emitting diode (LED) lamp, light source, or light that is provided in a room and emits visible light. A terminal (device) receives a (optical) modulated signal via, for example, an image sensor such as a complementary metal oxide semiconductor (CMOS) or organic photoconductive film (OPF) CMOS (i.e., organic CMOS) image sensor, performs demodulation and such, and obtains at least the information related to the SSID. With this, the terminal can achieve the advantageous effect of being able to securely connect to an access point.
Transmitter 102 receives an input of information related to a location or information 101 related to a position. Moreover, transmitter 102 may receive an input of information 105 related to a time. Moreover, transmitter 102 may receive an input of both (i) the information related to a location or information 101 related to a position and (ii) information 105 related to a time.
Transmitter 102 receives an input of information related to a location or information 101 related to a position and/or information 105 related to a time, and based on the one or more input signals, generates a (optical) modulated signal, and outputs modulated signal 103. For example, modulated signal 103 is transmitted from light source 104.
Next, examples of the information related to a location or information 101 related to a position will be given.
Information related to a location or information 101 related to a position may be information indicating the latitude and/or longitude of a location or position. For example, the information related to a location or information 101 related to a position may be information indicating “45 degrees north latitude, 135 degrees east longitude”.
Information related to a location or information 101 related to a position may be information indicating an address. For example, the information related to a location or information 101 related to a position may be information indicating “1-1-1 XYZ-machi, Chiyoda-ku, Tokyo-to”.
Information related to a location or information 101 related to a position may be information indicating a building or facility, for example. For example, the information related to a location or information 101 related to a position may be information indicating “Tokyo Tower”.
Information related to a location or information 101 related to a position may be information indicating a fixed location or position of something at a building or facility, for example.
For example, assume there are five parking spaces for automobiles in a parking lot. Assume the first through fifth parking spaces are named A-1 through A-5, respectively. In this example, the information related to a location or information 101 related to a position may be information indicating, for example, “A-3”.
This example is not limited to only parking spaces in a parking lot.
Information related to a location or information 101 related to a position may be for example, information related to a section, a seat, a store, a facility, etc., at, for example, a concert facility, a stadium such as a baseball, soccer, or tennis stadium, an airplane, an airport lounge, a railway, a station, etc.
Note that methods for configuring the information related to a location or information 101 related to a position are not limited to the above examples.
Terminal 150 receives the modulated signal transmitted by first device 100.
Light receiver 151 is, for example, a CMOS or organic CMOS image sensor. Light receiver 151 receives light including the modulated signal output from the first device, and outputs reception signal 152. Receiver 153 receives an input of reception signal 152, performs processing such as demodulation and error correction decoding on the modulated signal included in the reception signal, and outputs reception data 154.
Note that reception signal 152 output from light receiver 151 may be a signal including information on an image or moving picture obtained by the image sensor, and may be an output signal from an element that performs photo-electric conversion (an element that converts light into an electric signal). In the following description, when a reception-side device is described as receiving a modulated signal without giving any further details on the processes performed by light receiver 151, this means that the reception-side device obtains a signal of an image or moving picture and a modulated signal for transmitting information by photo-electric conversion (converting light into an electric signal) of light including the modulated signal by light receiver 151. However, the method described above used to receive the modulated signal by the reception-side device is merely one non-limiting example.
Data analyzer 155 receives an input of reception data 154, estimates, for example, the location or position of terminal 150 from reception data 154, and outputs information 156 including at least information on the location or position of terminal 150.
Display 157 receives an input of information 156, and displays information related to the location or position of terminal 150 based on the location or position of terminal 150 included in information 156.
Here, preamble 201 is a symbol for terminal 150, which receives the modulated signal transmitted by first device 100, to perform, for example, signal detection, temporal synchronization, and/or frame synchronization.
Control information symbol 202 is, for example, a symbol including data on, for example, the configuration method of the modulated signal, the error correction encoding scheme used, and/or the frame configuration method.
Symbol 203 related to location information or position information is a symbol including information related to a location or information related to a position illustrated in
The frame may include symbols other than symbols 201, 202, and 203. For example, as illustrated in
Next, the advantageous effects achieved when the first device transmits a modulated signal and the terminal receives the modulated signal, as described with reference to
Since the first device transmits the modulated signal via visible light, a terminal capable of receiving the modulated signal is not in a location significantly far from the location of the first device. Accordingly, by the terminal obtaining the location or position information transmitted by the first device, the terminal can achieve an advantageous effect whereby it is possible to easily (i.e., without having to perform complicated signal processing) obtain accurate position information. Moreover, when the first device is disposed in a place where reception of satellite radio waves from a GPS satellite is difficult, it is possible to achieve an advantageous effect whereby it is possible for the terminal to securely obtain accurate position information even in locations in which reception of radio waves from a GPS satellite is difficult, by the terminal receiving the modulated signal transmitted by the first device.
In this embodiment, a configuration in which a plurality of the first devices described in Embodiment 1 are provided will be described.
In this embodiment, for example, as illustrated in
Similarly, first device #2 301-2 having the same configuration as first device 100 illustrated in
With this, terminal 302 can know the distance between first device #1 301-1 and first device #2 301-2 illustrated in
Moreover, terminal 302 knows the position of first device #1 from the information related to the first location or position #1. Moreover, terminal 302 knows the position of first device #2 from the information related to the first location or position #2. Terminal 302 knows the geometry of the triangle formed by first device #1 301-1, first device #2 301-2, and terminal 302 from the distance between first device #1 301-1 and first device #2 301-2, the distance between first device #1 301-1 and the terminal, and the distance between first device #2 301-2 and the terminal.
Accordingly, terminal 302 can accurately calculate and obtain the position of terminal 302 from the position of the first device #1, the position of the first device #2, and the geometry of the triangle formed by first device #1 301-1, first device #2 301-2, and terminal 302.
However, the geodetic measurement method used by terminal 302 to obtain the location or position information is not limited to the method described above; any geodetic measurement method may be used. Examines of geodetic measurement methods include triangulation, traverse calculation, leveling, etc.
As described above, the terminal can obtain the above-described information from a plurality of devices including light sources that transmit location information, and as a result, it is possible to achieve an advantageous effect whereby the terminal can accurately estimate position. Moreover, as described in Embodiment 1, when the device including a light source that transmits location information is disposed in a place where reception of satellite radio waves from a GPS satellite is difficult, it is possible to achieve an advantageous effect whereby it is possible for the terminal to securely obtain accurate position information even in locations in which reception of radio waves from a GPS satellite is difficult, by the terminal receiving the modulated signal transmitted by the device.
Note that in the above example, the terminal receives modulated signals transmitted by two devices, but an embodiment in which the terminal receives modulated signals transmitted by more than two devices can be implemented in the same manner. Note that the more devices there are, the more accurately the terminal can calculate the position information, so from this viewpoint, more devices are more beneficial.
Terminal 450 in
In first device 400 in
Transmitter 102 receives inputs of information related to a location or information 101 related to a position, information 401-1 related to an SSID, information 401-2 related to an access destination, and/or information 105 related to a time, and based on the one or more input signals, generates a (optical) modulated signal, and outputs modulated signal 103. For example, modulated signal 103 is transmitted from light source 104.
Note that since examples of the information related to a location or information 101 related to a position are the same as described in Embodiment 1, repeated description will be omitted.
Next, information 401-1 related to an SSID and information 401-2 related to an access destination will be described.
First, information 401-1 related to an SSID will be described.
Information 401-1 related to an SSID is information indicating the SSID of the base station (or access point (AP)) 470 illustrated in
Note that when terminal 450 receives an optical signal transmitted via a predetermined scheme, it may be determined that the notified SSID is the SSID of a secure base station, and, alternatively, processing for determining whether the SSID is secure or not may be performed. For example, first device 400 may transmit a predetermined identifier in an optical signal, and the terminal may determine whether the notified SSID is the SSID of a secure base station or not based on the received identifier. Alternatively, the processing for determining whether the base station is secure or not may be omitted by terminal 450, and instead, the user may select a first device 400 that is highly secure utilizing the characteristics of the visible light, and the SSID of the highly secure base station may be obtained by terminal 450 receiving the optical signal from first device 400.
Note that although
Information 401-2 related to an access destination is information related to an access destination for terminal 450 in
Terminal 450 in
Light receiver 151 included in terminal 450, examples of which include an image sensor such as a CMOS or organic CMOS image sensor, receives the modulated signal transmitted by first device 400. Receiver 153 receives an input of reception signal 152 received by light receiver 151, performs processing such as demodulation and error correction decoding on the reception signal, and outputs reception data 154.
Data analyzer 155 receives an input of reception data 154, estimates, for example, the location or position of the terminal from reception data 154, and outputs information 156 including at least information on the location or position of the terminal, information 451 related to an SSID, and information 452 related to an access destination.
Display 157 receives inputs of information 156 including information on the location or position of the terminal, information 451 related to an SSID, and information 452 related to an access destination, and, for example, displays the location or position of the terminal, the SSID of a communication partner that radio device 453 included in terminal 450 accesses, and the access destination (this display is referred to as a “first display”).
For example, after the first display, radio device 453 included in terminal 450 in
Then, based on information 452 related to an access destination, radio device 453 included in terminal 450 in
Base station (or AP) 470, which is the communication partner of the terminal in
Then, base station 470 receives an input of the desired information 472, generates a modulated signal from the desired information 472, and transmits the modulated signal to terminal 450 in
For example, assume the desired information 472 is information related to a section, a seat, a store, a facility, etc., on/at, for example, a map, a map or floor guide for a building, a map or floor guide for a facility, a map or floor guide for a parking lot, a concert facility, a stadium such as a baseball, soccer, or tennis stadium, an airplane, an airport lounge, a railway, a station, etc.
Display 157 receives inputs of the desired information 472, information 156 including, at least information on the location or position of the terminal, information 451 related to an SSID, and after the first display, displays a result of mapping the position of the terminal on the display of the map, floor guide, facility information, seat information, or store information, based on the desired information 472 and information 156 including at least information on the location or position of the terminal.
A specific example will be given.
First device 400 transmits symbol 600-1 related to an SSID and symbol 600-2 related to an access destination in addition to preamble 201, control information symbol 202, symbol 203 related to location information or position information, and symbol 204 related to time information.
Note that symbol 600-1 related to an SSID is a symbol for transmitting information 401-1 related to an SSID illustrated in
Here, preamble 701 is a symbol for the terminal, which receives the modulated signal transmitted by base station 470, to perform, for example, signal detection, temporal synchronization, frame synchronization, and/or frequency offset estimation.
Control information symbol 702 includes, for example, information related to the error correction encoding scheme method and/or demodulation scheme used in the generation of the modulated signal, and information related to frame configuration.
Information symbol 703 is a symbol for transmitting information. Note that in this embodiment, information symbol 703 is a symbol for transmitting the desired information 472 described above.
Note that base station 470 in
Moreover, for example, a modulated signal that has the frame configuration illustrated in
First, as 801 in
Then, as 802 in
Likewise, as 803 in
Then, as 804 in
As 805 in
Then, as 806 in
As 807 in
Next, an example of operations performed when a plurality of first devices 400 and base station (or AP) 470 are disposed in the location illustrated in
Similar to
As described with reference to
The position of circle 901-1 in
The position of circle 901-2 in
The position of circle 901-3 in
The position of circle 901-4 in
The position of circle 901-21 in
The position of circle 901-22 in
The position of circle 901-23 in
The position of circle 901-24 in
When the terminals located around the positions illustrated in the map in
The first device #3 located at 901-3 in
The first device #4 located at 901-4 in
The first device #21 located at 901-21 in
The first device #22 located at 901-22 in
The first device #23 located at 901-23 in
The first device #24 located at 901-24 in
Next, a specific example of operations will be given.
Assume a terminal having the same configuration as terminal 450 in
Assume a terminal having the same configuration as terminal 450 in
Note that the terminal stores a map (surrounding information) and position information, such as those illustrated in
As described above, since the first device transmits the modulated signal via visible light, a terminal capable of receiving the modulated signal is limited to being located within a region capable of receiving the signal light from the position of the first device. Accordingly, by the terminal obtaining the location or position information transmitted by the first device, the terminal can achieve an advantageous effect whereby it is possible to easily (i.e., without having to perform complicated signal processing) obtain accurate position information. Moreover, when the first device is disposed in a place where reception of satellite radio waves from a GPS satellite is difficult, it is possible to achieve an advantageous effect whereby it is possible for the terminal to securely obtain accurate position information even in locations in which reception of radio waves from a GPS satellite is difficult, by the terminal receiving the modulated signal transmitted by the first device.
Furthermore, an advantageous effect is achieved in which, based on information on the SSID transmitted by the first device, the terminal connects to the base station (or AP) and obtains information to securely retrieve information. This is because, when information from a visible light modulated signal is obtained, since it is visible light, the user can easily recognize the first device transmitting the modulated signal, making it possible for the user to determine whether the source of information is secure or not.
For example, when an SSID is obtained from a modulated signal transmitted by a wireless LAN over radio waves, it is difficult for the user to determine which device transmitted the radio waves. Accordingly, from the viewpoint of ensuring information security, obtaining the SSID via visible light communication is more suitable.
Note that a plurality of input signals may further be in radio device 453 in terminal 450 in
Moreover, although only one base station (or AP) is exemplified in the configuration illustrated in
For example, assume there are three base stations (or APs). The three base stations are named base station #A, base station #B, and base station #C. The SSID of base station #A is “abcdef”, the SSID of base station #B is “ghijk”, and the SSID of base station #C is “pqrstu”. In such cases, symbol 600-1 related to an SSID in the frame configuration illustrated in
In terminal 1050 in
Note that communication between radio device 453 and base station 470 in
In second device 1000 in
Next, information 1001-1 related to an SSID and information 1001-2 related to an encryption key will be described.
First, information 1001-1 related to an SSID will be described.
Information 1001-1 related to an SSID is information indicating the SSID of base station (or AP) 470 in
Note that although
Information 1001-2 related to an encryption key is information related to an encryption key required for terminal 1050 in
Terminal 1050 in
Light receiver 151 included in terminal 1050, examples of which include an image sensor such as a CMOS or organic CMOS image sensor, receives the modulated signal transmitted by second device 1000. Receiver 153 receives an input of reception signal 152 received by light receiver 151, performs processing such as demodulation and error correction decoding on the reception signal, and outputs reception data 154.
Data analyzer 155 receives an input of reception data 154, and outputs, based on the reception data, for example, information 1051 on the SSID of the base station (470) to be connected to, and information 1052 on the encryption key for communication with the base station (470) to be connected to. For example, in a wireless local area network (LAN), examples of encryption schemes include wired equivalent privacy (WEP), Wi-Fi™ protected access (WPA), and Wi-Fi protected access 2 (WPA2) (pre-shared key (PSK) mode, extended authentication protocol (EAP) mode). However, the encryption method is not limited to these examples.
Display 157 receives inputs of information 1051 on the SSID and information 1052 on the encryption key, and, for example, displays the SSID of the communication partner to be accessed by radio device 453 included in the terminal, and the encryption key (this display is referred to as a “first display” in this embodiment).
For example, after the first display, radio device 453 included in terminal 1050 in
Thereafter, radio device 453 included in terminal 1050 in
Then, for example, base station (or AP) 470 transmits data to the network (471) and receives data (472) from the network. Thereafter, for example, base station (or AP) 470 transmits, to terminal 1050 in
Radio device 453 included in terminal 1050 in
Symbol 600-1 related to an SSID is a symbol for transmitting information 1001-1 related to an SSID in
The second device transmits preamble 201, control information symbol 202, symbol 600-1 related to an SSID, symbol 1101 related to an encryption key, and data symbol 1102. Note that second device 1000 in
Here, preamble 1201 is a symbol used for base station (or AP) 470 that receives the modulated signal transmitted by radio device 453 in terminal 1050 in
Control information symbol 1202 includes data such as information related to the error correction encoding scheme method and/or demodulation scheme used in the generation of the modulated signal, information related to frame configuration, and information related to the transmission method used, and base station (or AP) 470, for example, demodulates the modulated signal based on the information included in control information symbol 1202.
Information symbol 1203 is a symbol for radio device 453 included in terminal 1050 in
Note that radio device 453 included in terminal 1050 in
Note that in Embodiment 3, when radio device 453 included in terminal 1050 in
Here, preamble 701 is a symbol for radio device 453 included in terminal 1050 in
Control information symbol 702 includes data such as information related to the error correction encoding scheme method and/or demodulation scheme used in the generation of the modulated signal, information related to frame configuration, and information related to the transmission method used, and radio device 453 included in terminal 1050 in
Information symbol 703 is a symbol for base station (or AP) 470 in
Note that base station (or AP) 470 in
Moreover, for example, a modulated signal that has the frame configuration illustrated in
First, as 1301 in
Likewise, as 1302 in
Terminal 1050 in
As 1305 in
As 1306 in
Then, as 1307 in
As 1308 in
For example, when necessary, terminal 1050 in
As described above, based on the SSID information and the encryption key information transmitted from the second device, the terminal connects to the base station (or AP) and obtains information, whereby an advantageous effect that it is possible to securely obtain information via the base station (or AP) whose security has been authenticated can be achieved. This is because, when information from a visible light modulated signal is obtained, since it is visible light, the user can easily determine whether the source of information is secure or not.
For example, when an SSID is obtained from a modulated signal transmitted by a wireless LAN over radio waves, it is difficult for the user to determine which device transmitted the radio waves. Accordingly, from the viewpoint of ensuring information security, obtaining the SSID via visible light communication is more suitable.
Note that in this embodiment, the second device is exemplified as transmitting encryption key information, but, for example, when the base station (or AP) does not perform encrypted communication using an encryption key, the second device can transmit only the information related to an SSID without transmitting the encryption key information, that is, the second device may be implemented without the configuration related to an encryption key.
Moreover, the configuration of the second device is not limited to the configuration illustrated in
Although in this embodiment, only one base station (or AP) is exemplified in the configuration illustrated in
For example, assume there are three base stations (or APs). The three base stations are named base station #A, base station #B, and base station #C. The SSID of base station #A is “abcdef”, the SSID of base station #B is “ghijk”, and the SSID of base station #C is “pqrstu”, the encryption key for connecting with base station #A is “123”, the encryption key for connecting with base station #B is “456”, and the encryption key for connecting with base station #C is “789”.
In such cases, symbol 600-1 related to an SSID in the frame configuration illustrated in
Terminal 1050 in
As described in this embodiment, as a result of the terminal setting which base station to access, utilizing a light source, exemplified here as an LED light source, a mode for making a special setting for processes for establishing a wireless connection between the terminal and base station in the modulated signal for connection over radio waves that is transmitted by the terminal is not required, and a mode for making a special setting for processes for establishing a wireless connection between the terminal and base station in the modulated signal for connection over radio waves that is transmitted by the base station is not required, whereby an advantageous effect that wireless communication data transmission efficiency improves can be achieved.
As described above, the encryption key may be an encryption key for an SSID on a wireless LAN, may be an encryption key for restricting the form of connection used, the form of service used, and/or the connectivity range of the network (in other words, any encryption key that is restrictive is sufficient).
Note that communication between radio device 453 and base station 470 in
In third device 1400A in
In fourth device 1400B in
Next, information 1401-1 related to an SSID and information 1403-2 related to an encryption key will be described.
First, information 1401-1 related to an SSID will be described.
Information 1401-1 related to an SSID is information indicating the SSID of base station (or AP) 470 in
Note that when terminal 1050 receives an optical signal transmitted via a predetermined scheme, it may be determined that the notified SSID is the SSID of a secure base station, and, alternatively, processing for determining whether the SSID is secure or not may be performed. For example, device 1400A may transmit a predetermined identifier in an optical signal, and the terminal may determine whether the notified SSID is the SSID of a secure base station or not based on the received identifier.
Note that although
Information 1403-2 related to an encryption key is information related to an encryption key required for terminal 1050 in
Terminal 1050 in
Light receiver 151 included in terminal 1050, examples of which include an image sensor such as a CMOS or organic CMOS image sensor, receives the modulated signal transmitted by third device 1400A. Receiver 153 receives an input of reception signal 152 received by light receiver 151, performs processing such as demodulation and error correction decoding on the reception signal, and outputs reception data 154.
Data analyzer 155 receives an input of reception data 154, and outputs, based on the reception data, for example, information 1051 on the SSID of the base station (470) to be connected to.
Accordingly, radio device 453 included in terminal 1050 obtains information on the SSID of the base station to be connected to over radio waves by radio device 453, from information 1051 on the SSID.
Next, terminal 1050 in
Light receiver 151 included in terminal 1050, examples of which include an image sensor such as a CMOS or organic CMOS image sensor, receives the modulated signal transmitted by fourth device 1400B. Receiver 153 receives an input of reception signal 152 received by light receiver 151, performs processing such as demodulation and error correction decoding on the reception signal, and outputs reception data 154.
Data analyzer 155 receives an input of reception data 154, and outputs, based on the reception data, for example, information 1052 on the encryption key for communication with the base station (470) to be connected to. For example, in a wireless local area network (LAN), examples of encryption schemes include wired equivalent privacy (WEP), Wi-Fi protected access (WPA), and Wi-Fi protected access 2 (WPA2) (pre-shared key (PSK) mode, extended authentication protocol (EAP) mode). However, the encryption method is not limited to these examples.
Accordingly, radio device 453 included in terminal 1050 obtains encryption key information for the base station to be connected to by radio device 453, from information 1052 on the encryption key for communication with the base station (470) to be connected to (for example, over radio waves).
Display 157 receives inputs of information 1051 on the SSID and information 1052 on the encryption key, and, for example, displays the SSID of the communication partner to be accessed by radio device 453 included in the terminal, and the encryption key (this display is referred to as a “first display” in this embodiment).
For example, after the first display, radio device 453 included in terminal 1050 in
Thereafter, radio device 453 included in terminal 1050 in
Then, for example, base station (or AP) 470 transmits data to the network (471) and receives data (472) from the network. Thereafter, for example, base station (or AP) 470 transmits, to terminal 1050 in
Radio device 453 included in terminal 1050 in
Symbol 600-1 related to an SSID is a symbol for transmitting information 1401-1 related to an SSID in
Third device 1400A transmits preamble 201, control information symbol 202, symbol 600-1 related to an SSID, and data symbol 1102. Note that third device 1400A in
Symbol 1101 related to an encryption key is a symbol for transmitting information 1403-2 related to an encryption key in
Fourth device 1400B transmits preamble 201, control information symbol 202, symbol 1101 related to an encryption key, and data symbol 1102. Note that fourth device 1400B in
Here, preamble 1201 is a symbol used for base station (or AP) 470 that receives the modulated signal transmitted by radio device 453 in terminal 1050 in
Control information symbol 1202 includes data such as information related to the error correction encoding scheme method and/or demodulation scheme used in the generation of the modulated signal, information related to frame configuration, and information related to the transmission method used, and base station (or AP) 470, for example, demodulates the modulated signal based on the information included in control information symbol 1202.
Information symbol 1203 is a symbol for radio device 453 included in terminal 1050 in
Note that radio device 453 included in terminal 1050 in
Here, preamble 701 is a symbol for radio device 453 included in terminal 1050 in
Control information symbol 702 includes data such as information related to the error correction encoding scheme method and/or demodulation scheme used in the generation of the modulated signal, information related to frame configuration, and information related to the transmission method used, and radio device 453 included in terminal 1050 in
Information symbol 703 is a symbol for base station (or AP) 470 in
Note that base station (or AP) 470 in
Moreover, for example, a modulated signal that has the frame configuration illustrated in
Similarly, a modulated signal that has the frame configuration illustrated in
First, as 1701 in
As 1702 in
Next, as 1703 in
As 1704 in
Terminal 1050 in
As 1305 in
As 1306 in
Then, as 1307 in
As 1308 in
For example, when necessary, terminal 1050 in
First, as 1801 in
As 1802 in
Next, as 1803 in
As 1804 in
Terminal 1050 in
As 1305 in
As 1306 in
Then, as 1307 in
As 1308 in
For example, when necessary, terminal 1050 in
As described above, based on the SSID information and the encryption key information transmitted from the third and fourth devices, the terminal connects to the base station (or AP) and obtains information, whereby an advantageous effect that it is possible to securely obtain information via the base station (or AP) whose security has been authenticated can be achieved. This is because, when information from a visible light modulated signal is obtained, since it is visible light, the user can easily determine whether the source of information is secure or not.
For example, when an SSID is obtained from a modulated signal transmitted by a wireless LAN over radio waves, it is difficult for the user to determine which device transmitted the radio waves. Accordingly, from the viewpoint of ensuring information security, obtaining the SSID via visible light communication is more suitable.
Note that in this embodiment, the fourth device is exemplified as transmitting encryption key information, but, for example, when the base station (or AP) does not perform encrypted communication using an encryption key, the fourth device can transmit only the information related to an SSID without transmitting the encryption key information, that is, the fourth device may be implemented without the configuration related to an encryption key.
Moreover, as described in this embodiment, by separating the device for transmitting information related to an SSID and the device for transmitting information related to an encryption key, the terminal can implement even more secure communication with the base station.
For example, consider the space illustrated in
A base station (or AP), a third device, and a fourth device are disposed in area #1 in
Moreover, assume that the radio waves transmitted by the base station (or AP) are receivable in either of areas #1 or #2. Here, a terminal in area #1 in which a fourth device is disposed can communicate with the base station. Moreover, even when a terminal connected to the base station in area #1 moves to area #2, communication with the base station is still possible.
When a terminal connected to the base station in area #1 moves somewhere other than area #1 or area #2, and then returns to either area #1 or area #2, communication with the base station is possible.
However, a terminal that cannot enter area #1 cannot obtain an encryption key. In such cases, the terminal can only know the SSID of the base station (or AP). Here, communication with the base station via a service that can be accepted with nothing more than knowledge of the SSID may be received by the terminal.
Accordingly, only a terminal that can enter area #1 can communicate with the base station, and as a result, communication security can be assured. Moreover, this makes it possible to construct a system that can provide different services for different areas.
Note that when the encryption key for the terminal to communicate with the base station changes (for example, on a per time interval basis), a previous encryption key cannot be used to communicate with the base station. Using such a system makes it possible to provide secure communication.
As described above, the encryption key may be an encryption key for an SSID on a wireless LAN, may be an encryption key for restricting the form of connection used, the form of service used, and/or the connectivity range of the network (in other words, any encryption key that is restrictive is sufficient).
The configurations of the third and fourth devices are not limited to the configurations illustrated in
In this embodiment, although only one base station (or AP) is exemplified in the configuration illustrated in
For example, assume there are three base stations (or APs). The three base stations are named base station #A, base station #B, and base station #C. The SSID of base station #A is “abcdef”, the SSID of base station #B is “ghijk”, and the SSID of base station #C is “pqrstu”, the encryption key for connecting with base station #A is “123”, the encryption key for connecting with base station #B is “456”, and the encryption key for connecting with base station #C is “789”.
In such cases, symbol 600-1 related to an SSID in the frame configuration illustrated in
Terminal 1050 in
As described in this embodiment, as a result of the terminal setting which base station to access, utilizing a light source, exemplified here as an LED light source, a mode for making a special setting for processes for establishing a wireless connection between the terminal and base station in the modulated signal for connection over radio waves that is transmitted by the terminal is not required, and a mode for making a special setting for processes for establishing a wireless connection between the terminal and base station in the modulated signal for connection over radio waves that is transmitted by the base station is not required, whereby an advantageous effect that wireless communication data transmission efficiency improves can be achieved.
Note that communication between radio device 2001 and radio device 453 in
Base station (or AP) 2000 in
Transmitter 102 receives inputs of information 1001-1 related to an SSID, information 1001-2 related to an encryption key, and data 1002, and based on these input signals, generates a (optical) modulated signal, and outputs modulated signal 103. For example, modulated signal 103 is transmitted from light source 104.
Next, information 1001-1 related to an SSID and information 1001-2 related to an encryption key will be described.
First, information 1001-1 related to an SSID will be described.
Information 1001-1 related to an SSID is information indicating the SSID of, for example, radio device 2001 that uses radio waves in base station (or AP) 2000 in
On the other hand, an element related to the LED lamp, light source, and/or light that emits visible light in base station 200 can restrict the terminals that access radio device 2001 to terminals in a space in which reception of the optical signal transmitted (emitted) by the element related to the LED lamp, light source, and/or light that emits visible light in base station 200 is possible. Note that when terminal 1050 receives an optical signal transmitted via a predetermined scheme, it may be determined that the notified SSID is the SSID of a secure base station, and, alternatively, processing for determining whether the SSID is secure or not may be performed. For example, an element related to the LED lamp, light source, and/or light that emits visible light in base station 2000 may transmit a predetermined identifier in an optical signal, and the terminal may determine whether the notified SSID is the SSID of a secure base station or not based on the received identifier.
Note that although
Information 1001-2 related to an encryption key is information related to an encryption key required for terminal 1050 in
Note that in terminal 1050 in
Light receiver 151 included in terminal 1050, examples of which include an image sensor such as a CMOS or organic CMOS image sensor, receives the modulated signal transmitted by an element related to the LED lamp, light source, and/or light that emits visible light in base station 200. Receiver 153 receives an input of reception signal 152 received by light receiver 151, performs processing such as demodulation and error correction decoding on the reception signal, and outputs reception data 154.
Data analyzer 155 receives an input of reception data 154, and outputs, based on the reception data, for example, information 1051 on the SSID of radio device 2001 in the base station to be connected to, and information 1052 on the encryption key for communication with radio device 2001 in the base station to be connected to. For example, in a wireless local area network (LAN), examples of encryption schemes include wired equivalent privacy (WEP), Wi-Fi protected access (WPA), and Wi-Fi protected access 2 (WPA2) (pre-shared key (PSK) mode, extended authentication protocol (EAP) mode). However, the encryption method is not limited to these examples.
Display 157 receives inputs of information 1051 on the SSID and information 1052 on the encryption key, and, for example, displays the SSID of the communication partner to be accessed by radio device 453 included in the terminal, and the encryption key (this display is referred to as a “first display” in this embodiment).
For example, after the first display, radio device 453 included in terminal 1050 in
Thereafter, radio device 453 included in terminal 1050 in
Thereafter, for example, radio device 2001 in base station (or AP) 2000 transmits, to terminal 1050 in
Symbol 600-1 related to an SSID is a symbol for transmitting information 1001-1 related to an SSID in
Transmitter 102 and light source 104 in base station (or AP) 2000 transmit preamble 201, control information symbol 202, symbol 600-1 related to an SSID, symbol 1101 related to an encryption key, and data symbol 1102. Note that transmitter 102 and light source 104 in base station (or AP) 2000 in
Here, preamble 1201 is a symbol used for radio device 2001 in base station (or AP) 2000 that receives the modulated signal transmitted by radio device 453 in terminal 1050 in
Control information symbol 1202 includes data such as information related to the error correction encoding scheme method and/or demodulation scheme used in the generation of the modulated signal, information related to frame configuration, and information related to the transmission method used, and radio device 2001 in base station (or AP) 2000, for example, demodulates the modulated signal based on the information included in control information symbol 1202.
Information symbol 1203 is a symbol for radio device 453 included in terminal 1050 in
Note that radio device 453 included in terminal 1050 in
Here, preamble 701 is a symbol for radio device 453 included in terminal 1050 in
Control information symbol 702 includes data such as information related to the error correction encoding scheme method and/or demodulation scheme used in the generation of the modulated signal, information related to frame configuration, and information related to the transmission method used, and radio device 453 included in terminal 1050 in
Information symbol 703 is a symbol for radio device 2001 in
Note that radio device 2001 included in base station 2000 in
Moreover, for example, a modulated signal that has the frame configuration illustrated in
First, as 1301 in
Then, as 1302 in
Likewise, as 1303 in
Terminal 1050 in
As 1305 in
As 1306 in
Then, as 1307 in
As 1308 in
For example, when necessary, terminal 1050 in
As described above, based on the SSID information and the encryption key information transmitted from an element related to the LED lamp, light source, and/or light that emits visible light in the base station, the terminal connects to the base station (or AP) and obtains information, whereby an advantageous effect that it is possible to securely obtain information via the base station (or AP) whose security has been authenticated can be achieved. This is because, when information from a visible light modulated signal is obtained, since it is visible light, the user can easily determine whether the source of information is secure or not.
For example, when an SSID is obtained from a modulated signal transmitted by a wireless LAN over radio waves, it is difficult for the user to determine which device transmitted the radio waves. Accordingly, from the viewpoint of ensuring information security, obtaining the SSID via visible light communication is more suitable.
Note that in this embodiment, an element related to the LED lamp, light source, and/or light that emits visible light in the base station is exemplified as transmitting encryption key information, but, for example, when the base station (or AP) does not perform encrypted communication using an encryption key, the element related to the LED lamp, light source, and/or light that emits visible light in the base station can transmit only the information related to an SSID without transmitting the encryption key information, that is, the element related to the LED lamp, light source, and/or light that emits visible light in the base station may be implemented without the configuration related to an encryption key.
As illustrated in
Moreover, the configuration of an element related to the LED lamp, light source, and/or light that emits visible light in the base station is not limited to the configuration illustrated in
For example, assume there are three base stations (or APs) that include radio devices. The radio devices are named radio device #A, radio device #B, and radio device #C. The SSID of radio device #A is “abcdef”, the SSID of radio device #B is “ghijk”, and the SSID of radio device #C is “pqrstu”, the encryption key for connecting with radio device #A is “123”, the encryption key for connecting with radio device #B is “456”, and the encryption key for connecting with radio device #C is “789”.
In such cases, symbol 600-1 related to an SSID in the frame configuration illustrated in
Terminal 1050 in
As described in this embodiment, as a result of the terminal setting a radio device included in a base station to access using a light source, exemplified here as an LED light source, a mode for making a special setting for processes for establishing a wireless connection between the terminal and base station in the modulated signal for connection over radio waves that is transmitted by the terminal is not required, and a mode for making a special setting for processes for establishing a wireless connection between the terminal and base station in the modulated signal for connection over radio waves that is transmitted by the base station is not required, whereby an advantageous effect that wireless communication data transmission efficiency improves can be achieved.
As described above, the encryption key may be an encryption key for an SSID on a wireless LAN, may be an encryption key for restricting the form of connection used, the form of service used, and/or the connectivity range of the network (in other words, any encryption key that is restrictive is sufficient).
Device 1000 in
In fifth device 1000 in
Next, information 1001-1 related to an SSID and information 1001-2 related to an encryption key will be described.
First, information 1001-1 related to an SSID will be described.
For example, information 1001-1 related to an SSID is information indicating the SSID of base station (or AP) 470-1 in
On the other hand, device 1000 can restrict the terminals that access base stations 470-1, 470-2, and 470-3 to terminals in a space in which it is possible to receive optical signals transmitted (emitted) by device 1000. Note that when terminal 1050 receives an optical signal transmitted via a predetermined scheme, it may be determined that the notified SSID is the SSID of a secure base station, and, alternatively, processing for determining whether the SSID is secure or not may be performed. For example, device 1000 may transmit a predetermined identifier in an optical signal, and the terminal may determine whether the notified SSID is the SSID of a secure base station or not based on the received identifier.
Note that the configuration in
Information 1001-2 related to an encryption key is information related to an encryption key required for terminal 1050 in
Terminal 1050 in
Light receiver 151 included in terminal 1050, examples of which include an image sensor such as a CMOS or organic CMOS image sensor, receives the modulated signal transmitted by fifth device 1000. Receiver 153 receives an input of reception signal 152 received by light receiver 151, performs processing such as demodulation and error correction decoding on the reception signal, and outputs reception data 154.
Data analyzer 155 receives an input of reception data 154, and outputs, based on the reception data, for example, information 1051 on the SSIDs of the base stations (470-1, 470-2, and 470-3) to be connected to, and information 1052 on the encryption keys for communication with the base stations (470-1, 470-2, and 470-3) to be connected to. For example, in a wireless local area network (LAN), examples of encryption schemes include wired equivalent privacy (WEP), Wi-Fi protected access (WPA), and Wi-Fi protected access 2 (WPA2) (pre-shared key (PSK) mode, extended authentication protocol (EAP) mode). However, the encryption method is not limited to these examples.
Display 157 receives inputs of information 1051 on the SSID and information 1052 on the encryption key, and, for example, displays the SSID of the communication partner to be accessed by radio device 453 included in the terminal, and the encryption key (this display is referred to as a “first display” in this embodiment).
For example, after the first display, radio device 453 included in terminal 1050 in
Thereafter, radio device 453 included in terminal 1050 in
Then, for example, the base station (or AP) connected to transmits data to the network (any one of 471-1, 471-2, and 471-3) and receives data (any one of 472-1, 472-2, and 472-3) from the network. Thereafter, for example, the base station connected to transmits, to terminal 1050 in
Radio device 453 included in terminal 1050 in
Display 157 displays a display based on reception data 1056.
Assume, in the case of
Symbol 2301-1 related to an SSID in
Fifth device 1000 transmits preamble 201, control information symbol 202, symbol 2301-1 related to an SSID, symbol 2302-1 related to an encryption key, and data symbol 1102. Note that fifth device 1000 in
Symbol 2301-2 related to an SSID in
Symbol 2302-2 related to an encryption key in
Fifth device 1000 transmits preamble 201, control information symbol 202, symbol 2301-2 related to an SSID, symbol 2302-2 related to an encryption key, and data symbol 1102. Note that fifth device 1000 in
Symbol 2301-3 related to an SSID in
Symbol 2302-3 related to an encryption key in
In
This will be described in more detail next.
The recitation “in the frame #1 group transmissions of 2601-1 and 2601-2, one or more of frames #1 2300-1 illustrated in
For example, when an image sensor, such as a CMOS or organic CMOS image sensor is used in light receiver 151, it is possible to process the reception signal in units of frames in moving or still images. Note that, for example, when a moving picture is labeled as “4K 30p”, the number of pixels of one frame is 3840×2160, and the moving picture includes 30 frames per second.
Accordingly, when fifth device 1000 in
In view of this, a frame configuration such as illustrated in
Method 1-1:
Method 1-1 makes the temporal space that frame #1 group transmission occupies longer than a frame of a still or moving picture by including a plurality of frames #1 2300-1 illustrated in
This method makes it possible for terminal 1050 in
Method 2-1:
Method 2-1 makes the temporal space that frame #1 2300-1 in
This method makes it possible for terminal 1050 in
Similarly, frame #2 group transmissions of 2602-1 and 2602-2 may have the following configurations.
Method 1-2:
Method 1-2 makes the temporal space that frame #2 group transmission occupies longer than a frame of a still or moving picture by including a plurality of frames #2 2300-2 illustrated in
Method 2-2:
Method 2-2 makes the temporal space that frame #2 2300-2 in
Similarly, frame #3 group transmissions of 2603-1 and 2603-2 may have the following configurations.
Method 1-3:
Method 1-3 makes the temporal space that frame #3 group transmission occupies longer than a frame of a still or moving picture by including a plurality of frames #3 2300-3 illustrated in
Method 2-3:
Method 2-3 makes the temporal space that frame #3 2300-3 in
Next, the advantageous effects achieved when fifth device 1000 in
Consider area 2700 in
For example, 99 terminals having the configuration of 1050 in
Here, for example, fifth devices 2701-5 and 2701-10 both transmit information on the SSID of base station #3 470-3 and information on the encryption key for access to base station #3 470-3 (since the base station closest to fifth devices 2701-5 and 2701-10 is base station #3 470-3).
In such cases, all of the 99 terminals having the configuration of 1050 in
Taking this point into consideration, by making it so that the 99 terminals having the configuration of 1050 in
In this embodiment, when fifth device 1000 in
Note that although
For example, in
Moreover, in
In
Here, preamble 1201 is a symbol used for base stations (or APs) 470-1, 470-2, and 470-3 that receive the modulated signal transmitted by radio device 453 in terminal 1050 in
Control information symbol 1202 includes data such as information related to the error correction encoding scheme method and/or demodulation scheme used in the generation of the modulated signal, information related to frame configuration, and information related to the transmission method used, and base stations (or APs) 470-1, 470-2, and 470-3, for example, demodulate the modulated signal based on the information included in control information symbol 1202.
Information symbol 1203 is a symbol for radio device 453 included in terminal 1050 in
Note that radio device 453 included in terminal 1050 in
Here, preamble 701 is a symbol for radio device 453 included in terminal 1050 in
Control information symbol 702 includes data such as information related to the error correction encoding scheme method and/or demodulation scheme used in the generation of the modulated signal, information related to frame configuration, and information related to the transmission method used, and radio device 453 included in terminal 1050 in
Information symbol 703 is a symbol for base stations (or APs) 470-1, 470-2, and 470-3 in
Note that base stations (or APs) 470-1, 470-2, and 470-3 in
First, as 2801 in
Likewise, as 2802 in
This point will be discussed next. Terminal 1050 in
For example, terminal 1050 selects the frame group transmission first received from among frame #1 group transmission, frame #2 group transmission, and frame #3 group transmission, and determines the base station to access from the information on the base station from that frame group transmission (for example, the SSID).
As 2803 in
Likewise, as 2804 in
Terminal 1050 in
As 2806 in
As 2807 in
Then, as 2808 in
As 2809 in
For example, when necessary, terminal 1050 in
As described above, based on the SSID information and the encryption key information transmitted from the fifth device, the terminal connects to the base station (or AP) and obtains information, whereby an advantageous effect that it is possible to securely obtain information via the base station (or AP) whose security has been authenticated can be achieved. This is because, when information from a visible light modulated signal is obtained, since it is visible light, the user can easily determine whether the source of information is secure or not.
For example, when an SSID is obtained from a modulated signal transmitted by a wireless LAN over radio waves, it is difficult for the user to determine which device transmitted the radio waves. Accordingly, from the viewpoint of ensuring information security, obtaining the SSID via visible light communication is more suitable.
Note that in this embodiment, the fifth device is exemplified as transmitting encryption key information, but, for example, when the base station (or AP) does not perform encrypted communication using an encryption key, the fifth device can transmit only the information related to an SSID without transmitting the encryption key information, that is, the fifth device may be implemented without the configuration related to an encryption key.
Moreover, the configuration of the fifth device is not limited to the configuration illustrated in
Accordingly, when a configuration such as the one described in this embodiment is implemented, when there are a plurality of terminals in a given area, an advantageous effect of a reduction in terminals having difficulty accessing a base station can be achieved.
Note that in
Moreover, in this embodiment, the terminal connects to the base station or access point in a wireless LAN using radio waves, but the device that the terminal connects to may be any device that the terminal can connect to using radio waves, and is not limited to a base station or access point in a wireless LAN. For example, the device may be a base station such as a mobile phone, or a relay station. Moreover, in this embodiment, an example is given in which information on an SSID is included in the modulated signal, but the SSID is merely one non-limiting example. In other words, the information included in the modulated signal may be any information from which a secure base station to which the terminal may connect to can be identified; the information is not limited to including an SSID. Moreover, the terminal may be any device that has the functions that terminal 1050 in
As described above, the transmission device according to this embodiment is, for example, device 1000 described above, and includes light source 104 and transmitter 102 that that generates a modulated signal based on an input signal and transmits the modulated signal from light source 104 as visible light by changing the luminance of light source 104 in accordance with the modulated signal. The modulated signal includes a plurality of items of information related to service set identifiers (SSIDs) of a plurality of mutually different access points in a wireless local area network (LAN).
Here, the modulated signal may include a plurality of frame groups respectively corresponding to the plurality of mutually different access points and each including one or more frames, and each of the one or more frames included in the plurality of frame groups may include the information related to the SSID of the access point corresponding to the frame group including the frame.
Moreover, the time required to transmit one of the plurality of frame groups may be longer than the time required to image one frame of a moving or still image by the reception device that receives the modulated signal.
Alternatively, the modulated signal may include a plurality of frames respectively corresponding to the plurality of mutually different access points, and each of the plurality of frames may include one or more items of the information related to the SSID of the access point corresponding to the frame. The time required to transmit one of the plurality of frames may be longer than the time required to image one frame of a moving or still image by the reception device that receives the modulated signal.
Moreover, transmitter 102 may transmit the plurality of frame groups respectively corresponding to the plurality of mutually different access points in random order along a time or frequency axis.
Alternatively, transmitter 102 may transmit the plurality of frame groups respectively corresponding to the plurality of mutually different access points in a regular order along a time or frequency axis.
The reception device according to the present embodiment is terminal 1050 that, for example, receives modulated signal transmitted as visible light from the transmission device. More specifically, the reception device includes: light receiver 151 that receives a modulated signal transmitted as visible light from a transmission device; data analyzer 155 that outputs analysis information by analyzing data based on the modulated signal; and a radio unit configured to, based on the analysis information, connect to an access point in a wireless local area network (LAN) using radio waves. For example, the radio unit is radio device 453. Here, the modulated signal includes a plurality of items of information related to service set identifiers (SSIDs) of a plurality of mutually different access points in the wireless LAN. Data analyzer 155 selects any one of the plurality of items of the information related to the SSIDs of the plurality of mutually different access points included in the modulated signal, and outputs, as the analysis information, the information related to the SSID selected. The radio unit connects to, using radio waves, the access point corresponding to the information related to the SSID output from data analyzer 155, from among the plurality of mutually different access points.
Here, the modulated signal may include a plurality of frame groups respectively corresponding to the plurality of mutually different access points and each including one or more frames, and each of the one or more frames included in the plurality of frame groups may include the information related to the SSID of the access point corresponding to the frame group including the frame.
The time required to receive one of the plurality of frame groups by light receiver 151 may be longer than the time required to image one frame of a moving or still image by light receiver 151.
Alternatively, the modulated signal may include a plurality of frames respectively corresponding to the plurality of mutually different access points, and each of the plurality of frames may include one or more items of the information related to the SSID of the access point corresponding to the frame. The time required to receive one of the plurality of frames by light receiver 151 may be longer than the time required to image one frame of a moving or still image by light receiver 151.
Moreover, light receiver 151 may receive the plurality of frame groups respectively corresponding to the plurality of mutually different access points in random order along a time or frequency axis.
Alternatively, light receiver 151 may receive the plurality of frame groups respectively corresponding to the plurality of mutually different access points in a regular order along a time or frequency axis.
The communication system according to the present embodiment includes a transmission device and a plurality of mutually different access points in a wireless local area network (LAN). The transmission device is, for example, device 1000, and the plurality of access points include, for example, base station #1 470-1, base station #2 470-2, and base station #3 470-3. The transmission device includes: light source 104; and transmitter 102 that generates a modulated signal based on an input signal and transmits the modulated signal from light source 104 as visible light by changing the luminance of light source 104 in accordance with the modulated signal. The modulated signal includes a plurality of items of information related to service set identifiers (SSIDs) of the plurality of mutually different access points, and at least one of the plurality of mutually different access points connects, using radio waves, to a reception device that received the modulated signal, and transmits information to the reception device.
Moreover, the transmission method according to the present embodiment includes: generating a modulated signal based on an input signal; and transmitting the modulated signal from a light source as visible light by changing a luminance of the light source in accordance with the modulated signal. The modulated signal includes a plurality of items of information related to service set identifiers (SSIDs) of a plurality of access points on mutually different wireless local area networks (LANs).
The reception method according to the present embodiment includes: receiving a modulated signal transmitted as visible light from a transmission device; outputting analysis information by analyzing data based on the modulated signal; and based on the analysis information, connecting to an access point in a wireless local area network (LAN) using radio waves. Here, the modulated signal includes a plurality of items of information related to service set identifiers (SSIDs) of a plurality of mutually different access points in the wireless LAN. The outputting of analysis information includes: selecting any one of the plurality of items of the information related to the SSIDs of the plurality of mutually different access points included in the modulated signal; and outputting, as the analysis information, the item of information related to the SSID selected. The connecting to the access point in the wireless LAN includes connecting to, using radio waves, the access point corresponding to the item of information related to the SSID output via the analyzing, from among the plurality of mutually different access points.
Moreover, the communication method according to the present embodiment includes: generating a modulated signal based on an input signal; and transmitting the modulated signal from a light source as visible light by changing a luminance of the light source in accordance with the modulated signal. The modulated signal includes a plurality of items of information related to service set identifiers (SSIDs) of a plurality of mutually different access points in a local area network (LAN). At least one of the plurality of mutually different access points connects, using radio waves, to a reception device that received the modulated signal, and transmits information to the reception device.
Note that at least one of the field programmable gate array (FPGA) and central processing unit (CPU) may be configured to be able to download all or part of software required for implementing the communication method described in the present disclosure via wireless or wired communication, and moreover may be configured to be able to download all or part of software for receiving updates via wireless or wired communication. The downloaded software may be stored in storage, and the digital signal processing described in the present disclosure may be implemented by operating at least one of the FPGA and CPU based on the stored software.
Here, a device including at least one of the FPGA and CPU may be connected to a telecommunications modem via a wireless or wired connection, and the communication method described in the present disclosure may be implemented by the device and the telecommunications modem.
For example, a communication device, such as the base station, AP, terminal described in the present specification may include at least one of an FPGA and a CPU, and may include an interface for obtaining software for operating the at least one of an FPGA and a CPU from an external source. Furthermore, the communication device may include storage for storing software obtained from an external source, and may implement the signal processing described in the present disclosure by operating the FPGA and/or CPU based on the stored software.
The transmission device described in the present specification may be included in a first automobile or vehicle, and the reception device described in the present specification may be included in a second automobile or vehicle, and the transmission and receiving of data may be implemented under such a configuration.
The transmission device or part of the functions of the transmission device described in the present specification may be connected to the first automobile or vehicle via an interface, and the reception device or part of the functions of the reception device described in the present specification may be connected to the second automobile or vehicle via an interface, and the transmission of data may be implemented via transmission and reception thereby.
The transmission device described in the present specification may be included in a first automobile or vehicle, and the transmission and receiving of data between this transmission device and the reception device described in the present specification may be implemented under such a configuration.
The reception device described in the present specification may be included in a second automobile or vehicle, and the transmission and receiving of data between this reception device and the transmission device described in the present specification may be implemented under such a configuration.
Furthermore, the transmission device or part of the functions of the transmission device described in the present specification may be connected to the first automobile or vehicle via an interface, and the transmission and receiving of data between this string of transmission devices and the reception device described in the present specification may be implemented under such a configuration.
The reception device or part of the functions of the reception device described in the present specification may be connected to the second automobile or vehicle via an interface, and the transmission and receiving of data between this string of reception devices and the transmission device described in the present specification may be implemented under such a configuration.
When the automobile or vehicle includes the transmission device or part of the transmission device described in the present specification, or when the automobile or vehicle and the transmission device described in the present specification or part of the functions of the transmission device described in the present specification are connected via an interface, the light source included in the transmission device described in the present specification may be a light source included in the automobile or vehicle.
For example, automobile B100 illustrated in
Moreover, the function for selecting which light source among the plurality of light sources included in automobile B100 the transmission device according to the present specification uses for transmitting the optical modulated signal may be included in the transmission device or a device connected to the transmission device. Moreover, the brightness of the light source, the angle of emission of the light source, the positioning of the light source may be configurable.
When the automobile or vehicle includes the reception device or part of the reception device described in the present specification, or when the automobile or vehicle and the reception device described in the present specification or part of the functions of the reception device described in the present specification are connected via an interface, the light receiver included in the reception device described in the present specification may be a light receiver included in the automobile or vehicle (for example, an image sensor or photodiode).
For example, automobile B100 illustrated in
Furthermore, the reception device described in the present specification may display, on the front panel included in the automobile or in the cockpit of the vehicle, a notification indicating that data has been received. Moreover, the reception device described in the present specification may notify a user that data has been received by vibrating the steering wheel of, for example, the automobile, or vibrating a vibrator included on the steering wheel.
Moreover, an automobile including the reception device according to the present specification and the terminal may be connected via an interface, and data obtained from the reception device may be stored in storage included in the terminal. Moreover, the automobile may also include a storage, and the automobile may store received data therein. Moreover, the storage included in the terminal and the storage included in the automobile may both store received information.
In the present specification, a server may provide an application related to processes pertaining to the reception device, and the functions of the reception device according to the present specification may be implemented by the terminal installing the application. Note that the application may be provided to the terminal by the communication device including in the transmission device according to the present specification connecting to a server over a network, and may be provided to the terminal by a communication device including a different transmission function connecting to a server over a network.
Similarly, in the present specification, a server may provide an application related to processes pertaining to the transmission device, and the functions of the transmission device according to the present specification may be implemented by the terminal installing the application. Note that a method in which the application is provided to a different communication device by the communication device connecting to a server over a network is conceivable.
Moreover, a server may provide software related to the light source included in the transmission device and the light receiver included in the reception device, and transmission and reception of the optical modulated signal by the light source included in the transmission device and the light receiver included in the reception device, respectively, may be supported by obtaining this software.
Furthermore, the transmission device according to the present specification may function as a server, and an application included in the transmission device may be provided to the communication device using some communication means, and the reception device according to the present specification can be implemented by the application obtained by the communication device downloading the application.
Note that in the present specification, there is reference to a “lamp” and a “light source”, but the method may be a method of a projector displaying, for example, a still picture, moving picture, or advertisement, and the optical modulated signal being included in that light. In other words, the “lamp” and a “light source” may include functions other than the emission of light. Moreover, the “lamp” and a “light source” may comprise a plurality of lamps and light sources.
Furthermore, the transmission method used by the communication device that generates an optical modulated signal and emits light may be a method other than the transmission method described in the present specification. Moreover, the optical modulated signal may include information other than what is described in the present specification.
Moreover, the lamp and/or light source, such as an LED lamp and/or light source, may itself include the functions of the transmission device described in the present specification.
Furthermore, the device that generates the optical transmission modulated signal may not include a lamp or light source, and may be connected to a lamp and/or light source via an interface.
The communication method between the transmission device and the reception device described in the present specification and the present embodiment may be the communication method illustrated in
The symbol mapper receives an input of transmission data, performs mapping based on a modulation scheme, and outputs a symbol sequence (ci).
The pre-equalizer receives an input of the symbol sequence, performs pre-equalizing processing on the symbol sequence to reduce the equalizing processes on the reception-side, and outputs a pre-equalized symbol sequence.
The Hermitian symmetry processor receives an input of the pre-equalized symbol sequence, allocates sub-carriers to the pre-equalized symbol sequence to secure Hermitian symmetry, and outputs parallel signals.
The inverse (fast) Fourier transformer receives inputs of the parallel signals, applies an inverse (fast) Fourier transform to the parallel signals, and outputs inverse (fast) Fourier transformed signals.
The parallel serial and cyclic prefix adder receives an input of the inverse (fast) Fourier transformed signals, performs parallel conversion and adds cyclic prefix, and outputs the signal-processed signal.
The digital-to-analog converter receives an input of the signal-processed signal, performs digital-to-analog conversion, outputs an analog signal, and the analog signal is emitted as light from, for example, one or more LEDs.
Note that the pre-equalizer and the Hermitian symmetry processor need not be included. In other words, there may be instances in which the pre-equalizer and the Hermitian symmetry processor do not perform their respective processes.
The photodiode receives an input of light, and obtains a reception signal via a transimpedance amplifier (TIA).
The analog-to-digital converter performs an analog-to-digital conversion on the reception signal, and outputs a digital signal.
The cyclic prefix subtractor and serial parallel converter receives an input of the digital signal, subtracts the cyclic prefix, and then performs serial parallel conversion, and receives an input of parallel signals.
The (fast) Fourier transformer receives inputs of the parallel signals, applies a (fast) Fourier transform to the parallel signals, and outputs (fast) Fourier transformed signals.
The detector receives inputs of the (fast) Fourier transformed signals, performs detection, and outputs a series of reception symbols.
The symbol demapper receives an input of the series of reception symbols, performs demapping, and obtains a series of reception data.
In this way, even when such a transmission device that transmits the optical modulated signals and such a reception device that receives the optical modulated signals are applied to the amendments according to the present specification, the embodiments can be implemented in the same manner.
Moreover, the communication method between the transmission device and the reception device described in the present embodiment may be the following communication method.
Line Scan Sampling
An image sensor such as a complementary metal oxide semiconductor (CMOS) sensor is included in a smartphone or digital camera or the like. For example, the entire scene in a single image captured by the CMOS sensor is not captured at a single instant, but rather, for example, captured line by line using a rolling shutter method, whereby the sensor reads out the amount of light received line by line. Accordingly, the amount of time required for the reading out is calculated, and exposure start and end times are controlled for each line by implementing a time delay. In other words, images captured by the CMOS sensor are constructed from a plurality of lines captured with a slight time lag between each line.
This exploits the rolling shutter effect of the CMOS sensor to allow for an improvement in visible light signal reception speeds.
In other words, in a first example of a visible light communication scheme, as illustrated in
This sampling method is referred to as “line scan sampling”, and a single row of pixels exposed at the same time is referred to as an “exposure line”.
Note that line scan sampling can be implemented using the rolling shutter effect of a CMOS sensor, but even when the rolling shutter effect is implemented using a sensor other than a CMOS sensor, such as a charge-coupled device (CCD) sensor or an organic CMOS sensor, the line scan sampling can be implemented in the same manner.
However, in the settings used when capturing an image in the camera functions (capturing functions for moving or still images), even if a rapidly flashing light source is captured, the flashing will not appear as a striped pattern extending along the exposure lines. This is because, with this setting, the exposure period is sufficiently longer than the flash cycle of the light source, so, as illustrated in
In contrast, as illustrated in
For example, the exposure lines are designed to extend parallel lengthwise relative to the image sensor. In such cases, as one example, assuming the frame rate is 30 frames per second (fps), when the resolution is 1920×1080, at least 32400 samples are obtained per second, and when the resolution is 3840×2160, at least 64800 samples are obtained per second.
Line Scan Sampling Application Example
Note that the above described line scan sampling in which a signal indicating an amount of light received per line is read out, but methods of sampling an optical signal using an image sensor such as a CMOS sensor are not limited to this example. A variety of methods that can obtain a sampled signal at a sampling rate that is higher than the frame rate used to capture a normal moving picture, can be used as the sampling method to be used to receive the optical signals. For example, a method of controlling the exposure time per pixel and reading out a signal or a method of controlling the exposure time per group of pixels arranged in a shape other than a line and reading out a signal may be used by utilizing a global shutter method that has a shutter function for each pixel. Moreover, a method of reading out signals a plurality of times from the same pixel in a period equivalent to one frame in the frame rate used in the capture of a normal moving picture may be used.
Frame Sampling
Furthermore, with a frame rate method that gives a shutter method for each non-pixel, it is possible to sample optical signals even in a method by which the frame rate is sped up.
For example, the present specification can be implemented in any of the line scan sampling, line scan sampling application example, and frame sampling methods described above.
Light Source and Modulation Scheme
With visible light communication, for example, a light emitting diode (LED) can be used as a transmitter. LEDs are commonly used in lamps and in backlit light sources in displays, and can flash at high speeds.
However, light sources that are used as visible light communication transmitters cannot be allowed to flash uncontrolled when performing visible light communication. If the changes in luminance made for visible light communication are recognizable to the human eye, the original functionality of a light source as a lamp will be lost. Accordingly, the transmission signal needs to be emitted at a desired brightness and needs to be imperceptible to the human eye.
One modulation scheme that meets these requirements is 4-pulse position modulation (4 PPM). As illustrated in
For comparison, as a similar scheme, consider the Manchester coding scheme illustrated in
Note that the communication method between the transmission device and the reception device described in the present specification is not limited to the above example. Even frequency-based wireless communication methods such as optical, visible light, infrared, ultraviolet methods can be implemented in the same manner. Moreover, in the above description, an example is given in which optical modulated signals are received via an image sensor, but a photodiode may be used in place of the image sensor to receive the optical modulated signals. Alternatively, a device other than an image sensor or photodiode may be used to receive the optical modulated signals.
In the present specification, a symbol related to location or position information, a symbol related to time information, a symbol related to an SSID, a symbol related to an access destination, and a symbol related to an encryption key are described using the terminology “symbol”, but these may be referred to as “data” or “information” or “field” or “bit” or “region” instead of “symbol”, and the embodiments can be implemented in the same manner. They may be referred to as something other than “data” or “information” or “field” or “bit” or “region” as well. Moreover, the transmission device may transmit any type of symbol configuration, such as a symbol related to location or position information, a symbol related to time information, a symbol related to an SSID, a symbol related to an access destination, and a symbol related to an encryption key. What is important is that data related to location or position information, data related to time information, data related to an SSID, data related to an access destination, data related to an encryption key is transmitted to the communication partner.
In the present specification, in the transmission device that includes, for example, a light source and/or lamp, the light source may be comprised of a plurality of light sources, and/or the lamp may be comprised of a plurality of lamps.
It goes without saying that the embodiments described in the present specification may be combined with other aspects.
Moreover, the embodiments are merely examples. For example, while a modulation scheme, an error correction coding method (error correction code, code length, encode rate, etc., to be used), control information, etc., are exemplified, it is possible to carry out the present disclosure with the same configuration even when other types of a modulation scheme, an error correction coding method (error correction code, code length, encode rate, etc., to be used), control information, etc., are applied.
Regarding the modulation schemes, even when a modulation scheme other than the modulation schemes described herein is used, it is possible to carry out the embodiments and the other subject matter described herein. For example, amplitude phase shift keying (APSK) (such as 16APSK, 64APSK, 128APSK, 256APSK, 1024APSK and 4096APSK), pulse amplitude modulation (PAM) (such as 4PAM, 8PAM, 16PAM, 64PAM, 128PAM, 256PAM, 1024PAM and 4096PAM), phase shift keying (PSK) (such as BPSK, QPSK, 8PSK, 16PSK, 64PSK, 128PSK, 256PSK, 1024PSK and 4096PSK), and quadrature amplitude modulation (QAM) (such as 4QAM, 8QAM, 16QAM, 64QAM, 128QAM, 256QAM, 1024QAM and 4096QAM) may be applied, or in each modulation scheme, uniform mapping or non-uniform mapping may be performed.
Moreover, a method for arranging 2, 4, 8, 16, 64, 128, 256, 1024, etc., signal points on an I-Q plane (a modulation scheme having 2, 4, 8, 16, 64, 128, 256, 1024, etc., signal points) is not limited to a signal point arrangement method of the modulation schemes described herein.
In the present specification, conceivable devices that include the radio device described in the present specification include a communications and broadcast apparatus, such as a broadcast station, a base station, an access point, a terminal or a mobile phone, or a communication apparatus such as a television, a radio, a terminal, a personal computer, a mobile phone, an access point, or a base station. Moreover, the radio device described in the present specification is conceivably a device having communication functions that is connectable via some interface to a device for executing an application in, for example, a television, a radio, a personal computer or a mobile phone.
In the present specification, conceivable devices that include the receiver described in the present specification include a communications and broadcast apparatus, such as a broadcast station, a base station, an access point, a terminal or a mobile phone, or a communication apparatus such as a television, a radio, a terminal, a personal computer, a mobile phone, an access point, or a base station.
Moreover, in the radio-wave communication radio device according to this embodiment, symbols other than data symbols, such as pilot symbols (preamble, unique word, post-amble, reference symbol, etc.) or symbols for control information, may be arranged in any way in a frame. Here, the terms “pilot symbol” and “control information symbol” are used, but the naming of such symbols is not important; the functions that they perform are.
A pilot symbol may be a known symbol that is modulated using PSK modulation in a transceiver (alternatively, a symbol transmitted by a transmitter can be known by a receiver by the receiver being periodic), and the receiver detects, for example, frequency synchronization, time synchronization, and a channel estimation (channel state information (CSI)) symbol (of each modulated signal) by using the symbol.
Moreover, the symbol for control information is a symbol for transmitting information required to be transmitted to a communication partner in order to establish communication pertaining to anything other than data (such as application data) (this information is, for example, the modulation scheme, error correction encoding scheme, or encode rate of the error correction encoding scheme used in the communication, or settings information in an upper layer).
Note that the present disclosure is not limited to each exemplary embodiment, and can be carried out with various modifications. For example, in each embodiment, the present disclosure is described as being performed as a communication device. However, the present disclosure is not limited to this case, and this communication method can also be used as software.
Note that a program for executing the above-described communication method may be stored in read only memory (ROM) in advance to cause a central processing unit (CPU) to operate this program.
Moreover, the program for executing the communication method may be stored in a computer-readable storage medium, the program stored in the recording medium may be recorded in random access memory (RAM) in a computer, and the computer may be caused to operate according to this program.
Each configuration of each of the above-described embodiments, etc., may be realized as a large scale integration (LSI) circuit, which is typically an integrated circuit. These integrated circuits may be formed as separate chips, or may be formed as one chip so as to include the entire configuration or part of the configuration of each embodiment. LSI is described here, but the integrated circuit may also be referred to as an integrated circuit (IC), a system LSI circuit, a super LSI circuit or an ultra LSI circuit depending on the degree of integration. Moreover, the circuit integration technique is not limited to LSI, and may be realized by a dedicated circuit or a general purpose processor. After manufacturing of the LSI circuit, a field programmable gate array (FPGA) or a reconfigurable processor which is reconfigurable in connection or settings of circuit cells inside the LSI circuit may be used. Further, when development of a semiconductor technology or another derived technology provides a circuit integration technology which replaces LSI, as a matter of course, functional blocks may be integrated by using this technology. Adaption of biotechnology, for example, is a possibility.
Note that in the present specification, for example, in Embodiments 4, 5, 6, and 7, an encryption key for a terminal to connect to a base station over radio waves is described, but the encryption key is not limited to an encryption key for connection over radio waves.
For example, assume the base station is connected to a network and the terminal communicates with the network via the base station. In such cases, the encryption key may be an encryption key for the terminal to connect to the network. Accordingly, information on an encryption key is included in the optical modulated signal described in the present specification, and even in this cases, the embodiments can be implemented in the same way, and the same advantageous effects can be achieved.
Moreover, the optical modulated signal may include at least one of an encryption key for connecting with a base station (for example, an encryption key for an SSID) and an encryption key for connecting to a network.
Although only some exemplary embodiments have been described above, the scope of the Claims of the present application is not limited to these embodiments. Those skilled in the art will readily appreciate that various modifications may be made in these exemplary embodiments and that other embodiments may be obtained by arbitrarily combining the structural elements of the embodiments without materially departing from the novel teachings and advantages of the subject matter recited in the appended Claims. Accordingly, all such modifications and other embodiments are included in the present disclosure.
The present disclosure is applicable to a wide range of communication systems that transmit and receive optical modulated signals.
This application is a continuation of U.S. application Ser. No. 16/916,672, filed Jun. 30, 2020, which is divisional of U.S. application Ser. No. 16/380,458, filed Apr. 10, 2019, now U.S. Pat. No. 10,742,319, which is a U.S. continuation application of PCT International Patent Application Number PCT/JP2017/036597 filed on Oct. 10, 2017, claiming the benefit of priority of U.S. Provisional Patent Application No. 62/407,003 filed on Oct. 12, 2016 and U.S. Provisional Patent Application No. 62/411,035 filed on Oct. 21, 2016. The entire disclosures of the above-identified applications, including the specifications, drawings and claims are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6424639 | Lioy | Jul 2002 | B1 |
7447176 | Ruan | Nov 2008 | B2 |
9008519 | Park | Apr 2015 | B2 |
9037001 | Jovicic | May 2015 | B2 |
9524412 | Kim | Dec 2016 | B2 |
9800334 | Dong | Oct 2017 | B2 |
10009099 | Walma | Jun 2018 | B2 |
10064153 | Yumura | Aug 2018 | B2 |
10200933 | Jeong | Feb 2019 | B2 |
10206069 | Lee | Feb 2019 | B2 |
10302734 | Ganick | May 2019 | B2 |
20030118015 | Gunnarsson | Jun 2003 | A1 |
20090232019 | Gupta | Sep 2009 | A1 |
20130126713 | Haas | May 2013 | A1 |
20140036841 | Gray | Feb 2014 | A1 |
20140254477 | Fricke | Sep 2014 | A1 |
20150188632 | Aoyama | Jul 2015 | A1 |
20150200762 | Kim et al. | Jul 2015 | A1 |
20150223277 | Jovicic | Aug 2015 | A1 |
20150280818 | Walma | Oct 2015 | A1 |
20150358825 | Dinan | Dec 2015 | A1 |
20160029244 | Dinan | Jan 2016 | A1 |
20160119761 | Ryan | Apr 2016 | A1 |
20160270147 | Mathews | Sep 2016 | A1 |
20160323035 | Jovicic | Nov 2016 | A1 |
20170026208 | Milosiu | Jan 2017 | A1 |
20170041072 | Rong | Feb 2017 | A1 |
20170061900 | Ueki et al. | Mar 2017 | A1 |
20170163513 | Kim | Jun 2017 | A1 |
20170350962 | Jovicic et al. | Dec 2017 | A1 |
20180220511 | Clout | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
2628940 | Oct 2008 | CA |
2 498 550 | Sep 2012 | EP |
2007-110274 | Apr 2007 | JP |
2014-116871 | Jun 2014 | JP |
2015-233276 | Dec 2015 | JP |
2016-165116 | Sep 2016 | JP |
2015161410 | Oct 2015 | WO |
2016047030 | Mar 2016 | WO |
WO-2018057184 | Mar 2018 | WO |
Entry |
---|
International Search Report (ISR) dated Nov. 21, 2017 in International (PCT) Application No. PCT/JP2017/036597. |
Santosh Pandey, et al., “NGP Use Case Template”, IEEE 802.11-16/0137r4, Mar. 12, 2016. |
Mitsuaki Oshima, et al., “Image Sensor-based Visible Light Communication Technology”, Panasonic Technical Journal, vol. 61, No. 2, Nov. 2015, pp. 40-45 (with English abstract). |
Extended European Search Report dated Oct. 4, 2019 in corresponding European Patent Application No. 17860036.7. |
Number | Date | Country | |
---|---|---|---|
20210328670 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
62411035 | Oct 2016 | US | |
62407003 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16380458 | Apr 2019 | US |
Child | 16916672 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16916672 | Jun 2020 | US |
Child | 17362017 | US | |
Parent | PCT/JP2017/036597 | Oct 2017 | US |
Child | 16380458 | US |