The invention generally relates to transmissions for motor vehicles, and more specifically to transmissions for electrically powered motor vehicles.
Nearly every motor vehicle that is powered by an internal combustion engine includes a transmission, or “gear box.” The transmission serves to modify the RPM (revolutions per minute) ratio between the engine's drive shaft and the wheels, so as to allow the vehicle to travel at any of a wide variety of speeds while at the same time allowing the internal combustion engine to operate within a narrow RPM range that provides for optimal torque and efficiency.
A transmission typically includes a plurality of gears that can be mechanically engaged and disengaged in different combinations (“shifted”) so as to produce a variety of different input to output RPM ratios, or “speeds.” A transmission typically can be shifted into more than one “forward speed,” as well as into a reverse setting that allows the vehicle to move backward, and a “neutral” setting that allows the vehicle to remain standing while the engine continues to operate. Manual transmissions are physically shifted by a driver among speeds, while automatic transmissions can be set to shift among all forward speeds automatically. In addition to forward speeds, reverse, and neutral, an automatic transmission typically also provides a “park” setting that locks the transmission and prevents the wheels from turning.
A transmission used with an internal combustion engine typically also includes a friction clutch that serves to connect and disconnect the motor from the transmission, thereby allowing the transmission to be shifted and then re-synchronized with the motor. Manual transmissions typically include a manually operated, dry friction clutch, while automatic transmissions typically include a series of fluid-operated wet clutches that are automatically actuated by a combination of hydraulics and electronic logic circuits.
Motor vehicles that are powered by electric motors often do not include a transmission or a clutch. This is because an electric motor can typically be operated over a wide range of speeds with substantially uniform torque and efficiency, can be stopped as needed, and can be operated in both directions, allowing for backward motion simply by reversing the direction or changing the phase of the electrical current supplied to the motor. However, sometimes the desired maximum speed of an electrically powered vehicle exceeds the maximum operating speed of the electric motor. Also, it can be desired to have a “park” feature so as to immobilize an electric vehicle, as is normally provided by a conventional automatic transmission.
One approach is to equip an electrically powered vehicle with a conventional manual or automatic transmission and friction clutch. However, this approach provides more forward speeds than are needed, while adding unnecessary weight, complexity, and expense to the vehicle, reducing its performance, reducing its reliability, and reducing its operating range.
Specially designed transmissions with only two forward speeds have been proposed for electrically powered vehicles, but they also typically add an undesirable amount of weight, complexity, and cost to the vehicle, and they typically lack a “park” feature, as well as lacking the symmetry of weight and power distribution commonly found in conventional transmissions. Proposed electric vehicle transmissions also typically require a friction clutch, which further increases the weight and adds to the cost of manufacture, and adds to the repair and maintenance expense.
A simple, lightweight transmission for use in an electrically powered vehicle is claimed. The transmission of the invention provides two input-to-output gear ratios, a neutral setting, and a park setting, and is symmetric in both weight and power distribution. The transmission includes a single “dog” clutch in splined relationship with a first shaft, and a single planetary gear assembly connected to a second shaft. According to the invention, a friction clutch is not required, since the shaft speeds can be electronically matched and/or matched by a synchronizer.
Shifting among the four included speeds is accomplished by sliding the dog clutch along the first shaft among four positions, thereby causing the first shaft to directly engage the second shaft (called the “direct drive” setting), or engage the second shaft by means of the planetary gear assembly (called the “overdrive” setting), or not engage the second shaft at all (called the “neutral” setting), or engage the second shaft both directly and by means of the planetary gear assembly, thereby preventing any motion of the either shaft (called the “park” setting).
In certain preferred embodiments, reduction gears are included in the planetary gear assembly to further adjust the gear ratio of the overdrive setting. The transmission of the present invention can be implemented with the first shaft coupled to the motor and the second shaft coupled to the drive wheels, or vice-versa.
In preferred embodiments, a dual-servo shift controller is included. In these embodiments, a shift servo shifts the dog clutch among the drive, neutral, and overdrive settings when the park servo is in its “run” position, while the dog clutch can only be moved to the park setting when the park servo is in its “park” position. In some of these embodiments, the park servo is configured so as to remain in the run position if a malfunction such as an electrical control signal fault occurs while the park servo is in the run position. In other of these embodiments, the dual-servo shift controller includes safety control features that prevent the park servo from moving to the park position if the vehicle is moving.
The present invention is a transmission for use with an electrically powered vehicle, the transmission. The transmission includes a first shaft, a second shaft collinear with the first shaft and separated from the first shaft by a gap, a planetary gear assembly rotationally engaged with the second shaft, and a dog clutch in splined relationship with the first shaft, the dog clutch being movable among a plurality of positions along a length of the first shaft while remaining rotationally engaged with the first shaft, the dog clutch thereby engaging the first shaft with the second shaft in various rotational speed relationships in accordance with the position of the dog clutch.
In preferred embodiments, the dog clutch is able to move along the length of the first shaft so as to:
in a drive position, engage with the second shaft so as to cause the second shaft to rotate at the same speed as the first shaft;
in an overdrive position, engage with the planetary gear assembly, thereby engaging with the second shaft according to a gear ratio established by the planetary gear assembly, and thereby causing the second shaft to rotate at a speed that is different from the rotational speed of the first shaft; and
in a neutral position, not engage with the second shaft, thereby providing no rotational engagement between the first shaft and the second shaft.
And in some of these preferred embodiments, the dog clutch is further able to move along the length of the first shaft so as to:
in a park position, rotationally engage with the second shaft both directly and through the planetary gear assembly, thereby preventing rotation of both the first shaft and the second shaft.
In preferred embodiments, the dog clutch is able to engage with the second shaft by spline engagement when in at least one of the drive position and the park position. In some preferred embodiments, the dog clutch includes a drive gear and a park gear, the drive gear being configured so as to engage with the planetary gear assembly when the dog clutch is in the overdrive position, the park gear being configured so as to engage with the planetary gear assembly when the dog clutch is in the park position.
Other preferred embodiments further include a drum that is rotationally engaged with the second shaft, and configured so as to engage with the drive gear when the dog clutch is in the drive position and when the dog clutch is in the park position.
In certain preferred embodiments, the first shaft is drivable by a motor of the electrically powered vehicle, and the second shaft is able to drive at least one wheel of the electrically powered vehicle. And in various preferred embodiments the second shaft is drivable by a motor of the electrically powered vehicle, and the first shaft is able to drive at least one wheel of the electrically powered vehicle.
In preferred embodiments the planetary gear assembly includes reduction gears. In some preferred embodiments the weight of the transmission is distributed in a substantially symmetric manner about the first and second shafts. In some preferred embodiments the power distribution of the transmission is substantially symmetric about the first and second shafts.
In other preferred embodiments the planetary gear assembly includes a plurality of planetary gears, the planetary gears being positioned within a concentric gap located between a sun gear fixed to the second shaft and an immovable ring gear symmetrically surrounding the sun gear, the planetary gear assembly being engaged with the second shaft by simultaneous engagement of the planetary gears with both the sun gear and the ring gear.
Certain preferred embodiments further include a synchronizer that is able to synchronize the rotational speeds of the first and second shafts by applying a frictional torque to the first and second shafts until their rotational speeds are matched, thereby facilitating transition of the dog clutch to either of the drive and overdrive positions. In some of these embodiments the transmission includes a drum that is rotationally engaged with the second shaft, a planet carrier that is rotationally engaged with the planetary gear set, a first synchronizer ring that is frictionally engaged with the drum, the first synchronizer ring being rotationally engageable with the dog clutch so as to apply friction to the drum when the dog clutch and the drum are rotating at different speeds, thereby applying a frictional torque to both the dog clutch and to the drum that tends to equalize the rotational speeds of the dog clutch and the drum, and a second synchronizer ring that is frictionally engaged with the planet carrier, the second synchronizer ring being rotationally engageable with the dog clutch so as to apply friction to the planet carrier when the dog clutch and the planet carrier are rotating at different speeds, thereby applying a frictional torque to both the dog clutch and to the planet carrier that tends to equalize the rotational speeds of the dog clutch and the planet carrier.
In some of these embodiments, at least one of the synchronizer rings is made from a synchronizer material that is selected so as to minimize frictional wear to cooperative elements in the transmission. And in some of these embodiments the synchronizer material is brass.
Preferred embodiments further include a dual-servo shift controller. The dual-servo shift controller includes a shift servo that is able to move a shift rod linearly among a first shift position, a second shift position, and a third shift position, the movement of the shift rod being parallel to both the first and second shafts, a park servo that is able to move a park rod linearly between a park position and a run position, the movement of the park rod being parallel to both the first and second shafts, and a cross-brace having a first end attached to the shift rod, a second end attached to the park rod, the dog clutch being attached to the cross-brace at a clutch attachment point located between the first end and the second ends, the shift servo, park servo, and cross-brace being configured so as to move the dog clutch among the drive position, the overdrive position, and the neutral position when the shift servo is moved among the shift positions and the park servo is held in the run position, the shift servo, park servo, and cross-brace being configured so as to allow the dog clutch to be moved to the park position only when the park servo is in the park position.
In some of these embodiments the dog clutch is moved to the drive position when the shift rod is in the first shift position and the park rod is in the run position, the dog clutch is moved to the neutral position when the shift rod is in the second shift position and the park rod is in the run position, the dog clutch is moved to the overdrive position when the shift rod is in the third shift position and the park rod is in the run position and the dog clutch is moved to the park position when the shift rod is in the first shift position and the park rod is in the park position.
In other of these embodiments the park servo is configured so as to remain in its run position if the park servo is in its run position and a transmission malfunction occurs. And still other of these embodiments further include at least one safety feature that is configured so as to inhibit the park rod from moving to the park position if the electrically powered vehicle is moving.
The invention will be more fully understood by reference to the detailed description, in conjunction with the following figures, wherein:
With reference to
The dog clutch 104 includes a “shift pin groove” 106 that allows for attachment of a shifting mechanism (not shown) that moves the dog clutch 104 along the first shaft 100 according to the desired speed setting of the transmission. The dog clutch 104 also includes an drive gear 108, and a park gear 110 that are fixed to the dog clutch 104 and are able to engage with the planet carrier 112 of a planetary gear assembly. In the embodiment of
The engagement of the planetary gears 114 with the ring gear 116 and the sun gear 118 is illustrated in the cross sectional drawing of
In
In
In
The embodiment of
Starting from the “neutral” configuration shown in
Starting from the “neutral” configuration shown in
In a similar manner to
The servos are configured so as to allow shifting of the dog clutch 104 among its drive, neutral, and overdrive positions when the park rod 508 is in position B and the shift rod 502 is moved among positions A, B, and C, respectively. The dog clutch 104 can only be moved to its park position when both the park rod 508 and the shift rod 502 are in position A. This configuration simplifies the implementation of safety features as compared to other approaches such as a single, 4-position servo. In preferred embodiments, the park servo is configured so as to move to and/or remain in position B if a malfunction occurs, such as a failure of the servo control circuitry occurring when the park servo is in position B and/or when the vehicle is in motion.
Other modifications and implementations will occur to those skilled in the art without departing from the spirit and the scope of the invention as claimed. Accordingly, the above description is not intended to limit the invention except as indicated in the following claims.