(a) Field of the Invention
The present invention relates to a transmission line, and more particularly to a transmission line with better characteristic impedance (Z0) and high flexibility.
(b) Description of the Related Art
With reference to
According to a LVDS interface standard defined by ANSI-YUA-EIA-644-I995, a signal transmission line 9 for a LVDS signal transmission must be a signal transmission line 9 with a characteristic impedance (Z0) equal to 100Ω±5% before the impedance (Z) of a circuit between the LCD interface 6 and the system motherboard interface 7 can be matched, and the LVDS signal transmission must satisfy this condition to achieve the effects of reducing the electromagnetic inference and noises, correctly executing the signal transmission between the LCD interface (or LVDS interface) 6 and the system motherboard interface 7 and preventing errors. If the aforementioned condition is not satisfied, signal reflections, noises, data loses, deformations or distortions may occur in signal transmissions between the LCD interface 6 and the system motherboard interface 7.
With reference to
Therefore, it is a primary objective of the present invention to provide a transmission line for forming an electronic cable, an optical cable or a Serial Advanced Technology Attachment (SATA) cable, and applying the transmission line with a printed circuit board for LVDS signal transmissions to achieve better flexibility and higher characteristic impedance (Z0).
Another objective of the present invention is to provide a transmission line with high flexibility and better characteristic impedance (Z0).
To achieve the foregoing objectives, the present invention provides a transmission line with high characteristic impedance (Z0), comprising a flexible flat cable (FFC), an insulating layer and a metal layer, and the insulating layer and the metal layer are formed sequentially on a surface of the flexible flat cable to change the thickness of the insulating layer, so as to change the characteristic impedance (Z0) of the flexible flat cable and achieve the effect of transmitting signals stably. Particularly, the insulating layer is made of a woven fabric material, a foam material or a net material. Regardless of the thickness requirement, the transmission line comes with a better softness and a free flexibility to enhance the convenience of using the transmission line and fits a thin design of an electronic device with the transmission line.
With reference to
The flexible flat cable 1 comprises a conducting layer 11 including a plurality of parallel copper wires 111, and a plastic film layer 12 disposed separately on both sides of the conducting layer 11, wherein the plastic film layer 12 is made of a poly (ethylene terephthalate) (PET) or epoxy material, and the two plastic film layers 12 are laminated to include the conducting layer 11 between the two plastic film layers 12 integrally. The manufacturing process is simple, and the manufacturing cost is low, and the transmission line so produced comes with the soft, fire-resisting and temperature resisting features.
The insulating layer 2 and the metal layer 3 are formed sequentially on a surface of the plastic film layer 12 on a side of the flexible flat cable 1 for increasing the insulating thickness of the flexible flat cable 1 to form a transmission line with a better characteristic impedance (Z0) (such as a transmission line with the characteristic impedance (Z0) equal to 100Ω±5%), and the thickness of the insulating layer 2 can be changed to meet the requirement of a different characteristic impedance (Z0).
In the transmission line with better characteristic impedance (Z0) in accordance with the present invention, the insulating layer 2 is made of an insulating woven fabric material, foam material or net material. The woven fabric material includes a nylon cloth, a polyester cloth, a polyester fiber cloth or an unwoven cloth, and the foam material includes a polyurethane (PU) or polyethylene (PE) material, and the net material is a plastic net material. The woven fabric material, the foam material or the net material come with high softness and flexibility. Regardless of the thickness, the aforementioned characteristics can be maintained, and thus the insulating layer 2 made of the woven fabric material, the foam material or the net material applied for manufacturing a transmission line with better characteristic impedance (Z0) as shown in
In the foregoing preferred embodiment, the insulating layer 2 and the metal layer 3 are formed integrally on the flexible flat cable 1, or the insulating layer 2 and the metal layer 3 are attached onto the flexible flat cable 1.
In
In
The transmission line of the invention can be an electronic cable, an optical cable, a Serial Advanced Technology Attachment (SATA) cable, or applied for transmitting a LVDS, USB, SATA, ODD, RJ11, RJ45, 1394 or PCI signal. Of course, the present invention can further comprise two printed circuit boards installed to both ends of the flexible flat cable, and a plurality of circuits installed on a side of each printed circuit board, and each circuit is connected with the conducting layer. A connecting device connected to each circuit is disposed on the printed circuit board and corresponding to each circuit, wherein the connecting device can be an optical disc drive (ODD), a serial ATA (SATA) port, a high definition multimedia interface (HDMI) port, a universal serial bus (USB) port or a D-sub interface port.
While the invention has been described by means of specific embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of the invention set forth in the claims.
Number | Date | Country | Kind |
---|---|---|---|
97207956 U | May 2008 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
3448204 | Perrone et al. | Jun 1969 | A |
3612744 | Thomas | Oct 1971 | A |
5276759 | Nguyen et al. | Jan 1994 | A |
5455383 | Tanaka | Oct 1995 | A |
5532429 | Dickerson et al. | Jul 1996 | A |
7399929 | Ueno et al. | Jul 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20090277664 A1 | Nov 2009 | US |