The present disclosure relates generally to network communications systems, and more particularly, to transmission of power and data in a network communications system.
Power over Ethernet (PoE) is a technology for providing electrical power over a wired telecommunications network from power sourcing equipment (PSE) to a powered device (PD) over a link section. Single Pair Ethernet (SPE) enables data transmission over Ethernet via a single pair of wires while also providing a power supply to pass electrical power along with data (Power over Data Line (PoDL)). Today's PoE and PoDL systems have limited power capacity, which may be inadequate for many classes of devices.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
Overview
In one embodiment, a method generally comprises transmitting data on two wire pairs carrying pulse power, wherein the pulse power comprises a plurality of voltage pulses with the voltage pulses on the wire pairs offset between the wire pairs to provide continuous power and identifying transitions between at least one of a pulse-on time and a pulse-off time, and a pulse-off time and a pulse-on time on at least one of the wire pairs. Data transmission on the wire pair is controlled during the identified transitions on the wire pair to prevent interference between the pulse power and the data.
In one or more embodiments, a phase of pulse power is carried on each of the wire pairs and the wire pairs are located in a multi-pair cable.
In one or more embodiments, a voltage of the pulse power during the pulse-on time comprises at least 60 volts.
In one or more embodiments, a voltage of the pulse power during the pulse-off time is greater than zero.
In one or more embodiments, the pulse-on time of the voltage pulses overlap between the wire pairs.
In one or more embodiments, one period of the pulse-on time and the pulse-off time is less than or equal to 12 ms.
In one or more embodiments, the method further comprises performing fault detection during the pulse-off time.
In one or more embodiments, the data is transmitted during the pulse-on time and the pulse-off time.
In one or more embodiments, control of the data transmission comprises suspending the data transmission during the identified transitions.
In one or more embodiments, control of the data transmission comprises controlling a MAC (Media Access Control)/PHY (Physical layer entity) to hold off the data transmission during the identified transitions.
In one or more embodiments, control of the data transmission comprises applying Forward Error Correction (FEC) to the data for use at the receiver during the identified transitions.
In another embodiment, a method generally comprises receiving data on two wire pairs carrying pulse power, wherein the pulse power comprises a plurality of voltage pulses with the voltage pulses on the wire pairs offset between the wire pairs to provide continuous power, identifying transitions between at least one of a pulse-on time and a pulse-off time, and a pulse-off time and a pulse-on time on at least one of the wire pairs, and controlling the data on the wire pair during the identified transitions on the wire pair to prevent interference between the pulse power and the data.
In one or more embodiments, the method further comprises transmitting data on the two wire pairs.
In one or more embodiments, controlling the data comprises marking the data received during the identified transitions. In one or more embodiments, at least a portion of the marked data is dropped or retransmitted.
In one or more embodiments, Forward Error Correction (FEC) is applied to the data at a transmitter and controlling the data comprises marking the data for decoding during the identified transitions.
In one or more embodiments, the method further comprises decoding encoded modulation of the pulse power for control plane data.
In another embodiment, an apparatus generally comprises an interface for transmitting data on at least two wire pairs carrying pulse power, wherein the pulse power comprises a plurality of voltage pulses and a controller for identifying transitions between at least one of a pulse-on time and a pulse-off time, and a pulse-off time and a pulse-on time on at least one of the wire pairs and suspending data transmission on the wire pair during the identified transitions on the wire pair to prevent interference between the pulse power and the data.
In yet another embodiment, an apparatus generally comprises an interface for receiving data on at least two wire pairs carrying pulse power, wherein the pulse power comprises a plurality of voltage pulses, and a controller for identifying transitions between at least one of a pulse-on time and a pulse-off time, and a pulse-off time and a pulse-on time on at least one of the wire pairs and controlling the data on the wire pair during the identified transitions on the wire pair to prevent interference between the pulse power and the data.
Further understanding of the features and advantages of the embodiments described herein may be realized by reference to the remaining portions of the specification and the attached drawings.
The following description is presented to enable one of ordinary skill in the art to make and use the embodiments. Descriptions of specific embodiments and applications are provided only as examples, and various modifications will be readily apparent to those skilled in the art. The general principles described herein may be applied to other applications without departing from the scope of the embodiments. Thus, the embodiments are not to be limited to those shown, but are to be accorded the widest scope consistent with the principles and features described herein. For purpose of clarity, details relating to technical material that is known in the technical fields related to the embodiments have not been described in detail.
Conventional Power over Ethernet (PoE) or Power over Data Line (PoDL) systems used to simultaneously transmit power and data communications over the same twisted pair cable are typically limited in range and power capacity. The maximum power delivery capacity of standard PoE is approximately 100 W (watts) and standard PoDL is approximately 50 W, but many classes of powered devices would benefit from power delivery over 100 W and in some cases up to 1000 W to 2000 W. In conventional systems, when larger power delivery ratings are needed, power is supplied to a remote device through a local power source. It is therefore desirable to increase the power available over cables using one or more balanced transmission pairs to hundreds and even thousands of watts. This capability may enable many new choices in network deployments where major devices such as workgroup routers, multi-socket servers, large displays, wireless access points, fog nodes, IoT devices, or other devices operated over cables using one or more wire pairs. This capability would greatly decrease installation complexity and improve the total cost of ownership of a much wider set of devices that have their power and data connectivity needs met from a central device.
In order to increase available power, power may be transmitted in high voltage pulses (referred to herein as pulse power). The term “pulse power” as used herein refers to power that is delivered in a plurality of voltage pulses (sequence of voltage pulses) in which voltage varies between a very small voltage (e.g., close to 0V (volts), 3V) during a pulse-off time and a larger voltage (e.g., ≥12V) during a pulse-on time. The sequence of voltage pulses is generated during alternating on-time and off-time durations, with the sequence of voltage pulses comprising a high-state within the on-time duration (pulse-on) and a low-state within the off-time duration (pulse-off). High voltage pulse power (high voltage pulses) (e.g., >56V, ≥60V, ≥300V) may be transmitted from power sourcing equipment (PSE) to a powered device (PD) for use in powering the powered device, whereas low voltage pulse power (low voltage pulses) (e.g., ˜12V, ˜24V, ≤30V, ≤56V) may be used over a short interval for start-up (e.g., initialization, synchronization, charging local energy storage, powering up a controller, testing, or any combination thereof), as described, in U.S. patent application Ser. No. 16/671,508, (“Initialization and Synchronization for Pulse Power in a Network System”), filed Nov. 1, 2019, which is incorporated herein by reference in its entirety. Pulse power transmissions may be through cables, transmission lines, busbars, backplanes, PCBs (Printed Circuit Boards), and power distribution systems, for example.
In one or more embodiments, the pulse power may operate in a multiple phase (multi-phase) pulse power system to achieve less loss, effectively 100% duty cycle power delivery (e.g., continuous uninterrupted power to the output with overlapping phase pulses) to a powered device, while enhancing reliability per power connection and providing safe operation over an extended length of cable to deliver high power. As described in detail below, multiple phases (multi-phases) of voltage pulses may be delivered over a multi-pair cable with each of the phases associated with one or more data signals. Multiple pair cabling may be used, for example, with a DC pulse on each pair, timed in such a manner as to provide 100% net duty cycle continuous power at the powered device (or load), as described in U.S. patent application Ser. No. 16/380,954 (“Multiple Phase Pulse Power in a Network Communications System”), filed on Apr. 10, 2019, which is incorporated herein by reference in its entirety.
In one or more embodiments, the multi-phase pulse power may comprise Extended Safe Power (ESP). The term Extended Safe Power (ESP) as used herein may refer to high power (e.g., ≥100 W), high voltage (e.g., >56V) operation with pulse power delivered on multiple wire pairs (e.g., multi-phase pulse power with pulses offset from one another between wire pairs to provide continuous power), with fault detection (e.g., fault detection at initialization and between high voltage pulses), and synchronization between power sourcing equipment (PSE) and a powered device (PD).
As described below, pulse power may be delivered along with data over a wire pair (e.g., single balanced copper wire pair). The wire pair may be located within a Single Pair Ethernet (SPE) cable or a multiple pair (multi-pair) cable (e.g., two-pair cable, four-pair cable, or any other number of pairs). A problem that may occur with transmission of data with pulse power on a wire pair is that transition edges (transition from pulse-on time to pulse-off time or from pulse-off time to pulse-on time) of high voltage pulses may corrupt Ethernet packets. Thus, a simple summing of the pulse power and data signal together may result in data corruption on the pulse power transition edges and the data frequency spectrum may be washed out during pulse power transitions.
The embodiments described herein provide for mitigation of corruption of data due to pulse edges during pulse power transition time with transmission of data and pulse power on a wire pair. As described in detail below, the embodiments allow for data transmission on wire pairs carrying pulse power while avoiding potential interference that may be caused by the pulse power that is coupled onto the same pair of wires transmitting the data. Data transmission on the wire pair may be controlled during pulse power transitions to prevent interference between the pulse power and the data (mitigate possible corruption of the data). In one or more embodiments, a control circuit associated with the pulse power circuitry may hold (suspend, delay) the data during pulse power transitions at a transmitter. Data may also be modified (e.g., marked for possible error, dropped) at the receiver during the pulse power transitions. In one or more embodiments, FEC (Forward Error Correction) may be added to the control circuit to minimize the window in which data is held and maximize overall data rate. In one or more embodiments, modulation of the high voltage pulses may also be used in parallel with the data transmission for control plane data.
It is to be understood that the term “wire pair” as used herein may refer to a single wire pair (single twisted pair, single balanced copper wire pair, single wire pair Ethernet) located in a single pair cable (e.g., SPE, Base-T1 Ethernet) or a wire pair located in a multi-pair cable (e.g., two-pair cable, four-pair cable, Base-T Ethernet). The other wire pairs in the multi-pair cable may deliver data, power, data and power (PoE, PoDL), or data and pulse power (e.g., ESP) as described herein. The multi-pair cable may comprise multiple instances of single wire pairs (e.g., SPE, PoDL configuration) in parallel, or multiple wire pairs connected between a pair center tap (e.g., PoE configuration), and the wire pairs may operate together in a multi-phase pulse power system (e.g., ESP). A system for transmitting pulse power and data over a multi-pair cable comprising more than one wire pair configured to transmit data and pulse power may comprise more than one circuit or additional components described below with respect to
Referring now to the drawings and first to
Signals may be exchanged among communications equipment and power transmitted from the PSE 10 to the PDs 12 on a wire pair within the cable 14. Data may be transmitted from the PSE 10 to the PD 12, from the PD to the PSE, or in both directions (bidirectional communications from the PSE to the PD and from the PD to the PSE). The network is configured to pass electrical power along with data to provide both data connectivity and electrical power to network devices 12, which may include switches, routers, access points, IoT devices, or other electronic components and devices. The power may be transmitted from the PSE 10 to end points (PDs) 12, which may be located at distances up to 1000 m, for example, and at power levels greater than 50 W (e.g., 100 W, 250 W, 500 W, 1000 W, 2000 W, or any other power level).
The PSE 10 is operable to receive external power (not shown) and transmit power (e.g., pulse power, high voltage pulse power, multi-phase pulse power) over SPE or multi-pair cables 14 in the communications network. The PSE (power and data source) 10 may comprise a power supply unit (PSU) for receiving and distributing power (described below with respect to
One or more of the network devices 12 may also deliver power to equipment using PoE, PoDL, or ESP. For example, one or more of the powered devices 12 may deliver power to electronic components such as IP (Internet Protocol) cameras, VoIP (Voice over IP) phones, video cameras, point-of-sale devices, security access control devices, residential devices, building automation devices, industrial automation devices, factory equipment, lights (building lights, streetlights), traffic signals, fog nodes, IoT devices, sensors, or other electrical components and devices. One or more of the PDs 12 may also operate as a PSE and deliver ESP to one or more downstream devices. In one or more embodiments, a redundant PSE (not shown) may provide backup or additional power or bandwidth, as needed in the network. In one or more embodiments, there is no need for additional electrical wiring for the communications network and all of the network communications devices 12 operate using the power provided by the PSE 10 (or multiple PSEs).
The cable 14 comprises at least two conductors (copper wires). The cables 14 extend from the PSE 10 to the PDs 12 and may be formed from any material suitable to carry both electrical power and data. The cables 14 may be connected to the network devices 10, 12 with a connector (connection, coupling, connector assembly) formed from a plug (also referred to as a male connector) and a receptacle (also referred to as a port, jack, receiver, or female connector) coupled together. The connection may be used for connecting communications equipment through cables 14 configured to carry both data and power. The connector may comprise, for example, a modified RJ-45 type connector or any other suitable connector. If the cable is an SPE cable, an SPE connector may be configured with a small form factor that allows for an increased number of ports as compared to conventional four-pair connectors.
The cable 14 may be configured according to a standard cable gauge and rated for one or more power or current levels, a maximum power level, a maximum temperature, or identified according to one or more categories indicating acceptable power level usage, for example. In one example, the cable 14 may correspond to a standardized wire gauge system such as AWG (American Wire Gauge). The cable 14 may comprise, for example, 18 AWG or other suitable size cable. For different gauge wire, AWG provides data including diameter, area, resistance per length, ampacity (maximum amount of current a conductor can carry before sustaining immediate or progressive deterioration), and fusing current (how much current it takes to melt a wire in free air). Various other standards (e.g., NEC (National Electrical Code), UL (Underwriters Laboratories)) may be used to provide various requirements for the cables and connectors and provide temperature or power ratings or limits, or other information. In one or more embodiments, the cable 14 may also include optical fibers (as described below with respect to
The network may also include appropriate safety features as needed for higher power operation (e.g., insulation, process for power/cable compatibility confirmation, control circuit check for open/short, or thermal sensor). Touch-safe fault protection may be provided through cable and connector designs that are touch-safe even with high voltage applied. In one or more embodiments, the connector and cable 14 are configured to meet standard safety requirements for line-to-ground protection and line-to-line protection at relevant high voltage by means including clearance and creepage distances, and touch-safe techniques. The connector may comprise safety features, including, for example, short-pin for hot-plug and hot-unplug without current surge or interruption for connector arcing protection. The connector may further include additional insulation material for hot-plug and hot-unplug with current surge or interruption with arc-flash protection and reliability life with arcing. The insulated cable power connector terminals are preferably configured to meet touch voltage or current accessibility requirements.
In one or more embodiments, the network may incorporate safety features as described in U.S. patent application Ser. No. 16/671,508, referenced above. For example, the system may test for thermal buildup, a current disparity, a ground fault, or any combination thereof. In one or more embodiments, fault sensing may be performed through a low voltage safety check combined with a digital interlock that uses the data system to provide feedback on the power system status and set a power operating mode. The fault sensing may be performed, for example, during a low voltage start-up or between high voltage pulses (e.g., low voltage fault detection between high voltage pulses). Fault sensing may include, for example, line-to-line fault detection with low voltage sensing of the cable or powered device and line-to-ground fault detection with midpoint grounding. The power safety features provide for safe system operation and installation and removal (disconnect) of components.
In one or more embodiments, a signature of the voltage pulse may be analyzed for each cycle. This analysis may be a rising edge, falling edge, or both. If the signature is corrupt by an unexpected load, the high voltage pulses may be stopped until it is determined that the load is safe to power. The signature may be corrupted, for example, by a human, short, or open.
If a fault is identified on one of the wire pairs, transmission of power may be interrupted on the wire pair, while power continues to be transmitted on the remaining wire pairs. It is to be understood that the safety features described above are only examples of safety or fault protection features that may be included for delivery of high voltage pulse power. Any combination of these or other safety features may be used with the embodiments described herein.
In one or more embodiments, the system may employ a dual-power mode that detects and negotiates between the power source 10 and the powered device 12. This negotiation (e.g., auto-negotiation) may, for example, distinguish between and accommodate different power-delivery schemes, such as PoDL, PoE, ESP or other power modes, or power levels. For example, standard PoDL distribution may be used for remote network devices rated less than about 50 W, standard PoE distribution may be used for remote network devices rated less than about 90 W, and for higher power remote powered devices, pulse power or multi-phase pulse power (e.g., ESP) may be used to create an efficient energy distribution network.
As described in detail below, a data signal (encoded data, modulated data signal) is transmitted with the pulse power (data signal superimposed on pulse power, pulse power coupled onto the wires transmitting data). The data signal may comprise data including power telemetry, control data, fault notification (e.g., transmission error, phase fault (in multi-phase system), over current, arc event, time base control synchronization fault, MAC drop, or any other communication or power fault or error), auto-negotiation between PSE and PD (e.g., modulator switch timing, power level), synchronization information for modulator switches (e.g., pulse width data, data communications to control pulse-off/pulse-on synchronization), enterprise data, or other data communications to create a bidirectional communications link between the PSE and PD. In one or more embodiments, the data signal may be used to provide pulse synchronization between the PSE and PD during initialization or normal operation, as described in U.S. patent application Ser. No. 16/671,508, referenced above.
In one or more embodiments, 100 Mbps to 1000 Mbps data may be delivered over a distance of approximately 40 meters, 10 Gbps data may be delivered over a distance of approximately 15 meters, or 10 Mbps data may be delivered over a distance of approximately 1 km. In one example, data may be transmitted at a rate of 1 Gbps at a distance up to 40 m in accordance with IEEE 802.3 bp or IEEE 802.3bw, data may be transmitted at 10 Mbps for a distance up to 1000 m in accordance with IEEE 8002.3cg, or data may be transmitted at 2.5 Gbps-10 Gbps over a distance up to 10 m or 15 m in accordance with IEEE 802.3ch. It is to be understood that the power levels, data transmission rates, and distances described herein are provided only as examples and other power levels or transmission rates in combination with other distances may be used in accordance with the above referenced standards or any other applicable standard or future standard, without departing from the scope of the embodiments.
Furthermore, it is to be understood that the network devices and topology shown in
Memory 24 may be a volatile memory or non-volatile storage, which stores various applications, operating systems, modules, and data for execution and use by the processor 22. For example, components of the controller 28 (e.g., code, logic, software, or firmware, etc.) may be stored in the memory 24. The network device 20 may include any number of memory components.
The network device 20 may include any number of processors 22 (e.g., single or multi-processor computing device or system), which may communicate with a forwarding engine or packet forwarder operable to process a packet or packet header. The processor 22 may receive instructions from a software application or module, which causes the processor to perform functions of one or more embodiments described herein. The processor 22 may also operate one or more components of the controller 28.
As described in detail below, the controller 28 is configured to identify transitions in the voltage pulses (e.g., transition from pulse-on (high-state) to pulse-off (low-state), transition from pulse-off to pulse-on, or both transitions) on a wire pair and control data transmission or received data on the wire pair (e.g., suspend transmission of data (data signal) at a transmitter or modify processing of data (e.g., discard, mark, provide feedback) at a receiver for a duration of time with respect to the transition edge. The controller 28 may also modulate pulses of the pulse power to create a data signal for transmitting control plane data from the PSE to the PD, as described below. It is to be understood that the controller 28 may comprise one or more control devices (elements, units, circuits). For example, the data/pulse power controller 28 may comprise components (e.g., modules, gate, buffer, FEC block, packet marking/dropping block, encoder, decoder, error correcting code, software, or logic, as described below with respect to
Logic may be encoded in one or more tangible media for execution by the processor 22. For example, the processor 22 may execute codes stored in a computer-readable medium such as memory 24. The computer-readable medium may be, for example, electronic (e.g., RAM (random access memory), ROM (read-only memory), EPROM (erasable programmable read-only memory)), magnetic, optical (e.g., CD, DVD), electromagnetic, semiconductor technology, or any other suitable medium. In one example, the computer-readable medium comprises a non-transitory computer-readable medium. Logic may be used to perform one or more functions described below with respect to the flowcharts of
The interface 26 may comprise any number of network interfaces (line cards, ports, inline connectors (e.g., receptacle)) for transmitting or receiving power and transmitting and receiving data. The network interface 26 may be configured to transmit or receive data using a variety of different communications protocols and may include mechanical, electrical, and signaling circuitry for communicating data over physical links coupled to the network interfaces. For example, line cards may include port processors and port processor controllers. One or more of the interfaces may be configured for PoDL on SPE, PoE or ESP on multi-pair cable, or any combination thereof.
It is to be understood that the network device 20 shown in
In the example shown in
In the example shown in
In the example shown in
It is to be understood that the power duty cycles shown in
It may be noted that data transmissions may be controlled during transition time from pulse-off to pulse-on, from pulse-on to pulse-off, or both transitions as shown in the examples of
As previously discussed, the pulse power is coupled onto the same pair of wires transmitting the data and the data may potentially be corrupted during the pulse transitions. As shown in
As described below with respect to
Referring first to
In the example shown in
In one or more embodiments, an error rate on the FEC block receiver 104, 113 (
It is to be understood that the systems 40, 50, 60, 70, 80, 90, and 100 shown in
Also, as previously noted, pulse power may be transmitted and data transmitted or received over any number of wire pairs or phases. Each wire pair (or phase) transmitting pulse power and data may be associated with a circuit such as shown in
Referring first to the flowchart of
In one or more embodiments, modulation of the high voltage pulse power may be used in parallel with the SPE transmission for control plane data. For example, encode modulation may be added at the transmitter end with decoding at the receiver used to transmit control plane data. This would include the addition of decode components at the receiver end for the control plane data.
It is to be understood that the processes shown in
As previously discussed, the pulse power system may operate as a multiple phase (multi-phase) system. The processes described above with respect to
Referring now to
The PSE network device 200 comprises an input power interface (e.g., three PSUs 205 coupled to power cords 209 in the example shown in
The pulse power receiver 212 comprises an input cable interface 213a for receiving the multiple phase pulse power and data from the PSE 200, an isolation switch (e.g., modulator switch shown in
The interface 213b may be, for example, an interface connected to HVDC (high voltage DC) cable 222, pulse power cable, or a direct interface to the endpoint node. The receiver 212 may supply power to one or more nodes 214 along a pulse power cable system. One or more of the pulse power tap/receivers 212 may also comprise an output cable interface 213c for transmitting the multiple phase DC pulse power and data on the cable to a downstream tap node 212 in a taper topology (tap node configuration). The receivers 212 may be sized to support individual node power and may implement disconnect for fault isolation or node control based on data link communications. The multi-phase DC pulse power comprises at least two phases to provide continuous voltage at the endpoint node 214. In one or more embodiments, the multi-phase pulse power comprises at least three phases to provide continuous power in case of loss of one phase. The pulse power receivers 212a also comprise transceivers (not shown).
In the example shown in
The multiple PSUs 205 allow for multi-phase operation (continuous power) and may also provide redundancy. For example, if one phase is lost in a system comprising three or more phases, continuous power may still be delivered to the PD nodes 214. Each phase is preferably sized to supply higher peak power to maintain full power to the PD nodes 214. Further redundancy may be provided by utilizing N+1 Front End Power (FEP) supplies. For example, in the case of a 1500 W total PD power system, three 1200 W FEPs can power the system with full redundancy of N+N or N+1, with each FEP needing only a common 120V, 15 A feed.
The pulse power module 206 may include a pulse power modulator, safety circuits, initialization circuits, PMBus, PMBus I2C (I2C (Inter-Integrated Circuit)), logic, FPGA (Field-Programmable Gate Array), DSP (Digital Signal Processor), or any combination of these or other components configured to perform the functions described herein.
The power control system 207 provides a multiphase of voltage pulses. The pulse power module control system 207 may provide, for example, timing and sequencing, line detection and characterization, voltage and current sensing, mid-point high resistance grounding, fault sensing, communications to PSUs, and data link/control to remote nodes. In one or more embodiments, the control system 207 may verify cable operation (e.g., verify cable operational integrity) during the pulse power pulse-off time. In one or more embodiments if a phase is lost, the pulse power control system 207 may adjust power transmitted by remaining phases or a duty cycle of one or more of the remaining phases.
As shown in the example of
In one or more embodiments, the pulse power tap/receiver 212 may combine the phases and deliver high voltage (HV) DC power to the node/endpoint 214 on cable 222. In another embodiment, the pulse power tap/receiver 212 may deliver pulse power to the endpoint 214 on the cable 222. Also, as previously described, the pulse power receiver 212 may also be in communication with one or more endpoints 214 over PoDL or PoE.
Power is supplied to the endpoint 214 through the pulse power tap/receiver 212 (also referred to as a branch tap, smart branch tap, receiver, converter). In one or more embodiments, the smart branch taps 212 allow branch fault isolation. The tap/receiver 212 may include, for example, an isolation switch (disconnect switch), data link, and logic/timing controller. The tap/receiver 212 may be used for initializing an auto-negotiation process, fault branch isolation algorithm, power initialization, and faulty PD replacements. The data link over the pulse power wires allows for implementation of the smart branch taps 212 for each node 214 and independent control (disconnect) of each branch for fault isolation or node management.
Each of the endpoints 214 may include an HVDC PSU for powering equipment at the endpoint. The endpoint 214 may comprise, for example, a 56 VDC load and may operate, for example, as a PON (Passive Optical Network) endpoint, 5G node, access point, router, switch, or other type of equipment. The endpoint 214 may also power one or more other nodes (e.g., PoE node, IoT (Internet of Things) device), as previously noted.
It is to be understood that the system shown in
The three phase voltages (A, B, and C) each comprise pulse-on time (223a, 223b, 223c) in which high voltage power is delivered and pulse-off time 224 in which auto-negotiation line sensing 224 may be performed. For example, during pulse-on time 223a, 223b, 223c high voltage power is delivered from the PSE to the PDs and during pulse-off time 224 while the high voltage power is off, a low voltage may be applied on each phase for use in low voltage sensing to check wire integrity, test capacitance in the cable, or any other testing or fault detection.
In one or more embodiments, the pulse-off time 224 may be fixed, based on worst case cable length and characteristics or actively controlled based on detected cable characterization (for higher efficiency/longer range). The pulse-on time (power delivery) for each phase may be fixed based on total pulse power voltage and shock hazard limits based on appropriate body resistance data. This approach may be used to achieve maximum pulse overlap, thereby reducing cable RMS current and maximizing power transmission distance (or minimizing conductor wire size).
The net PD voltage is shown combined for the three phase voltages at 225. The corresponding phase currents (A, B, C) (226a, 226b, 226c) are shown below the voltages. The net line current corresponding to the three phase currents is shown at 227. In the example shown in
Idealized waveforms are shown and net PD voltage and line current include line loss effect with constant power loading from the nodes/endpoints 214 (
Two or more transmission wires (e.g., wires or wire pairs) enable phasing of the conduction on each wire (e.g., wire or pair) so that at least one wire is ON (pulse-on) at any time. When OR'd at the PD, the result is continuous DC voltage as shown at 225, thereby eliminating the need for bulky filter components. During phase overlap in the multi-phase systems, the total cable current is shared across all ON wires. Individual transmission wire current is proportionally reduced, lowering total transmission cable losses.
The off-pulse (low-state) may be a small voltage (e.g., close to 0V, 3V), or any value that is significantly less than the pulse-on (high state) (e.g., at least 170V difference between voltage levels for pulse-on and pulse-off). The pulse-on time and pulse-off time (pulse width, pulse duty cycle) may be selected based on system design (e.g., number of phases, amount of power delivered) and safety requirements. The pulse duty cycle may also vary between an initialization phase, synchronization phase, testing phase, or normal operation. In one example, a start-up duty cycle may comprise 8 ms pulse-on and 4 ms pulse-off for a 12 ms time period (e.g., as shown in
As previously described with respect to
In one or more embodiments, a central controller (e.g., control system 207 in
As previously noted, the pulse timing may be synchronized between the PD and PSE. In one or more embodiments, PD and PSE modulators (described below with respect to
It is to be understood that the currents, voltages, pulse widths, duty cycles, and phase overlaps shown in
It is to be understood that the multi-phase pulse power system described herein may be implemented on systems comprising a different number of wires or wire pairs and the three-phase system shown in
It is to be understood that the processes shown in
Referring first to
In one or more embodiments, PoE, PoDL, or high voltage power (e.g., ESP, pulse power, multi-phase pulse power) may be delivered over the same cable and connectors. Depending on a capability of the PSE 350 and PD 352, the PD may operate in one or more different modes. If the PSE 350 and PD 352 are not compatible (i.e., one only configured for PoE and the other one only configured for ESP) the circuit will be not be powered. If both the PSE 350 and PD 352 are capable of ESP operation, the PSE will supply high voltage pulse power and the PD will operate using the high voltage pulse power. In another example, the PSE 350, PD 352, or both PD and PSE may select an operating mode based on the most efficient delivery mode (e.g., using auto-negotiation between PD and PSE).
Referring first to
The PSE 381 includes an isolated high voltage source (e.g., 380 VDC) and a modulator switch 384a with gate. The DSP (Digital Signal Processor) 385a, 385b at the PSE and PD may comprise a microcontroller or FPGA (Field Programmable Gate Array) digital control and software/firmware. Tx/Rx 386a, 386b at the PSE and PD represent transceivers with a coupling network. An isolated power supply 387a is provided for PSE housekeeping and the isolated power supply 387b is provided for PD housekeeping with 24 VDC input, for example, for low voltage initialization and testing. The PD 382 also includes a rectifier LC filter and a DC/DC isolated converter 387c for generating 12V/3.3V housekeeping voltage with 60-380 VDC input from the output of the PD (high voltage pulse power operation), for example. In the example shown in
Each phase may further include one of the circuits shown in
The timing diagram shown in
It is to be understood that the circuit shown in
In one or more embodiments, a PLC (Power Line Communications) zero-timestamp may be used with pulse synchronization events for use in discovering network topologies (e.g., multi-drop in an ESP system). By triggering the PLC transceiver using pulse synchronization signals instead of the output from conventional zero-crossing detector circuits, PLC zero-crossing timestamps may be utilized in ESP systems. This allows hardware or software timestamping of transmitted and received messages, which can accurately establish when during a pulse period the timestamped event occurred. By collecting these timestamps, the order of network nodes and their relative distance may be established. If signal propagation characteristics are known or estimated at run time, this relative distance can be converted to an absolute distance. This provides transmitters in an ESP system with the capability to discover network topology with reasonable accuracy while re-using existing PLC transceiver features.
As can be observed from the foregoing, one or more embodiments provide for mitigation of corruption of data due to pulse edges during pulse power transitions with transmission of data and pulse power on a wire pair. Data may be transmitted while avoiding potential interference that may be caused by the pulse power that is coupled onto the same pair of wires transmitting the data. One or more embodiments may also provide improved power delivery with enhanced reliability and safety for high power operation. The multi-phase pulse power distribution described herein allows for higher power transmission with higher efficiency, lower EMC, and filter size/cost reduction using high voltage power transmission safely at a low installation and operational cost with improved efficiency.
Although the method and apparatus have been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations made to the embodiments without departing from the scope of the embodiments. Accordingly, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
The present application is a continuation of U.S. patent application Ser. No. 16/704,502, entitled TRANSMISSION OF PULSE POWER AND DATA IN A COMMUNICATIONS NETWORK, filed on Dec. 5, 2019, which is a continuation-in-part of U.S. patent application Ser. No. 16/255,657, entitled TRANSMISSION OF PULSE POWER AND DATA OVER A WIRE PAIR, filed on Jan. 23, 2019, which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3335324 | Buckeridge | Aug 1967 | A |
3962529 | Kubo | Jun 1976 | A |
4097692 | Felix | Jun 1978 | A |
4811187 | Nakajima | Mar 1989 | A |
4997388 | Dale et al. | Mar 1991 | A |
5159684 | Kroll | Oct 1992 | A |
5652893 | Ben-Meir | Jul 1997 | A |
6008631 | Johari | Dec 1999 | A |
6220955 | Posa | Apr 2001 | B1 |
6259745 | Chan | Jul 2001 | B1 |
6295356 | De Nicolo | Sep 2001 | B1 |
6448672 | Voegeli et al. | Sep 2002 | B1 |
6636538 | Stephens | Oct 2003 | B1 |
6685364 | Brezina | Feb 2004 | B1 |
6756881 | Bateman et al. | Jun 2004 | B2 |
6784790 | Lester | Aug 2004 | B1 |
6826368 | Koren | Nov 2004 | B1 |
6855881 | Khoshnood | Feb 2005 | B2 |
6860004 | Hirano | Mar 2005 | B2 |
7325150 | Lehr | Jan 2008 | B2 |
7417443 | Admon et al. | Aug 2008 | B2 |
7420355 | Liu | Sep 2008 | B2 |
7490996 | Sommer | Feb 2009 | B2 |
7492059 | Peker | Feb 2009 | B2 |
7509505 | Randall | Mar 2009 | B2 |
7564904 | Isachar et al. | Jul 2009 | B2 |
7566987 | Black et al. | Jul 2009 | B2 |
7583703 | Bowser | Sep 2009 | B2 |
7589435 | Metsker | Sep 2009 | B2 |
7593747 | Karam | Sep 2009 | B1 |
7603570 | Schindler | Oct 2009 | B2 |
7616465 | Vinciarelli | Nov 2009 | B1 |
7813646 | Furey | Oct 2010 | B2 |
7835389 | Yu | Nov 2010 | B2 |
7854634 | Filipon | Dec 2010 | B2 |
7881072 | DiBene | Feb 2011 | B2 |
7915761 | Jones | Mar 2011 | B1 |
7921307 | Karam | Apr 2011 | B2 |
7924579 | Arduini | Apr 2011 | B2 |
7940787 | Karam | May 2011 | B2 |
7973538 | Karam | Jul 2011 | B2 |
8020043 | Karam | Sep 2011 | B2 |
8037324 | Hussain | Oct 2011 | B2 |
8081589 | Gilbrech | Dec 2011 | B1 |
8184525 | Karam | May 2012 | B2 |
8276397 | Carlson | Oct 2012 | B1 |
8279883 | Diab | Oct 2012 | B2 |
8310089 | Schindler | Nov 2012 | B2 |
8319627 | Chan | Nov 2012 | B2 |
8345439 | Goergen | Jan 2013 | B1 |
8350538 | Cuk | Jan 2013 | B2 |
8358893 | Sanderson | Jan 2013 | B1 |
8386820 | Diab | Feb 2013 | B2 |
8638008 | Baldwin et al. | Jan 2014 | B2 |
8700923 | Fung | Apr 2014 | B2 |
8712324 | Corbridge | Apr 2014 | B2 |
8750710 | Hirt | Jun 2014 | B1 |
8768528 | Millar et al. | Jul 2014 | B2 |
8781637 | Eaves | Jul 2014 | B2 |
8787775 | Earnshaw | Jul 2014 | B2 |
8793511 | Bishara | Jul 2014 | B1 |
8829917 | Lo | Sep 2014 | B1 |
8836228 | Xu | Sep 2014 | B2 |
8842430 | Hellriegel | Sep 2014 | B2 |
8849471 | Daniel | Sep 2014 | B2 |
8898446 | Ronen et al. | Nov 2014 | B2 |
8966747 | Vinciarelli | Mar 2015 | B2 |
8971399 | Kwon et al. | Mar 2015 | B2 |
9001881 | Okamura et al. | Apr 2015 | B2 |
9024473 | Huff | May 2015 | B2 |
9184795 | Eaves | Nov 2015 | B2 |
9189043 | Vorenkamp | Nov 2015 | B2 |
9273906 | Goth | Mar 2016 | B2 |
9319101 | Lontka | Apr 2016 | B2 |
9321362 | Woo | Apr 2016 | B2 |
9373963 | Kuznelsov | Jun 2016 | B2 |
9419436 | Eaves | Aug 2016 | B2 |
9484771 | Braylovskly | Nov 2016 | B2 |
9510479 | Vos | Nov 2016 | B2 |
9531551 | Balasubramanian | Dec 2016 | B2 |
9590811 | Hunter, Jr. | Mar 2017 | B2 |
9618714 | Murray | Apr 2017 | B2 |
9640998 | Dawson | May 2017 | B2 |
9665148 | Hamdi | May 2017 | B2 |
9693244 | Maruhashi | Jun 2017 | B2 |
9734940 | McNutt | Aug 2017 | B1 |
9768978 | Coenen et al. | Sep 2017 | B2 |
9853689 | Eaves | Dec 2017 | B2 |
9874930 | Vavilala | Jan 2018 | B2 |
9882656 | Sipes, Jr. | Jan 2018 | B2 |
9891678 | Butcher et al. | Feb 2018 | B2 |
9893521 | Lowe | Feb 2018 | B2 |
9948198 | Imai | Apr 2018 | B2 |
9979370 | Xu | May 2018 | B2 |
9985600 | Xu | May 2018 | B2 |
10007628 | Pitigoi-Aron | Jun 2018 | B2 |
10028417 | Schmidtke | Jul 2018 | B2 |
10128764 | Vinciarelli | Nov 2018 | B1 |
10248178 | Brooks | Apr 2019 | B2 |
10263526 | Sandusky et al. | Apr 2019 | B2 |
10281513 | Goergen et al. | May 2019 | B1 |
10374813 | Sheffield | Aug 2019 | B2 |
10407995 | Moeny | Sep 2019 | B2 |
10439432 | Eckhardt | Oct 2019 | B2 |
10541543 | Eaves | Jan 2020 | B2 |
10541758 | Goergen et al. | Jan 2020 | B2 |
10631443 | Byers et al. | Apr 2020 | B2 |
10671146 | Wendt et al. | Jun 2020 | B2 |
10735105 | Goergen et al. | Aug 2020 | B2 |
20010024373 | Cuk | Sep 2001 | A1 |
20020126967 | Panak | Sep 2002 | A1 |
20040000816 | Khoshnood | Jan 2004 | A1 |
20040033076 | Song | Feb 2004 | A1 |
20040043651 | Bain | Mar 2004 | A1 |
20040073703 | Boucher | Apr 2004 | A1 |
20040264214 | Xu et al. | Dec 2004 | A1 |
20050197018 | Lord | Sep 2005 | A1 |
20050268120 | Schindler | Dec 2005 | A1 |
20060202109 | Delcher | Sep 2006 | A1 |
20060209875 | Lum | Sep 2006 | A1 |
20070103168 | Batten | May 2007 | A1 |
20070143508 | Linnman | Jun 2007 | A1 |
20070236853 | Crawley | Oct 2007 | A1 |
20070263675 | Lum | Nov 2007 | A1 |
20070284941 | Robbins | Dec 2007 | A1 |
20070284946 | Robbins | Dec 2007 | A1 |
20070288125 | Quaratiello | Dec 2007 | A1 |
20070288771 | Robbins | Dec 2007 | A1 |
20080054720 | Lum | Mar 2008 | A1 |
20080166715 | Hillis et al. | Jul 2008 | A1 |
20080198635 | Hussain | Aug 2008 | A1 |
20080229120 | Diab | Sep 2008 | A1 |
20080310067 | Diab | Dec 2008 | A1 |
20090027033 | Diab | Jan 2009 | A1 |
20100077239 | Diab | Mar 2010 | A1 |
20100117808 | Karam | May 2010 | A1 |
20100171602 | Kabbara | Jul 2010 | A1 |
20100190384 | Lanni | Jul 2010 | A1 |
20100237846 | Vetteth | Sep 2010 | A1 |
20100290190 | Chester | Nov 2010 | A1 |
20110007664 | Diab | Jan 2011 | A1 |
20110057612 | Taguchi | Mar 2011 | A1 |
20110083824 | Rogers | Apr 2011 | A1 |
20110228578 | Serpa | Sep 2011 | A1 |
20110266867 | Schindler | Nov 2011 | A1 |
20110290497 | Stenevik | Dec 2011 | A1 |
20120043935 | Dyer | Feb 2012 | A1 |
20120064745 | Ottliczky | Mar 2012 | A1 |
20120170927 | Huang | Jul 2012 | A1 |
20120201089 | Barth | Aug 2012 | A1 |
20120231654 | Conrad | Sep 2012 | A1 |
20120287984 | Lee | Nov 2012 | A1 |
20120317426 | Hunter, Jr. | Dec 2012 | A1 |
20120319468 | Schneider | Dec 2012 | A1 |
20130077923 | Weem | Mar 2013 | A1 |
20130079633 | Weem | Mar 2013 | A1 |
20130103220 | Eaves | Apr 2013 | A1 |
20130249292 | Blackwell, Jr. | Sep 2013 | A1 |
20130272721 | Van Veen | Oct 2013 | A1 |
20130329344 | Tucker | Dec 2013 | A1 |
20140111180 | Vladan | Apr 2014 | A1 |
20140126151 | Campbell | May 2014 | A1 |
20140129850 | Paul | May 2014 | A1 |
20140258742 | Chien | Sep 2014 | A1 |
20140258813 | Lusted | Sep 2014 | A1 |
20140265550 | Milligan | Sep 2014 | A1 |
20140372773 | Heath | Dec 2014 | A1 |
20150078740 | Sipes, Jr. | Mar 2015 | A1 |
20150106539 | Leinonen | Apr 2015 | A1 |
20150115741 | Dawson | Apr 2015 | A1 |
20150207317 | Radermacher | Jul 2015 | A1 |
20150215001 | Eaves | Jul 2015 | A1 |
20150215131 | Paul et al. | Jul 2015 | A1 |
20150333918 | White, III | Nov 2015 | A1 |
20150365003 | Sadwick | Dec 2015 | A1 |
20160018252 | Hanson | Jan 2016 | A1 |
20160020911 | Sipes, Jr. | Jan 2016 | A1 |
20160064938 | Balasubramanian | Mar 2016 | A1 |
20160111877 | Eaves | Apr 2016 | A1 |
20160118784 | Saxena | Apr 2016 | A1 |
20160133355 | Glew | May 2016 | A1 |
20160134331 | Eaves | May 2016 | A1 |
20160142217 | Gardner | May 2016 | A1 |
20160188427 | Chandrashekar | Jun 2016 | A1 |
20160197600 | Kuznetsov | Jul 2016 | A1 |
20160365967 | Tu | Jul 2016 | A1 |
20160241148 | Kizilyalli | Aug 2016 | A1 |
20160262288 | Chainer | Sep 2016 | A1 |
20160269195 | Coenen et al. | Sep 2016 | A1 |
20160273722 | Crenshaw | Sep 2016 | A1 |
20160294500 | Chawgo | Oct 2016 | A1 |
20160294568 | Chawgo et al. | Oct 2016 | A1 |
20160308683 | Pischl | Oct 2016 | A1 |
20160352535 | Hiscock | Dec 2016 | A1 |
20170041152 | Sheffield | Feb 2017 | A1 |
20170041153 | Picard | Feb 2017 | A1 |
20170054296 | Daniel | Feb 2017 | A1 |
20170110871 | Foster | Apr 2017 | A1 |
20170123466 | Carnevale | May 2017 | A1 |
20170146260 | Ribbich | May 2017 | A1 |
20170155517 | Cao | Jun 2017 | A1 |
20170155518 | Yang | Jun 2017 | A1 |
20170164525 | Chapel | Jun 2017 | A1 |
20170214236 | Eaves | Jul 2017 | A1 |
20170229886 | Eaves | Aug 2017 | A1 |
20170234738 | Ross | Aug 2017 | A1 |
20170248976 | Moller | Aug 2017 | A1 |
20170294966 | Jia | Oct 2017 | A1 |
20170325320 | Wendt | Nov 2017 | A1 |
20180024964 | Mao | Jan 2018 | A1 |
20180053313 | Smith | Feb 2018 | A1 |
20180054083 | Hick | Feb 2018 | A1 |
20180060269 | Kessler | Mar 2018 | A1 |
20180088648 | Otani | Mar 2018 | A1 |
20180098201 | Torello | Apr 2018 | A1 |
20180102604 | Keith | Apr 2018 | A1 |
20180123360 | Eaves | May 2018 | A1 |
20180188712 | MacKay | Jul 2018 | A1 |
20180191513 | Hess | Jul 2018 | A1 |
20180254624 | Son | Sep 2018 | A1 |
20180313886 | Mlyniec | Nov 2018 | A1 |
20180340840 | Bullock et al. | Nov 2018 | A1 |
20190064890 | Donachy et al. | Feb 2019 | A1 |
20190126764 | Fuhrer | May 2019 | A1 |
20190267804 | Matan | Aug 2019 | A1 |
20190272011 | Goergen et al. | Sep 2019 | A1 |
20190277899 | Goergen et al. | Sep 2019 | A1 |
20190277900 | Goergen et al. | Sep 2019 | A1 |
20190278347 | Goergen et al. | Sep 2019 | A1 |
20190280895 | Mather | Sep 2019 | A1 |
20190304630 | Goergen et al. | Oct 2019 | A1 |
20190312751 | Goergen et al. | Oct 2019 | A1 |
20190342011 | Goergen et al. | Nov 2019 | A1 |
20190363493 | Sironi et al. | Nov 2019 | A1 |
20200044751 | Goergen et al. | Feb 2020 | A1 |
20200228001 | Lambert et al. | Jul 2020 | A1 |
20200295955 | O'Brien et al. | Sep 2020 | A1 |
Number | Date | Country |
---|---|---|
1209880 | Jul 2005 | CN |
1815459 | Aug 2006 | CN |
101026523 | Aug 2007 | CN |
201689347 | Dec 2010 | CN |
102142932 | Aug 2011 | CN |
104584481 | Apr 2015 | CN |
204836199 | Dec 2015 | CN |
205544597 | Aug 2016 | CN |
104081237 | Oct 2016 | CN |
104412541 | May 2019 | CN |
1936861 | Jun 2008 | EP |
2120443 | Nov 2009 | EP |
2257009 | Jan 2010 | EP |
2432134 | Mar 2012 | EP |
2693688 | Feb 2014 | EP |
WO199316407 | Aug 1993 | WO |
2006127916 | Nov 2006 | WO |
WO2010053542 | May 2010 | WO |
2014011224 | Jan 2014 | WO |
WO2017054030 | Apr 2017 | WO |
WO2017167926 | Oct 2017 | WO |
WO2018017544 | Jan 2018 | WO |
WO2019023731 | Feb 2019 | WO |
2019212759 | Nov 2019 | WO |
2020154101 | Jul 2020 | WO |
2020154103 | Jul 2020 | WO |
Entry |
---|
https://www.fischerconnectors.com/us/en/products/fiberoptic. |
http://www.strantech.com/products/tfoca-genx-hybrid-2x2-fiber-optic-copper-connector/. |
http://www.qpcfiber.com/product/connectors/e-link-hybrid-connector/. |
https://www.lumentum.com/sites/default/files/technical-library-items/poweroverfiber-tn-pv-ae_0.pdf. |
“Network Remote Power Using Packet Energy Transfer”, Eaves et al., www.voltserver.com, Sep. 2012. |
Product Overview, “Pluribus VirtualWire Solution”, Pluribus Networks, PN-PO-VWS-05818, https://www.pluribusnetworks.com/assets/Pluribus-VirtualWire-PO-50918.pdf, May 2018, 5 pages. |
Implementation Guide, “Virtual Chassis Technology Best Practices”, Juniper Networks, 8010018-009-EN, Jan. 2016, https://wwwjuniper.net/us/en/local/pdf/implementation-guides/8010018-en.pdf, 29 pages. |
Yencheck, Thermal Modeling of Portable Power Cables, 1993. |
Zhang, Machine Learning-Based Temperature Prediction for Runtime Thermal Management across System Components, Mar. 2016. |
Data Center Power Equipment Thermal Guidelines and Best Practices. |
Dynamic Thermal Rating of Substation Terminal Equipment by Rambabu Adapa, 2004. |
Chen, Real-Time Termperature Estimation for Power MOSEFETs Conidering Thermal Aging Effects:, IEEE Trnasactions on Device and Materials Reliability, vol. 14, No. 1, Mar. 2014. |
Petition for Post Grant Review of U.S. Pat. No. 10,735,105 [Public], filed Feb. 16, 2021, PGR 2021-00055. |
Petition for Post Grant Review of U.S. Pat. No. 10,735,105 [Public], filed Feb. 16, 2021, PGR 2021-00056. |
Eaves, S. S., Network Remote Powering Using Packet Energy Transfer, Proceedings of IEEE International Conference on Telecommunications Energy (INTELEC) 2012, Scottsdale, AZ, Sep. 30-Oct. 4, 2012 (IEEE 2012) (EavesIEEE). |
Edelstein S., Updated 2016 Tesla Model S also gets new 75-kWhbattery option, (Jun. 19, 2016), archived Jun. 19, 2016 by Internet Archive Wayback machine at https://web.archive.org/web/20160619001148/https://www.greencarreports.com/news/1103 782_updated-2016-tesla-model-s-also-gets-new-7 5-kwh-battery-option (“Edelstein”). |
NFPA 70 National Electrical Code, 2017 Edition (NEC). |
International Standard IEC 62368-1 Edition 2.0 (2014), ISBN 978-2-8322-1405-3 (“IEC-62368”). |
International Standard IEC/TS 60479-1 Edition 4.0 (2005), ISBN 2-8318-8096-3 (“IEC-60479”). |
International Standard IEC 60950-1 Edition 2.2 (2013), ISBN 978-2-8322-0820-5 (“IEC-60950”). |
International Standard IEC 60947-1 Edition 5.0 (2014), ISBN 978-2-8322-1798-6 (“IEC-60947”). |
Tanenbaum, A. S., Computer Networks, Third Edition (1996) (“Tanenbaum”). |
Stallings, W., Data and Computer Communications, Fourth Edition (1994) (“Stallings”). |
Alexander, C. K., Fundamentals of Electric Circuits, Indian Edition (2013) (“Alexander”). |
Hall, S. H., High-Speed Digital System Design, A Handbook of Interconnect Theory and Design Practices (2000) (“Hall”). |
Sedra, A. S., Microelectronic Circuits, Seventh Edition (2014) (“Sedra”). |
Lathi, B. P., Modem Digital and Analog Communication Systems, Fourth Edition (2009) (“Lathi”). |
Understanding 802.3at PoE Plus Standard Increases Available Power (Jun. 2011) (“Microsemi”). |
Cheng K.W.E., et al., “Constant Frequency, Two-Stage Quasiresonant Convertor,” Published in: IEE Proceedings B—Electric Power Applications, May 1, 1992, vol. 139, No. 03, pp. 227-237, XP000292493. |
International Preliminary Report on Patentability for International Application No. PCT/US2020/012758, dated Aug. 5, 2021,10 Pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2020/012801, dated Aug. 5, 2021, 9 Pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2020/020359, dated Sep. 23, 2021, 9 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2020/012758, dated Apr. 8, 2020, 11 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2020/012801, dated Apr. 15, 2020, 10 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2020/020359, dated May 27, 2020, 10 Pages. |
Jingquan C., et al., “Buck-Boost PWM Converters Having Two Independently Controlled Switches,” 32nd Annual IEEE Power Electronics Specialists Conference, PESC 2001, Conference Proceedings, Vancouver, Canada, New York, NY : IEEE., US, US, Jun. 17-21, 2001, vol. 2, pp. 736-741, DOI:10.1109/PESC.2001.954206, ISBN 978-0-7803-7067-8, XP010559317. |
English Translation of Office Action in counterpart Chinese Application No. 202080010019.8, dated Mar. 3, 2022, 11 pages. |
English Translation of Office Action in counterpart Chinese Application No. 202080010020.0, dated Mar. 3, 2022, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20200389329 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16704502 | Dec 2019 | US |
Child | 16999754 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16255657 | Jan 2019 | US |
Child | 16704502 | US |