This disclosure relates to the field of transmission systems. More particularly, the disclosure pertains to a filter assembly.
Automatic transmission fluid serves many functions in a modern automatic transmission. Pressurized fluid may be used to engage friction clutches in order to establish a power flow path with a desired speed ratio. Fluid lubricates gears and bearings. Excess heat is removed by fluid flowing over various components. When the fluid contains contaminants, it may be less effective in these functions and may cause failures such as stuck valves. Therefore, transmissions often include fluid filters.
Filters may be placed on either the inlet (low pressure) side of a transmission pump or on the outlet (high pressure) side of a transmission pump. Transmission oil filters typically contain a filtration media. The media may be pleated to increase the surface area in a limited space.
A transmission includes a filter element, a filter cover, and a filter base. The filter element has a filtration portion and an extension. The filtration portion has side walls defining a top edge and supporting filtration media. The extension is joined to the filtration portion below the filtration media. The filtration portion and the extension define an element bottom edge. A height of the extension may be less than a distance between the filter element bottom edge and a top of the filtration media. The filter cover is in contact with the top edge. The filter cover defines a filter outlet adjacent to the filtration portion. The filter cover also defines a bottom cover edge. The filter base defines a filter inlet adjacent to the extension. The filter base is sealed against the element bottom edge and the cover bottom edge, for example by a single continuous weld. An interior height of the cover may be equal to a distance between the filter element top edge and the filter element bottom edge such that the filter element bottom edge and the cover bottom edge are coplanar. A valve body may extend over the inlet and extend lower than the top edge or lower that a top of the filtration media. The transmission may be filled with transmission fluid such that, when the transmission is inclined, the inlet is below the fluid surface and the filter base adjacent to the filtration portion is above the fluid surface.
A transmission filter is assembled by placing a cover over an element and joining a base to bottom edges of the cover and of the element with a continuous sealing joint. The cover is placed over the element such that a surface of the cover defining an outlet contacts a top edge of the element to align the bottom edge of the element with a bottom edge of the cover. The element has filtration media extending a first distance above the element bottom edge. The element has an extension with a height relative to the element bottom edge less than the first distance. The base defines an inlet adjacent to the extension.
Embodiments of the present disclosure are described herein. It is to be understood, however, that the disclosed embodiments are merely examples and other embodiments can take various and alternative forms. The figures are not necessarily to scale; some features could be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention. As those of ordinary skill in the art will understand, various features illustrated and described with reference to any one of the figures can be combined with features illustrated in one or more other figures to produce embodiments that are not explicitly illustrated or described. The combinations of features illustrated provide representative embodiments for typical applications. Various combinations and modifications of the features consistent with the teachings of this disclosure, however, could be desired for particular applications or implementations.
Some engine power is diverted to drive transmission pump 20. Transmission pump 20 draws fluid from sump 22, through filter 24, and delivers the fluid, at increased pressure, to valve body 26. The pressure at which fluid enters the valve body may be called line pressure. Controller 28 commands a network of control valves within the valve body to deliver fluid to torque converter and gearbox components at desired pressures less than line pressure and at desired flow rates. Fluid drains from the control valves and from the gearbox back into sump 22.
In a first assembly step, cover 42 is placed over filter element 40. Cover 42 has side walls 54 which partially define a bottom edge 56 and an extension 58 which defines the remainder of the bottom edge 56. The extension 58 is open on the bottom and closed on the top. Outlet channel 36 is formed into the top 60 of the cover. The bottom surface of the top 60 is separated from the bottom edge of the cover 56 by the distance H. Consequently, when the cover is placed over the filter element with the top edge 48 of the filter element in contact with the bottom surface of the top of the cover, the bottom edges 50 and 56 of the filter element and the cover respectively are aligned.
In a second assembly step, the filter element and the cover are placed on the base 44. The bottom edges 50 and 56 of the filter element and the cover respectively fit tightly against the flat top surface 62 of the base. In a third assembly step, heat is applied to a bottom surface of the base opposite the bottom edges 50 and 56 of the filter element and the cover. This heat momentarily melts the plastic. When the plastic re-hardens, the bottom edges of the filter element and the cover become welded to the base. The heat is applied around the full perimeter to form a continuous weld 64 (visible in
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms encompassed by the claims. The words used in the specification are words of description rather than limitation, and it is understood that various changes can be made without departing from the spirit and scope of the disclosure. As previously described, the features of various embodiments can be combined to form further embodiments of the invention that may not be explicitly described or illustrated. While various embodiments could have been described as providing advantages or being preferred over other embodiments or prior art implementations with respect to one or more desired characteristics, those of ordinary skill in the art recognize that one or more features or characteristics can be compromised to achieve desired overall system attributes, which depend on the specific application and implementation. As such, embodiments described as less desirable than other embodiments or prior art implementations with respect to one or more characteristics are not outside the scope of the disclosure and can be desirable for particular applications.
This application is a continuation of U.S. application Ser. No. 15/075,798 filed Mar. 22, 2016, the disclosure of which is hereby incorporated in its entirety by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 15075798 | Mar 2016 | US |
Child | 16706156 | US |