Transmission resource allocation by splitting physical resource blocks

Information

  • Patent Grant
  • 11324008
  • Patent Number
    11,324,008
  • Date Filed
    Tuesday, August 14, 2018
    6 years ago
  • Date Issued
    Tuesday, May 3, 2022
    2 years ago
Abstract
Methods, systems and devices for providing transmission resources that achieve transmission diversity while reducing pilot signal overhead are described. An exemplary wireless communication method may be implemented in a wireless communication system in which transmission resources are allocated on a per physical resource block (PRB) basis, where a PRB corresponds to a two dimensional resource pattern comprising a first number of subcarriers along a frequency dimension and a second number time slots along a time dimension. The method includes logically dividing subcarriers in each PRB into an integer number of sub-groups of subcarriers, wherein the integer number is greater than one, allocating, to a transmission, transmission resources corresponding to one or more of the sub-groups of subcarriers, performing the transmission in the wireless communication system.
Description
TECHNICAL FIELD

The present document relates to wireless communication, and more particularly, transmission resource allocation in wireless communication systems.


BACKGROUND

Due to an explosive growth in the number of wireless user devices and the amount of wireless data that these devices can generate or consume, current wireless communication networks are fast running out of bandwidth to accommodate such a high growth in data traffic and provide high quality of service to users.


Various efforts are underway in the telecommunication industry to come up with next generation of wireless technologies that can keep up with the demand on performance of wireless devices and networks.


SUMMARY

This document discloses techniques for providing transmission resources that achieve transmission diversity while reducing pilot signal overhead.


In one example aspect, a wireless communications method is disclosed. The method may be implemented in a wireless communication system in which transmission resources are allocated on a per physical resource block (PRB) basis, where a PRB corresponds to a two dimensional resource pattern comprising a first number of subcarriers along a frequency dimension and a second number time slots along a time dimension. The method includes logically dividing subcarriers in each PRB into an integer number of sub-groups of sub-carriers, wherein the integer number is greater than one, allocating, to a transmission, transmission resources corresponding to one or more of the sub-groups of subcarriers, performing the transmission in the wireless communication system.


In yet another example aspect, a method of wireless communication, implemented in a wireless communication system in which transmission resources are allocated on a per physical resource block (PRB) basis, where a PRB corresponds to a two dimensional resource pattern comprising a first number of subcarriers along a frequency dimension and a second number time slots along a time dimension, is disclosed. The method includes receiving a transmission on a wireless channel, and demodulating signals occupying sub-groups of subcarriers corresponding to one of a sub-group of subcarriers in which each PRB is logically divided, wherein each PRB is logically divided into an integer number of sub-groups of sub-carriers, wherein the integer number is greater than one.


In another example aspect, a wireless communication apparatus comprising a processor that implements the above-described methods is disclosed.


In yet another example aspect, the method may be embodied as processor-executable code and may be stored on a computer-readable program medium.


These, and other, features are described in this document.





DESCRIPTION OF THE DRAWINGS

Drawings described herein are used to provide a further understanding and constitute a part of this application. Example embodiments and illustrations thereof are used to explain the technology rather than limiting its scope.



FIG. 1 shows an example of a resource allocation to physical resource blocks.



FIG. 2 shows illustrates an example of supporting orthogonal time frequency space (OTFS) signals in the resource allocation pattern of FIG. 1.



FIG. 3 is a flowchart representation of an example of a wireless communication method.



FIG. 4 is a flowchart representation of another example method of wireless communication.



FIG. 5 shows an example of a wireless transceiver apparatus.



FIG. 6 shows an example communication network.





DETAILED DESCRIPTION

To make the purposes, technical solutions and advantages of this disclosure more apparent, various embodiments are described in detail below with reference to the drawings. Unless otherwise noted, embodiments and features in embodiments of the present document may be combined with each other.


Section headings are used in the present document to improve readability of the description and do not in any way limit the discussion or the embodiments to the respective sections only. Furthermore, the term “technique” may refer to a method, and apparatus or a computer program product on which executable code is stored.


In the Long Term Evolution (LTE) and third generation partnership project (3GPP) New Radio (NR), the allocation of resources for data transmissions is done using Physical Resource Blocks (PRBs). A PRB is a logical grouping, defined as 12 consecutive subcarriers by N OFDM symbols. In LTE, N=14 when using a normal cyclic prefix (CP) and 12 when using extended CP. In NR, N can be any number from 2 to 14. The PRB is the smallest allocation size, and additional resources are assigned as multiple contiguous PRBs. When the size of the data to be transmitted is small, a small number of PRBs may be allocated for the transmission. In LTE, such a small or limited allocation of bandwidth corresponds to a small frequency bandwidth. As a result, the transmission of the small packets may not use or exploit the full diversity of the channel.


This document discloses a new approach for partitioning the entire frequency band into PRBs of similar sizes as the LTE PRB. Among other features, this new approach extracts more channel diversity without increasing the overhead of the channel acquisition, and as a result can increase the overall channel throughput. For example, for short transmissions that may occupy only half of the frequency band in a traditional LTE system, the corresponding transmission may be spread over the entire frequency band by allocation transmissions to the transmission of the signal using PRBs of half the size as the traditional system.


Examples of Split PRBs


Using the size of the LTE/NR PRBs, in some embodiments, the PRB can be split into K smaller group, or sub-groups, of subcarriers. The number K is an integer and may represent split level or split count of the PRB. The smaller groups can be equally distributed along the frequency band allocated for the channel. This type of a PRB may be called a Split PRB (S-PRB). In one embodiment K=3. In other embodiments, K can be equal to 2, 4, 6, or 12. In some embodiments, the size of the PRB may be different than 12 subcarriers, and other values of K may be used. An example of a S-PRB of 12 subcarriers with N=14, and K=3 occupying a 10 MHz channel is shown in FIG. 1.



FIG. 1 shows an example of a resource allocation grid 100 in which resources are allocated to transmissions based on split physical resource blocks. The depicted embodiment example uses S-PRB with K=3 equally spread over a band with 600 subcarriers, supporting 4 demodulation reference signals (DM-RSs). The horizontal axis represents time slots making up a PRB. The vertical axis represents the frequency dimension, with each resource element representing a given subcarrier and a given time slot of the resource allocation grid 100.



FIG. 1 shows the first of 50 S-PRBs that cover the whole band. The first subcarrier group occupies subcarriers 0, 1, 2, 3, 200, 201, 202, 203 . . . 400, 401, 402, 403. The second group of S-PRBs will occupy subcarriers 4, 5, 6, 7, 204, 205, 206, 207, 404, 405, 406, 407. The 50th S-PRB will occupy subcarriers 196, 197, 198, 199, 396, 397, 308, 139, 596, 597, 598, 599. The assignment of S-PRBs as shown in FIG. 1 enables the receiver to extract more of the frequency diversity of the channel compared to the LTE or NR PRB. In some embodiments, when a transmission requires multiple PRBs, the additional S-PRBs can be allocated contiguously. In some embodiments, the allocation could be non-contiguous, e.g. in a pattern that spreads all the allocated S-PRBs along the band equally as much as possible to better extract the channel diversity.


In some embodiments, for a transmission with 4 layers, 4 demodulation reference signals (DM-RSs)—one per antenna port—are transmitted. This is typically implemented in NR using 1 OFDM symbol. When using S-PRBs with K=3, one RE for each antenna port can be assigned to a DMRS in each of the S-PRB sub-sections. In one advantageous aspect, this will allow the estimation of the 4 channels in each of the sub-blocks of S-PRBs without increasing the overhead of the RSs.


The S-PRB structure can be used to support any waveform, including orthogonal frequency division multiplexing OFDM, orthogonal time frequency space OTFS, and OTFS-D. OTFS represents a modulation scheme in which signals are represented in a two dimensional representation along delay-Doppler axis. A symplectic transform may be used for converting signals between delay-Doppler representation and the traditional time-frequency domain representation. Using OTFS, signals representing data and pilots may be allocated along the delay-Doppler plain, and may be converted into time domain signals by transforming using a symplectic Fourier transform.


When using OTFS and S-PRBs of size 12 subcarriers with K=3, each S-PRB may be divided into 4 OTFS frames. This may be done by allocating the ith row of each S-PRB section to form an OTFS frame (i=0 to K−1). As an example, if a particular transmission is allocated one S-PRB in a configuration with K=3, the data may be split into 4 pieces, and 4 OTFS frames may be transmitted occupying the REs. This example is illustrated in the resource pattern grid 250 example depicted in FIG. 2 which also shows different pilot positions than that of FIG. 2. When a transmission is allocated M PRBs, the total number of OTFS frames used for that transmission will be 4×M. Therefore, FIG. 2 shows an example of OTFS frames when using S-PRBs spread equally along frequency, with 4 DM-RSs and a single PRB allocation. In FIG. 2, each of the colored rows (e.g., rows 252, rows 254, rows 256 and rows 258) represent one OTFS frame.


When using OTFS-D, one OTFS-D frame can cover all the allocated S-PRBs regardless of how they are assigned, and regardless of how many and where the DM-RSs (or other reference signals) are located within each S-PRB.


In some embodiments, the S-PRB scheme may be fixed a priori and used throughout the life of a wireless system. Alternatively, in some embodiments, a technique may be provided to update the S-PRB scheme (or not using S-PRB at all) on a dynamic basis by signaling from the base station to user devices. For example, when the number of legacy devices in a network is above a threshold, or a percent threshold, the legacy PRB scheme may be used (e.g., 12 or 14 subcarriers). When the number of new user devices that are able to receive transmissions using the S-PRB increases beyond a certain percent, then the base station may begin to transmit messages using S-PRB allocation. This change may be indicated to the user device by transmission of an upper layer message. Alternatively, or in addition, the base station may logically divide the available bandwidth into a first portion for supporting communication to/from legacy devices and a second portion for communicating with new devices that implement the S-PRB mechanism. The base station's logical partitioning of the available bandwidth need not be communicated to the user devices because each user device will perform its receptions and transmissions based on allocated resources, without needing to know how the bandwidth is grouped into multiple logical groups by the base station.


In some embodiments, the use of S-PRB may be dependent on the channel characteristics. For example, when a channel frequency response is relatively flat over the entire frequency band, S-PRBs may not be used. When the channel frequency response becomes variable within the allocated frequency band, S-PRBs may be used to that each data transmission (especially small data packets) gets spread over a larger portion of the frequency band and becomes more robust.



FIG. 3 shows a flowchart of an example method 300 of wireless communication. The method 300 may be implemented by a base station in a wireless communication system in which transmission resources are allocated on a per physical resource block (PRB) basis. As described herein, a PRB corresponds to a two dimensional resource pattern comprising a first number of subcarriers along a frequency dimension and a second number time slots along a time dimension.


The method 300 includes logically dividing (310) subcarriers in each PRB into an integer number of sub-groups of sub-carriers, wherein the integer number is greater than one.


The method 300 further includes allocating (320), to a transmission, transmission resources corresponding to one or more of the sub-groups of subcarriers (also called sub-carriers).


The method 300 includes performing (330) the transmission in the wireless communication system. The wireless communication system may include a base station and one or more wireless terminals that are wirelessly communicating with the base station. The transmission is performed by radiating a signal over a wireless channel between the base station and the one or more wireless terminals. As disclosed throughout the document, the transmission may use an OTFS scheme in which an OTFS frame (delay-Doppler domain unit) may be assigned a subcarrier in each sub-group. Alternatively, dispersed OTFS may be used for performing the transmission. Alternatively, OFDM may be used for performing the transmission.


A dispersed OTFS modulation transmission may operate by replacing the physical delay-Doppler domain with a virtual domain named “Spread domain”. This domain is may not be physically reciprocal to the time-frequency domain. Constellation symbols in this domain are converted to different symbols using an invertible transform and placed on non-regular resources in the time-frequency grid.


In some embodiments, the subcarriers in each group may be contiguous (e.g., FIG. 1 and FIG. 2). In some embodiments, the subcarriers in each group may be non-contiguous. The non-contiguous occurrence may be periodic or may be randomly placed along frequency domain. During operation, the transmission may be that of data, a control message, a system message or a reference signal or all of the above.


In some embodiments, the base station may determine the integer number of sub-groups based on a run-time condition of the wireless communication system. For example, when the run-time condition is such that at least one legacy wireless device is operating in the system, then the base station may perform a logical partition of the entire available resource pool such that one partition may use PRBs in the legacy manner while another partition may use the S-PRB technique disclosed in the present document. For example, in some embodiments, the run-time condition may relate to the estimate of channel characteristics such as variations in the channel response over the entire bandwidth. For example, the run-time condition may relate to the number of bits of message transmission. For example, for short, bursty transmissions, the base station may use S-PRB. Here, short or bursty transmissions may for example have duty cycles of between 1 to 10 percent of transmission time.


In some implementations, the integer number may be communicated, via an over the air transmission, to the user devices or terminals. This communication may be a higher layer message sent to the user device. Alternatively, the integer number may be programmed into the user device based on a pre-defined algorithm or rule.


In some embodiments, one of the reference signal transmitted may be a demodulation reference signal (DM-RS).



FIG. 4 shows flowchart for an example method 400 of receiving signals in a wireless communication system in which transmission resources are allocated on a per physical resource block (PRB) basis, where a PRB corresponds to a two dimensional resource pattern comprising a first number of subcarriers along a frequency dimension and a second number time slots along a time dimension. The method 400 includes receiving (410) a transmission on a wireless channel, and demodulating (420) signals occupying sub-groups of subcarriers corresponding to one of a sub-group of subcarriers in which each PRB is logically divided, wherein each PRB is logically divided into an integer number of sub-groups of sub-carriers, wherein the integer number is greater than one.


In addition to the above described steps, various embodiments of the method 400 may include transmission of reference signals, data signals, system message signals or control signals, the use of non-contiguous bandwidth, and so on. Other features of the method 400 are similar to the description provided for the method 300.


The methods 300 or 400 may be implemented in a system that uses an OFDM modulation scheme, an OFDM-A modulation scheme, an OTFS transform based scheme or a dispersed OTFS transform based transmission signal.



FIG. 5 shows an example of a wireless transceiver apparatus 500. The apparatus 500 may be used to implement various techniques described herein (including, but not limited to, methods 300 and 400. The apparatus 500 includes a processor 502, a memory 504 that stores processor-executable instructions and data during computations performed by the processor. The apparatus 500 includes reception and/or transmission circuitry 506, e.g., including radio frequency operations for receiving or transmitting signal and/or receiving data or information bits for transmission over a wireless network.



FIG. 6 shows an example communication network 600 in which the disclosed technologies can be implemented. The network 600 may include a base station transmitter that transmits wireless signals s(t) (downlink signals) to one or more receivers 602, the received signal being denoted as r(t), which may be located in a variety of locations, including inside or outside a building and in a moving vehicle. The receivers may transmit uplink transmissions to the base station, typically located near the wireless transmitter. The technology described herein may be implemented at a receiver 602 or at the transmitter (e.g., a base station).


It will be appreciated that techniques for splitting a PRB into smaller integer number of groups is disclosed. Using the disclosed technique, frequency diversity of a channel can be exploited to the advantage of performance of the network.


The disclosed and other embodiments, modules and the functional operations described in this document can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them. The disclosed and other embodiments can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus. The computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them. The term “data processing apparatus” encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. The apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them. A propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus.


A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a standalone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.


The processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).


Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random access memory or both. The essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such devices. Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.


While this patent document contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.


Only a few examples and implementations are disclosed. Variations, modifications, and enhancements to the described examples and implementations and other implementations can be made based on what is disclosed.

Claims
  • 1. In a wireless communication system in which transmission resources are allocated on a per physical resource block (PRB) basis, where a PRB corresponds to a two-dimensional resource pattern comprising a first number of subcarriers along a frequency dimension and a second number time slots along a time dimension, a wireless communication method implemented by a base station, the method comprising: logically dividing subcarriers in each PRB into an integer number of sub-groups of sub-carriers, wherein the integer number is greater than one;allocating, to a transmission comprising signals, transmission resources corresponding to one or more of the sub-groups of subcarriers, wherein the signals are assigned according to delay-Doppler domain units; andperforming the transmission in the wireless communication system.
  • 2. The method of claim 1 wherein subcarriers in each sub-group are contiguous.
  • 3. The method of claim 1, wherein the signals comprise a data signal, a control signal, a system message signal, or a reference signal.
  • 4. The method of claim 1, wherein the integer number of sub-groups is determined using a run-time condition of the wireless communication system, wherein run-time condition comprises at least one of a number of legacy user devices operating in the wireless communication system, characteristics of a channel over which the transmission is performed, and length of data transmitted over the transmission.
  • 5. The method of claim 1, wherein the performing the transmission comprises performing transmission using an orthogonal time frequency space (OTFS) scheme, and wherein each subcarrier in each sub-group is assigned to a different OTFS frame.
  • 6. The method of claim 1, wherein the receiving the transmission comprises receiving the signals modulated using a dispersed orthogonal time frequency space (D-OTFS) scheme, and wherein each subcarrier in each sub-group is assigned to a different D-OTFS frame.
  • 7. In a wireless communication system in which transmission resources are allocated on a per physical resource block (PRB) basis, where a PRB corresponds to a two-dimensional resource pattern comprising a first number of subcarriers along a frequency dimension and a second number time slots along a time dimension, a wireless communication method implemented by a wireless terminal, the method comprising: receiving, on a wireless channel, a transmission comprising signals, wherein the signals are assigned according to delay-Doppler domain units; anddemodulating the signals occupying sub-groups of subcarriers corresponding to one of a sub-group of subcarriers in which each PRB is logically divided,wherein each PRB is logically divided into an integer number of sub-groups of sub-carriers, wherein the integer number is greater than one.
  • 8. The method of claim 7 wherein subcarriers in each sub-group are contiguous.
  • 9. The method of claim 7, wherein the signals comprise a data signal, a control signal, a system message signal, or a reference signal.
  • 10. The method of claim 7, wherein the integer number of sub-groups is determined using a run-time condition of the wireless communication system.
  • 11. The method of claim 10, wherein run-time condition comprises at least one of a number of legacy user devices operating in the wireless communication system, characteristics of a channel over which the transmission is performed, and length of data transmitted over the transmission.
  • 12. The method of claim 7, wherein the receiving the transmission comprises receiving the signals modulated using an orthogonal time frequency space (OTFS) scheme, and wherein each subcarrier in each sub-group is assigned to a different OTFS frame.
  • 13. A wireless signal transmission apparatus comprising a memory, a processor and transmission circuitry, the apparatus configured to implement a method in a wireless communication system in which transmission resources are allocated on a per physical resource block (PRB) basis, where a PRB corresponds to a two-dimensional resource pattern comprising a first number of subcarriers along a frequency dimension and a second number time slots along a time dimension, the method comprising: receiving, a transmission on a wireless channel, a transmission comprising signals, wherein the signals are assigned according to delay-Doppler domain units; anddemodulating the signals occupying sub-groups of subcarriers corresponding to one of a sub-group of subcarriers in which each PRB is logically divided,wherein each PRB is logically divided into an integer number of sub-groups of sub-carriers, wherein the integer number is greater than one.
  • 14. The apparatus of claim 13, wherein subcarriers in each sub-group are contiguous.
  • 15. The apparatus of claim 13, wherein the integer number of sub-groups is determined using a run-time condition of the wireless communication system, wherein run-time condition comprises at least one of a number of legacy user devices operating in the wireless communication system, characteristics of a channel over which the transmission is performed, and length of data transmitted over the transmission.
  • 16. The apparatus of claim 13, wherein the receiving the transmission comprises receiving the signals modulated using an orthogonal time frequency space (OTFS) scheme, and wherein each subcarrier in each sub-group is assigned to a different OTFS frame.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent document is a 371 National Phase Application of PCT Application No. PCT/US2018/046745 entitled “TRANSMISSION RESOURCE ALLOCATION BY SPLITTING PHYSICAL RESOURCE BLOCKS” filed on Aug. 14, 2018 which claims priority to and benefits of U.S. Provisional Patent Application No. 62/545,398, entitled “TRANSMISSION RESOURCE ALLOCATION BY SPLITTING PHYSICAL RESOURCE BOOKS [BLOCKS],” filed on 14 Aug. 2017. The entire content of the before-mentioned patent application is incorporated by reference as part of the disclosure of this patent document.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/046745 8/14/2018 WO 00
Publishing Document Publishing Date Country Kind
WO2019/036492 2/21/2019 WO A
US Referenced Citations (177)
Number Name Date Kind
4754493 Coates Jun 1988 A
5083135 Nagy et al. Jan 1992 A
5182642 Gersdorff et al. Jan 1993 A
5623511 Bar-David et al. Apr 1997 A
5831977 Dent Nov 1998 A
5872542 Simons et al. Feb 1999 A
5956624 Hunsinger et al. Sep 1999 A
6212246 Hendrickson Apr 2001 B1
6289063 Duxbury Sep 2001 B1
6356555 Rakib et al. Mar 2002 B1
6388621 Lynch May 2002 B1
6426983 Rakib et al. Jul 2002 B1
6608864 Strait Aug 2003 B1
6631168 Izumi Oct 2003 B2
6704366 Combes et al. Mar 2004 B1
6956814 Campanella Oct 2005 B1
7010048 Shattil Mar 2006 B1
7327812 Auer Feb 2008 B2
7392018 Ebert et al. Jun 2008 B1
7689049 Monro Mar 2010 B2
7773685 Tirkkonen et al. Aug 2010 B2
7864877 Hottinen Jan 2011 B2
8229017 Lee et al. Jul 2012 B1
8259845 Dent Sep 2012 B2
8401131 Fety et al. Mar 2013 B2
8547988 Hadani et al. Oct 2013 B2
8619892 Vetter et al. Dec 2013 B2
8717210 Eldar et al. May 2014 B2
8879378 Rakib et al. Nov 2014 B2
8892048 Turner Nov 2014 B1
8976851 Hadani et al. Mar 2015 B2
9031141 Hadani et al. May 2015 B2
9071285 Hadani et al. Jun 2015 B2
9071286 Hadani et al. Jun 2015 B2
9083483 Rakib et al. Jul 2015 B1
9083595 Rakib et al. Jul 2015 B2
9130638 Hadani et al. Sep 2015 B2
9282528 Hashimoto Mar 2016 B2
9294315 Hadani et al. Mar 2016 B2
9444514 Hadani et al. Sep 2016 B2
9548840 Hadani et al. Jan 2017 B2
9553984 Krause et al. Jan 2017 B2
9590779 Hadani et al. Mar 2017 B2
9634719 Rakib et al. Apr 2017 B2
9660851 Hadani et al. May 2017 B2
9668148 Hadani et al. May 2017 B2
9712354 Hadani et al. Jul 2017 B2
9729281 Hadani et al. Aug 2017 B2
20010031022 Petrus et al. Oct 2001 A1
20010033614 Hudson Oct 2001 A1
20010046205 Easton et al. Nov 2001 A1
20020001308 Heuer Jan 2002 A1
20020034191 Shattil Mar 2002 A1
20020181388 Jain et al. Dec 2002 A1
20020181390 Mody et al. Dec 2002 A1
20020181607 Izumi Dec 2002 A1
20030073464 Giannakis et al. Apr 2003 A1
20030185295 Yousef Oct 2003 A1
20030235147 Walton et al. Dec 2003 A1
20040044715 Aldroubi et al. Mar 2004 A1
20040174812 Murakami et al. Sep 2004 A1
20040189581 Sako et al. Sep 2004 A1
20040218523 Varshney et al. Nov 2004 A1
20050157778 Trachewsky et al. Jul 2005 A1
20050157820 Wongwirawat et al. Jul 2005 A1
20050180517 Abe Aug 2005 A1
20050207334 Hadad Sep 2005 A1
20050251844 Martone et al. Nov 2005 A1
20060008021 Bonnet Jan 2006 A1
20060039270 Strohmer et al. Feb 2006 A1
20070014272 Palanki et al. Jan 2007 A1
20070038691 Candes et al. Feb 2007 A1
20070078661 Sriram et al. Apr 2007 A1
20070104283 Han et al. May 2007 A1
20070110131 Guess et al. May 2007 A1
20070211952 Faber et al. Sep 2007 A1
20070237181 Cho et al. Oct 2007 A1
20070253465 Muharemovic et al. Nov 2007 A1
20070253504 Hasegawa Nov 2007 A1
20080043857 Dias et al. Feb 2008 A1
20080117999 Kadous et al. May 2008 A1
20080186843 Ma et al. Aug 2008 A1
20080187062 Pan et al. Aug 2008 A1
20080232504 Ma et al. Sep 2008 A1
20080310383 Kowalski Dec 2008 A1
20090080403 Hamdi Mar 2009 A1
20090092259 Jot et al. Apr 2009 A1
20090103593 Bergamo Apr 2009 A1
20090122854 Zhu et al. May 2009 A1
20090161804 Chrabieh et al. Jun 2009 A1
20090204627 Hadani Aug 2009 A1
20090222226 Baraniuk et al. Sep 2009 A1
20090303961 Popovic et al. Dec 2009 A1
20100001901 Baraniuk et al. Jan 2010 A1
20100008432 Kim et al. Jan 2010 A1
20100027608 Priotti Feb 2010 A1
20100111138 Hosur et al. May 2010 A1
20100142476 Jiang et al. Jun 2010 A1
20100187914 Rada et al. Jul 2010 A1
20100238787 Guey Sep 2010 A1
20100277308 Potkonjak Nov 2010 A1
20100303136 Ashikhmin et al. Dec 2010 A1
20100322349 Lee et al. Dec 2010 A1
20110007789 Garmany Jan 2011 A1
20110110532 Svendsen May 2011 A1
20110116489 Grandhi May 2011 A1
20110116516 Hwang et al. May 2011 A1
20110126071 Han et al. May 2011 A1
20110131463 Gunnam Jun 2011 A1
20110216808 Tong et al. Sep 2011 A1
20110286502 Adachi et al. Nov 2011 A1
20110287778 Levin et al. Nov 2011 A1
20110292971 Hadani et al. Dec 2011 A1
20110293030 Rakib et al. Dec 2011 A1
20110299379 Sesia et al. Dec 2011 A1
20110305267 Riu et al. Dec 2011 A1
20120021769 Lindoff et al. Jan 2012 A1
20120051457 Ma et al. Mar 2012 A1
20120140716 Baldemair et al. Jun 2012 A1
20120170684 Yim et al. Jul 2012 A1
20120201322 Rakib et al. Aug 2012 A1
20120213098 Sun Aug 2012 A1
20120235795 Liao et al. Sep 2012 A1
20120269201 Atungsiri et al. Oct 2012 A1
20120272117 Stadelmeier et al. Oct 2012 A1
20120320994 Loghin et al. Dec 2012 A1
20130021977 Yang et al. Jan 2013 A1
20130058390 Haas et al. Mar 2013 A1
20130077579 Cho et al. Mar 2013 A1
20130083661 Gupta et al. Apr 2013 A1
20130121497 Smaragdis et al. May 2013 A1
20130230010 Kim et al. Sep 2013 A1
20130260787 Hashimoto Oct 2013 A1
20130279627 Wu et al. Oct 2013 A1
20130315133 Wang et al. Nov 2013 A1
20140143639 Loghin et al. May 2014 A1
20140161154 Hadani et al. Jun 2014 A1
20140169385 Hadani et al. Jun 2014 A1
20140169406 Hadani et al. Jun 2014 A1
20140169433 Hadani et al. Jun 2014 A1
20140169436 Hadani et al. Jun 2014 A1
20140169437 Hadani et al. Jun 2014 A1
20140169441 Hadani et al. Jun 2014 A1
20140247803 Arambepola et al. Sep 2014 A1
20140348252 Siohan et al. Nov 2014 A1
20140364128 Lee et al. Dec 2014 A1
20150117395 Hadani et al. Apr 2015 A1
20150326273 Rakib et al. Nov 2015 A1
20150327085 Hadani et al. Nov 2015 A1
20150382231 Jabbar et al. Dec 2015 A1
20160043835 Hadani et al. Feb 2016 A1
20160135132 Donepudi et al. May 2016 A1
20160182269 Hadani et al. Jun 2016 A1
20160191217 Hadani et al. Jun 2016 A1
20160191280 Hadani et al. Jun 2016 A1
20160254889 Shattil Sep 2016 A1
20160277225 Frenne et al. Sep 2016 A1
20160309345 Tehrani et al. Oct 2016 A1
20160380743 Rakib Dec 2016 A1
20160381576 Hadani et al. Dec 2016 A1
20170012749 Rakib et al. Jan 2017 A1
20170012810 Rakib et al. Jan 2017 A1
20170019297 Rakib Jan 2017 A1
20170033899 Rakib et al. Feb 2017 A1
20170040711 Rakib et al. Feb 2017 A1
20170078054 Hadani et al. Mar 2017 A1
20170099122 Hadani et al. Apr 2017 A1
20170099607 Hadani et al. Apr 2017 A1
20170134129 You May 2017 A1
20170149594 Rakib et al. May 2017 A1
20170149595 Rakib et al. May 2017 A1
20170201354 Hadani et al. Jul 2017 A1
20170207817 Hadani et al. Jul 2017 A1
20170222700 Hadani et al. Aug 2017 A1
20170230215 Rakib et al. Aug 2017 A1
20170244524 Hadani et al. Aug 2017 A1
20200100316 Liu Mar 2020 A1
Foreign Referenced Citations (18)
Number Date Country
1235720 Nov 1999 CN
101682316 Mar 2010 CN
101939935 Jan 2011 CN
1432168 Jun 2004 EP
2011127910 Jun 2011 JP
2007004297 Jan 2007 WO
2011137699 Nov 2011 WO
2011150315 Dec 2011 WO
2013148546 Oct 2013 WO
2014004585 Jan 2014 WO
2016014596 Jan 2016 WO
2016014598 Jan 2016 WO
2016176642 Nov 2016 WO
2016183230 Nov 2016 WO
2016183240 Nov 2016 WO
2016209848 Dec 2016 WO
2017003952 Jan 2017 WO
2017011478 Jan 2017 WO
Non-Patent Literature Citations (69)
Entry
Office Action for U.S. Appl. No. 13/117,119, dated Aug. 5, 2013, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/117,119, dated Feb. 28, 2014, 13 pages.
Banelli, P. et al., “Modulation Formats and Waveforms for 5G Networks: Who Will Be the Heir of OFDM?,” IEEE Signal Processing Magazine, vol. 81, pp. 80-93, Nov. 2014.
El Hattachi, R. et al., “NGMN 5G Initiative White Paper,” NGMN Alliance, Feb. 17, 2015. [Online]. Available: https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf, 125 pages.
Rusek, F. et al., “Scaling Up MIMO, Opportunities and Challenges with Very Large Arrays,” IEEE Signal Processing Magazine, pp. 40-60 (2013).
Vodafone, “Cellular Internet of Things: Architectural Aspects,” RP-150869, 3GPP RAN#68, Malmo, Sweden (Jun. 9, 2015), 19 pages.
Supplementary European Search Report for European Application No. 11787483.4, dated Sep. 9, 2014, 6 pages.
International Search Report and Written Opinion for International Application No. PCT/US2011/038302, dated Nov. 15, 2011, 8 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2011/038302, dated Dec. 4, 2012, 7 pages.
Office Action for U.S. Appl. No. 13/117,124, dated Feb. 22, 2013, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/117,124, dated Aug. 8, 2013, 10 pages.
Office Action for U.S. Appl. No. 14/605,957, dated Jun. 22, 2017, 6 pages.
Supplementary European Search Report for European Application No. 13809004.8, dated Apr. 14, 2016, 8 pages.
Communication Pursuant to Article 94(3) EPC for European Application No. 13809004.8, dated Feb. 17, 2017, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/927,087, dated Feb. 25, 2015, 9 pages.
Office Action for U.S. Appl. No. 13/927,087, dated Nov. 12, 2014, 14 pages.
Gurevich, S. et al. “Group Representation Design of Digital Signals and Sequences,” S.W. Golomb et al. (eds.), SETA 2008, LNCS 5203, pp. 153-166, Springer-Verlag Berlin Heidelberg (2008).
International Search Report and Written Opinion for International Application No. PCT/US2013/047723, dated Oct. 29, 2013, 17 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2013/047723, dated Dec. 31, 2014, 15 pages.
Notice of Allowance for U.S. Appl. No. 13/927,088, dated Feb. 18, 2015, 7 pages.
Office Action for U.S. Appl. No. 13/927,088, dated Nov. 28, 2014, 13 pages.
Notice of Allowance for U.S. Appl. No. 13/927,086, dated Dec. 26, 2014, 8 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 13/927,086, dated Mar. 19, 2015, 4 pages.
Office Action for U.S. Appl. No. 13/927,086, dated Oct. 14, 2014, 10 pages.
Office Action for U.S. Appl. No. 13/927,089, dated Dec. 24, 2014, 13 pages.
Office Action for U.S. Appl. No. 13/927,089, dated Aug. 14, 2015, 7 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 13/927,091, dated Jun. 11, 2015, 4 pages.
Notice of Allowance for U.S. Appl. No. 13/927,091, dated Apr. 24, 2015, 8 pages.
Office Action for U.S. Appl. No. 13/927,091, dated Jan. 27, 2015, 15 pages.
Office Action for U.S. Appl. No. 13/927,092, dated Oct. 8, 2014, 5 pages.
Notice of Allowance for U.S. Appl. No. 13/927,092, dated Oct. 24, 2014, 7 pages.
Office Action for U.S. Appl. No. 13/927,095, dated Apr. 30, 2015, 11 pages.
Office Action for U.S. Appl. No. 13/927,095, dated Nov. 4, 2015, 9 pages.
Office Action for U.S. Appl. No. 13/927,095, dated Jun. 1, 2016, 10 pages.
Office Action for U.S. Appl. No. 14/717,886, dated Apr. 19, 2016, 10 pages.
Office Action for U.S. Appl. No. 14/709,377, dated Dec. 11, 2015, 12 pages.
Office Action for U.S. Appl. No. 14/709,377, dated Jul. 13, 2016, 17 pages.
Examination Report No. 1 for Australian Application No. 2013239970, dated Dec. 8, 2015, 3 pages.
“AT&T Annual Report 2014,” Opening Our Network [Online]. Retrieved from the Internet: Sep. 22, 2016. <URL: http://www.att.com/Investor/ATT_Annual/2014/att_introduces_new_concepts_for_telecom_network.html>, 5 pages.
CATT, “UL ACK/NACK transmission methods for LTE-A,” 3GPP TSG RAN WG1 Meeting #60bis, R1-102453, Beijing, China, Apr. 12-16, 2010, 8 pages.
Toskala, A. et al., “Physical Layer,” Chapter 5 In: “LTE for UMTS: OFDMA and SC-FDMA Based Radio Access,” Holma, H. et al. (eds.), John Wiley & Sons, Ltd., United Kingdom, 2009, pp. 83-135.
Mecklenbrauker, W., “A Tutorial on Non-Parametric Bilinear Time-Frequency Signal Representations,” In: Time and Frequency Representation of Signals and Systems, Longo, G. et al. (eds.), Springer-Verlag Wien, vol. 309, pp. 11-68 (1989).
Nehorai, A. et al., “MURI: Adaptive waveform design for full spectral dominance (2005-2010),” AFOSR FA9550-05-1-0443, Final Report, [online], Mar. 11, 2011 Retrieved on May 11, 2013, Retrieved from the Internet <URL: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA565420>, 103 pages.
Office Action for Japanese Application No. 2015-518647, dated Jul. 7, 2015, 10 pages.
Office Action for U.S. Appl. No. 14/754,596, dated Apr. 19, 2016, 18 pages.
Office Action for U.S. Appl. No. 14/809,129, dated Jul. 19, 2016, 5 pages.
Office Action for U.S. Appl. No. 15/617,962, dated Sep. 6, 2017, 10 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/050825, dated Feb. 8, 2017, 12 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/052524, dated Dec. 20, 2016, 8 pages.
Office Action for U.S. Appl. No. 15/374,995, dated Aug. 7, 2017, 6 pages.
International Search Report and Written Opinion for International Application No. PCT/US2017/025797, dated Jun. 21, 2017, 6 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/030259, dated Aug. 4, 2016, 13 pages.
Office Action for U.S. Appl. No. 15/152,464, dated Apr. 6, 2017, 10 pages.
Examination Report No. 1 for Australian Application No. 2013280487, dated May 2, 2016, 3 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/031928, dated Oct. 7, 2016, 10 pages.
Office Action for U.S. Appl. No. 15/188,946, dated May 8, 2017, 14 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/038584, dated Sep. 26, 2016, 8 pages.
Office Action for U.S. Appl. No. 15/187,668, dated Feb. 16, 2017, 6 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/031909, dated Aug. 11, 2016, 13 pages.
Office Action for U.S. Appl. No. 15/194,494, dated May 5, 2017, 16 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/039662, dated Nov. 29, 2016, 14 pages.
Office Action for U.S. Appl. No. 15/436,653, dated Jun. 2, 2017, 10 pages.
Office Action for U.S. Appl. No. 15/208,545, dated Aug. 21, 2017, 15 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/041940, dated Oct. 20, 2016, 8 pages.
Supplementary European Search Report for European Application No. 13768150.8, dated Oct. 30, 2015, 7 pages.
International Search Report and Written Opinion for International Application No. PCT/US2013/033652, dated Jun. 12, 2013, 8 pages.
International Search Report and Written Opinion for International Application No. PCT/US2015/041417, dated Oct. 1, 2015, 7 pages.
Office Action for U.S. Appl. No. 14/805,407, dated Dec. 14, 2016, 7 pages.
International Search Report and Written Opinion for International Application No. PCT/US2015/041420, dated Oct. 1, 2015, 6 pages.
Related Publications (1)
Number Date Country
20200367252 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
62545398 Aug 2017 US