Transmission synchronizing system, in particular, in the form of a servo synchronizing system

Abstract
The invention relates to a synchronization piece which, as part of a servo synchronization system comprising a sliding sleeve, a clutch body, a synchronizer ring and an idler gear, can synchronize a transmission having toothed wheel gears. The invention furthermore relates to an entire synchronizing system having a synchronization piece according to the invention. A full-servo synchronization system is also presented.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be even better understood through reference to the following figures, wherein:



FIG. 1 shows a first exemplary embodiment of a pressure piece according to the invention;



FIGS. 2 and 3 show an alternative exemplary embodiment of a pressure piece according to the invention;



FIG. 4 shows the engagement of a pressure piece in the synchronizer ring;



FIG. 5 shows an alternative design of a pressure piece according to the invention, as a sheet metal piece;



FIG. 6 shows an alternative pressure piece functioning as a full-servo pressure piece;



FIG. 7 shows a further alternative of a pressure piece according to the invention, with an enhanced unblocking angle;



FIG. 8 shows a possible rearrangement of a pressure piece according to FIG. 7;



FIGS. 9 to 11 show a further alternative of a pressure piece according to the invention, from different perspectives;



FIGS. 12 to 14 show a further alternative of a pressure piece according to the invention, from different perspectives;



FIGS. 15 and 16 show a pressure piece fitted beneath a synchronizer sleeve;



FIG. 17 shows a pressure piece fitted beneath a gear-change sleeve;



FIG. 18 shows a swiveled-in pressure piece in operation;



FIG. 19 shows a further form of engagement in a synchronizer ring;



FIG. 20 shows a further engagement in a synchronizer ring;



FIG. 21 shows a further engagement in a synchronizer ring;



FIG. 22 shows an integrated pressure piece in a sectioned synchronization unit;



FIG. 23 shows a pressure piece in a domed design;



FIG. 24 shows an alternative of a further pressure piece in a domed design;



FIG. 25 shows a pressure piece in a domed design in an integrated state;



FIG. 26 shows the domed contact point between the pressure piece and a synchronizer ring;



FIG. 27 shows a pressure piece with detent element;



FIG. 28 shows a swiveled-in pressure piece according to FIG. 27;



FIG. 29 shows an integrated pressure piece with detent element;



FIG. 30 shows a longitudinally movable pressure piece with detent element;



FIGS. 31 to 34 show a pressure piece according to the invention in the neutral position, from different viewing angles;



FIGS. 35 to 38 show a pressure piece according to the invention in the blocking phase; and



FIG. 39 shows a 3D representation of the structure, with a plurality of pressure pieces according to the invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows a pressure piece 50 according to the invention in swivel motion in the synchronizer hub 27, the individual contours of the pressure piece having been reduced to such an extent that particularly notable regions 61, 63, 65, 67 and 55, 57 can become apparent. As is known, a transmission synchronization system 1 according to a usual design is constructed with an idler gear 29, a first outer synchronization ring 9 having an appropriate number of stop teeth 41, and with a shaft 31. The synchronization unit 1 in this case ensures that synchronous operation is achieved between the idler gear 29 and the shaft 31 following synchronizing-in. The synchronization operation is effected with the aid of a pressure piece 50. The pressure piece 50, of which there may also be several over the circumference in the direction of rotation U of the synchronization unit of a transmission synchronization system 1, is located in a recess 39 of the synchronizer hub 27 in such a way that it can execute swivel-motion bearing contacts with one side, in a corner region 61, 63, 65, 67. The swivel motion S is effected through horizontal offsetting in the direction of rotation U of the synchronizer hub 27. In order to achieve offsetting and bearing contact of the pressure piece 50 in the region of the recess 39 on the synchronizer hub 27, the pressure piece 50 is provided with a suitable mounting 51 in the central region 71. The mounting 51 in the central region 71 of the pressure piece 50 may be a point mounting, for example, such that a respective corner region 61, 63, 65, 67—the corner regions being distributed quadratically on the pressure piece—can be brought into bearing contact on a respective recess 39 of the hub 27 in order to effect a blocking phase PI. The pressure piece 50 therefore has at least one synchro-servo bevel 107, which may also be provided in all corner regions 61, 63, 65, 67, i.e., four bevels. The pressure piece 50 has the appearance of a block. The pressure piece 50 has a coherent region. In its middle region 71, the pressure piece 50 is more waisted than in the regions that widen out, where the corner regions 61, 63, 65, 67 are. The corner regions 61, 63, 65, 67 create transverse segments 55, 57, which are virtually at right angles α1, α2 to the longitudinal axis of the pressure piece 50. The body region of the pressure piece thus terminates in the region of the synchro-servo bevel 107; the pressure piece 50 can be continued. In its body region, the pressure piece 50 has the shape of the letter I. The pressure piece 50 which, according to one design, has a flat structure and is narrow as viewed from the side, may have continuing lugs 85. In the region of the middle 71 and in the region of the lug 85, the pressure piece 50 is narrower than in the region of the first or second transverse segment 55, 57. Starting from the middle, approximately where the mounting 51 of the pressure piece 50 is located, the pressure piece has two parallel sides which diverge from each other at bevels 107 in the end region of the body, so as to form the transverse segments 55, 57. The pressure piece 50 is of such a length that the lugs 85 project out beyond the width B of the synchronizer hub 27. The transmission synchronization system 1 has an output direction R. In a neutral position, the central axis of the pressure piece coincides, in parallel direction, with the output direction R. During the blocking phase PI represented, the pressure piece 50, through the swivel motion S, swivels out of this direction and departs from the central axis Z. In this case, the pressure piece 50 makes contact with the synchronizer hub 27 via the synchro-servo bevel 107. Through a swivel motion which follows the drive shaft in the direction of rotation, the pressure piece 50 is thus able, in its recess, to convert and utilize the torque from the rotary motion of the transmission, advantageously amplifying it during synchronizing-on from the synchro-servo bevel 107 to an extremity 85.



FIGS. 2 and 3 show an alternative embodiment of a substantially I-shaped pressure piece 150, once in the blocking phase PI according to FIG. 3, and once in the neutral position PII according to FIG. 2. On both sides of the pressure piece 150 the end regions 81, 83 terminate in lugs 85. Located between the end regions 81, 83 is the middle region 71 which, however, does not occupy the entire region of the pressure piece 150; instead, the first and the second transverse segment 55, 57 are also provided between the lugs 85 and the middle region 71. In the middle region 71 there is a middle portion 73, which is disposed in the form of a cylinder, or about an instantaneous center of rotation 93, as a mounting region for the pressure piece 150. The pressure piece thus has an inner region 77 and an outer region 75. If the contour of the surface in the outer region 75 is traced out, a circular shape is obtained, which is adjoined by a cross shape. The pressure piece thus has the appearance of a double cross, with a cylinder underneath. The pressure piece 150 is located in the synchronizer hub 27. Since it is mounted in the region of the instantaneous center of rotation 93, the exterior of the pressure piece 150, the outside 75, is able to engage in the recess 39 of the synchronizer hub 27. The synchro-servo bevel 107, which is particularly evident in the blocking phase PI, is constituted through the synchronizer piece 150 effecting bearing contact via one of its bevels. As indicated by the arrows, as a result of the swivel motion S the pressure piece 150 moves laterally out of its output direction R, which coincides with the shaft output direction, into the direction of rotation U, and thus creates the bearing contact with servo action in one direction. The mounting of the pressure piece allows it to effect a radial motion W, in addition to a swivel motion S. The synchronizer rings 7, 11 have at least one recess 33, in which a lug 85 can engage. As is usual, the synchronizer rings 7, 11 are provided with stop teeth 41. Beneath the instantaneous center of rotation 93, for the purpose of mounting a mounting pin 53 can extend outwards, away from the center of the shaft, the pressure piece 150 being mounted on the mounting pin so as to be capable of rotary, swivel and radial motion. In a double synchronization, the recess 39 is present at the first synchronizer ring 7 and at the second synchronizer ring 11. Owing to the torque and the synchronizing operation, the pressure piece 150 moves to and fro with rotary motion between the blocking phase PI and the neutral position PII, being able to change between a position parallel to the output direction R and a displaced position.



FIG. 4 shows how the lug 85 is able to engage in one of the recesses 33, for example of the second synchronizer ring 11, and in so doing maintains a certain clearance 95 from a side of the synchronizer ring recess, as viewed in its absolute dimensions. A clearance is maintained from the side more remote from the side of the servo-synchro bevel 107 (not shown) that is used.


In FIG. 5, the pressure piece 150 represented in top view in FIGS. 2 and 3 is represented on its own, as a sheet metal embodiment; the pressure piece is a coherent sheet metal part which has attained its final form through multiple bending, bordering or edge-turning, depending on the production process performed. Viewed from the surface, the pressure piece 150 has two parallel longitudinal edges 91, which diverge in the manner of a protuberance in the region of the instantaneous center of rotation 93. The instantaneous center of rotation 93 is located in the middle portion 73 of the pressure piece 150. In the region of the end regions 81, 83, the sheet metal is bent over convexly, to form the lugs 85. The corner regions 61, 63, 65, 67 are formed by pronounced canting-off beneath the edge 91, such that the exterior 75 of the pressure piece 150 has the synchro-servo bevel 107 on the lateral surface in each case. The synchro-servo bevel 107 terminates at the broadest point of the transverse segment 55, 57, at which points the sides are folded over inwards at an angle. Viewed from the lugs 85, the pressure piece 150 thus has two side walls, of which the first side wall can be seen beneath the edge 91 in FIG. 5. The pressure piece 150 is flat overall. Beneath the surface, the pressure piece 150 is hollow. The pressure piece 150 has four laterally angled arms which extend obliquely, which can also look like ears, their bevels corresponding with the synchro-servo bevels.



FIG. 6 shows a further pressure piece 250 according to the invention, which has the bevels for the synchro-servo bevel 107 on the inner surfaces 79, 79′ of the transverse segments 55, 57. The bevel 79′ is a multiply angled bevel, such that the individual bevels overlap each other. One bevel direction extends from the middle portion to the transverse segment. One segment direction extends from the surface to the underside. Thus, the bevel 79′ is not merely one plane in space with only one solid angle, as compared with the I-shaped pressure piece, having instead two solid angles. As in the case of the pressure pieces 50 of FIG. 1 and 150 of FIGS. 2 and 3, respectively, the plan view of the pressure piece 250 is again in the shape of a butterfly, with two lugs 85. The pressure piece according to FIG. 6 differs from the previously represented pressure piece 150 in its middle region 71, in which a middle portion 73 projects as a sleeve actuation element, in particular in the form of a transverse element 101, from the surface of the pressure piece 250. Also provided is a friction neutralizing face 103 towards the lugs 85, i.e., at the end of the body region, where the transverse segments 55, 57 extend. The pressure piece according to FIG. 6 thus has four synchro-servo bevels at its outer regions 75, on the inner surfaces 79, 79′, and additionally two further bevels as friction neutralizing faces 103.


The functioning of the friction neutralizing face 103 may be more easily understood from FIGS. 7 and 8. The friction neutralizer has an angle ε, a blocking angle, which corresponds with the angle of the outer synchronization ring 9 in the region of its recess. The angle ε is marked off from the perpendicular, which preferably is at right angles to the lug 85. The angle ε may be freely selected by the designer of the synchronization pressure piece, according to the mathematical relationships stated above. The angle ε is at right angles to the surface 109 of the pressure piece, from which the central raised portion 97 projects. The central raised portion 97 is designed for groove engagement 99 in the sliding-sleeve groove 105 of the sliding sleeve 15, so as to constitute a sleeve actuation element. At least one synchro-servo bevel 107, disposed on the inner surface 79 of the transverse segment and delimited by the edge 91, is respectively located both on the first side wall 87 and on the second side wall 89 of the pressure piece. The end regions 81, 83 thus have a many-layered or multilayer form; they are provided with different bevels, namely, the blocking angle bevel constituted by the blocking angle ε, and the synchro-servo bevel 107, on longitudinal and transverse portions. The pressure piece has the appearance of multiply superimposed shortened bars, from the uppermost bar of which a gripping element for the sliding-sleeve groove 105 projects as a sleeve actuation element 101.


A further design of a pressure piece according to the invention can be seen in FIG. 9 to 11. FIG. 9 is a side view. FIG. 10 is a three-dimensional, oblique top view of the pressure piece, and FIG. 11 shows the pressure piece from above. The pressure piece 350 has a more solid appearance because of its base 211, which is in the form of a trapezium over the length of the pressure piece, less the outer portions of the end regions 81, 83. The shape of the base 211 allows the pressure piece to move laterally with a tilting or swiveling motion, whilst at the same time being fixedly mounted. Extending from the surface 109 of the pressure piece is a central raised portion 97, which has tilt bevels 113 on those portions of the pressure piece which go towards the lateral faces 87, 89. The central raised portion 97 serves as a sleeve actuation element 101. At a distance from the central raised portion 97 in the direction of the edge regions or end regions 81, 93, the synchro-servo bevels 107 face outwards from the narrower, inner part of the pressure piece 350, so as to form transverse segments. The side walls 87, 89 (89 is not visible) are coherent walls, with bevels for the synchro-servo bevel 107 which are disposed at the edge. The pressure-piece base 211 is likewise beveled in its extent, for the purpose of tilting the pressure piece. The base 211 fans out in the direction of the central raised portion 97.


A further design of a pressure piece 450 according to the invention is given in FIGS. 12, 13, 14. The sleeve actuation element 101, in the form of a central raised portion 97, has bevels only towards the respective end regions of the pressure piece 450. The side wall 87 extends from the slide actuation element 101 as far as the obliquely adjoining pressure-piece base 211. The central raised portion 97 projects as a low raised portion—extending across the pressure piece 450—between the end regions 81, 83 and away from the pressure-piece base 211.



FIGS. 15 and 16 show the appearance of a pressure piece 450 provided with a pressure-piece base 111 in the lower part, on the side that faces towards the drive shaft 5 in the integrated state, beneath a sliding sleeve. The figures show the outlines of the pressure piece 450. The exact bevels of the pressure-piece base 111 and of the central raised portion 97 are indicated only. The angles of the bevels, or the exact form of the surface of the synchro-servo bevel 107 (not shown), of the central raised portion 97 and of the surface of the pressure-piece base 311 are a matter for the design engineer, who sets the actuation angle, for example the blocking angle ε or the angle of the synchro-servo bevel, without need for inventive activity beyond the scope of the invention. Adjoining the pressure piece 450 in the region of one of the two end regions 81, 93 is the outer synchronization ring 9 which, as is usual, by means of a clutch body 25 can perform the reciprocal synchronization braking operation using a synchronization bevel. The pressure piece 450 is located above the transmission shaft 31. At the highest point of the pressure piece 450 is the central raised portion 97, which engages in the sliding sleeve 15, at the sliding-sleeve groove 105. The engagement enables the outer synchronization ring 9 (or each optional synchronization ring) to be aligned through utilization of the torque. As can be seen from FIGS. 15 and 16, the invention is distinguished by the fact, inter alia, that it is possible to dispense with the teeth of the synchronizer ring. Effective synchronization is nevertheless possible with a synchronizer ring without teeth.



FIG. 17 shows a further pressure piece 550, which can cooperate with a shift sleeve 17, a synchronizer ring 9 as an outer synchronization ring, and a clutch body 25 in a synchronizer hub 27. Provided above the pressure-piece base 111, in the region of one end, is a friction neutralizing face of a friction neutralizer 103, the bevel of which matches the bevel of the outer synchronization ring. The outer synchronization ring has a bevel at the location where it can come into contact with the pressure piece 550. The friction neutralizer 103 is provided with an identical angle in a direction opposite to that of the synchronization ring 9.



FIG. 18 shows a pressure piece 450 according to the invention in the blocking phase PI, seated on the drive shaft 5 and within the synchronizer hub 27. The clutch body 25 is provided with teeth, but there is no longer a need for teeth on the synchronizer ring 7 according to the exemplary embodiment of FIG. 18. At the location where the groove engagement 99 ends, the corner regions 61, 63, 65, 67 diverge outwardly, so as to form a first and a second transverse segment 55, 57. The bevels on the lateral faces of the pressure piece 450 match the recess 39 of the synchronizer hub 27; the recess 39 may be provided on both sides of the synchronizer hub, on both sides of the pressure piece 450. The synchronizer ring 7 has at least one recess 33, into which the pressure piece 450 is able to move. The pressure piece is mounted in such a way that it can execute a swivel motion S in the direction of rotation U, the width B of the synchronizer hub 27 being matched on the surface 109 of the pressure piece 450 such that the pressure piece 450 projects beyond the width B and can engage in the recess 33 of the synchronizer ring 7.



FIGS. 19, 20, 21 show different engagements of a pressure piece for the engagement within the synchronizer ring 207. The pressure-piece base 211, 311 is also shown in different designs; of importance in the case of such a compact, elongate pressure piece with a central raised portion 97 is an arrangement such that the pressure piece is mounted so as to be capable of swivel motion. It is for this reason that the pressure-piece base 311 has a semicircular form. The pressure-piece base 211 has a trapezoidal form. A further possibility for the pressure-piece base consists in a round, roller engagement means 411 that is capable of rolling, for example mounted on a needle-roller bearing, within the synchronizer ring 207. The roller 115 according to FIG. 21 is disposed at the end of the pressure-piece base 411. The roller can engage in and roll on the recess of the synchronizer ring.



FIG. 22 shows a synchronization unit according to the invention, which is located above a drive shaft 5 with its synchronizer hub 27 and the synchronization pressure piece 450 intermediately disposed there beneath a sliding sleeve 15. The sliding sleeve 15 is provided with sleeve inner teeth 19, such that it can run in the synchronizer hub. A groove engagement 99 is disposed approximately in the center of the pressure piece 450, so that it can engage in the sliding sleeve 15 from underneath. The groove of the sliding sleeve matches the position of the pressure-piece raised portion.



FIG. 23 shows a pressure piece 750 according to the invention, which is represented with slight variation, as the pressure piece 750′, in FIG. 24. Instead of straight edges, surfaces having a convex form are provided at contact points in order to improve rolling-in. This results in an improved contact behavior, but with the production resource requirement for the pressure piece being increased. The corner regions 61, 63, 65, 67 of the pressure piece 750 according to FIG. 23 terminate convexly above the respective transverse segments 55, 57, while having their synchro-servo bevel on the inner surface 79, as shown previously. The central raised portion 97 may be realized either with parallel edges in the central region 71 (FIG. 23) or with central raised portion edges 97′ having a convex form (FIG. 24).



FIG. 25 illustrates how a pressure piece 750 according to FIG. 23 may be integrated. FIG. 25 shows the upper region with the sliding sleeve 15 and sleeve inner teeth 19. The hub has a recess 39, preferably a plurality of recesses 39, into which the pressure piece 750 can tilt. On its underside the sliding sleeve 15 has sliding-sleeve groove 105, which is provided on the inner surface and in which the central raised portion 97 can engage as a groove engagement 99 to enable the pressure piece 750, as a sleeve actuation element, inter alia, to effect alignment of the rotating parts. The central raised portion 97 is convex in form, such that it has a convex edge 117 at the surface. FIG. 25 shows a portion of the servo synchronization unit 3, which can realize a full-servo synchronization unit from a device for transmission synchronization.


As shown in FIG. 26, in the case of a pressure piece 750″, further surfaces may also be convex in form, for example the surface of the piece 111, which is designed to be in engagement with the synchronizer ring 7. The pressure piece 750″ is narrower than the recess provided for it in the synchronizer ring 7.


For the purpose of generating a further direction of motion, the previously shown pressure pieces may be provided with a detent spring 119 to facilitate a raising motion H, as represented in FIG. 27, so as to realize a pressure piece such as that denoted by 650. The detent spring 119 is located beneath the central raised portion 97, on the underside thereof. The detent spring faces in the direction opposite to that of the central raised portion 97. The detent spring 119 is located in a piston-type enclosure in the region of the pressure-piece base 211. Depending on its design, the detent spring also facilitates the swivel motion S of the pressure piece 650, as represented in FIG. 28. The detent spring 119 effects a connection between the pressure piece 650 and the detent mounting. The detent mounting 651 of the pressure piece 650 is located in the synchronizer hub 27.


To aid understanding, the principle represented in FIG. 27 has been transferred to previously represented integration variants in FIGS. 29 and 30. The shift sleeve 17 (FIG. 29) may be realized as a sliding sleeve 15. By means of a clutch body 25, an outer synchronization ring 9 can use the pressure piece 650 to effect synchronization from a transmission shaft 31 to an idler gear 29. The detent spring 119 presses the pressure piece, with its central raised portion 97, which operates as a slide actuation element in the transverse direction, into the groove engagement 99 of the shift sleeve. If the shift sleeve is moved, the resilient, yielding mounting of the pressure piece 650, for example realized by the detent spring 119, allows the pressure piece to execute a yielding motion. In the case of a sliding sleeve 15 according to FIG. 30, sleeve inner teeth 19 are advantageously provided. The pressure piece 650 according to FIG. 30 is located in a slide groove 121, enabling it to execute compensating motions towards the outer synchronization ring 9 and away from the outer synchronization ring 9 by longitudinal motion. The base 511 of the pressure piece 611 is realized in two parts, between which the detent spring 119 is located. The pressure-piece base can run in the synchronizer hub 27. The sleeve actuation element 101 engages in the sliding sleeve 15 from underneath, in the sleeve groove.


To further aid understanding, reference is made to FIGS. 31 to 34, which show the synchronization pressure piece 450 in a neutral position PII from various perspectives, and to FIGS. 35 to 38, which show the synchronization pressure piece 450 in an angled position, i.e., a blocking position of the blocking phase PI. The transmission synchronization system 1, shown in FIGS. 31 to 35, comprises, inter alia, a sliding sleeve 15 and an outer synchronization ring 9. An important element is the pressure piece, for example in the design shown in FIG. 33. A shift sleeve 17 (FIG. 33) may also be used instead of a sliding sleeve. The positions PI and PII are distinguished from one another in, on the one hand, the divergence of the pressure piece 450 from the central axis Z and, on the other hand, the executed raising motion H.



FIG. 39 shows how three pressure pieces 50 may be disposed in a hub 27. Advantageously, the pressure pieces 50 are distributed uniformly over the circumferences, if a plurality of such pressure pieces are provided. In the case of three pressure pieces, the distance from one pressure piece to the next is 120°. Each pressure piece 50 thus has its own recess 33, 35, 37, in which it is inserted so that it cooperates with a synchronizer ring 13.


A person skilled in the art understands that a pressure piece according to the invention and a synchronization unit according to the invention may have numerous further variations. It is at the discretion of the application designer to design the surfaces of the basically represented structures of the synchronization pressure piece, which has simple coherence, such that they are without a multi-finger configuration, in the same longitudinal direction, convex, oblique, angled or round, in order to use the resultant contact surfaces between the synchronization pressure piece and the contact surface of the synchronizer hub, synchronizer ring and sliding sleeve to advantageously utilize moments and forces in the transmission in an amplifying manner, enabling the driver of a motor vehicle having a transmission according to the invention to engage and disengage the gears more easily with power assistance. The pressure piece according to the invention, as an I-shaped piece or, also, with only a central raised portion for engagement in the sliding sleeve, increases driving comfort through facilitated gear-shifting and reduced risk of grating noise.


As previously stated above, to a large extent the pressure piece may be of any shape; according to an aspect to be emphasized, torques from various sources are used within the synchronization unit, both for blocking and for unblocking during the synchronization phase. In one embodiment, a central pin is used; this pin, however, may also have a shape that is separate from the rest of the pressure piece. In a further embodiment, a central raised portion is provided. The lateral contact surfaces, which in the exemplary embodiments have an I-shape or hammer shape, should be mated to contact surfaces in the hub; other appropriate shapes are therefore conceivable. Owing to the absence of additional stop teeth, which frequently in the case of a full-servo synchronization system according to the invention are no longer necessary, the production of the synchronization ring is also simplified. In particular, a light formed part, for example made of sheet metal, used as a pressure piece in a transmission synchronization system capable of transmitting high torques, is a factor in the invention being widely accepted amongst transmission designers.


The pressure piece as presented has simple coherence. It no longer has a multiple finger structure. It does not have multiple parallel guidance in the output direction. The pressure piece does not have multiply occurring prongs to be arranged in the output direction. It does not include a fork, and is not dependent on a fork shape.


The invention offers a further advantage in respect of the sliding-sleeve teeth. The angle of the sliding-sleeve teeth, the so-called “roof angle,” may be designed in any way. In contrast with conventional transmission synchronization systems, the possible angular range is not limited in order to ensure blocking security, as is otherwise usual. The designer of a transmission synchronization system according to the invention can therefore select such a roof angle that results in a maximally reduced meshing force.


List of References Characters:

  • B Width of the synchronizer hub
  • H Raising motion
  • R Output direction
  • U Direction of rotation
  • α1 First right angle
  • α2 Second right angle
  • ε Blocking angle
  • E Neutralizer angle
  • W Radial motion
  • S Swivel motion
  • PI Blocking phase
  • PII Neutral position
  • Z Central axis
  • 1 Transmission synchronization system
  • 2 Synchronization unit
  • 5 Drive shaft
  • 7, 207 First synchronizer ring
  • 9 First outer synchronization ring, or outer synchronizer ring
  • 11 Second synchronizer ring
  • 13 Second outer synchronization ring, or outer synchronizer ring
  • 15 Synchronizer sleeve
  • 17 Shift sleeve
  • 19 Sleeve inner teeth
  • 21 First speed-change gear
  • 23 Second speed-change gear
  • 25 Clutch body
  • 27 Synchronizer hub
  • 29 Idler gear
  • 31 Shaft, or transmission shaft
  • 33 First recess of the synchronizer ring
  • 35 Second recess of the synchronizer ring
  • 37 Third recess of the synchronizer ring
  • 39 Recess of the hub
  • 41 Stop teeth of an outer synchronizer ring
  • 50, 150, 250, 350, Pressure piece
  • 450, 550, 650, 750,
  • 750′, 750
  • 51 Mounting of the pressure piece
  • 53 Mounting pin
  • 55 First transverse segment
  • 57 Second transverse segment
  • 61 First corner region
  • 63 Second corner region
  • 65 Third corner region
  • 67 Fourth corner region
  • 71 Middle region
  • 73 Middle portion
  • 75 Exterior of the pressure piece, or outer region of the pressure piece
  • 77 Inside of the pressure piece, or inner region of the pressure piece
  • 79, 79′ Inner surface of a transverse segment
  • 81 First end region
  • 83 Second end region
  • 85 Extremity, in particular in the form of a lug, either as a surface extension or as a base extension
  • 87 First side wall of the pressure piece
  • 89 Second side wall of the pressure piece
  • 91 Edge of the pressure piece
  • 93 Instantaneous center of rotation
  • 95 Clearance of the pressure piece
  • 97, 97′ Central raised portion
  • 99 Groove engagement
  • 101 Sleeve actuation element, in particular as transverse element
  • 103 Friction neutralizer
  • 105 Sliding sleeve groove
  • 107 Synchro-servo bevel
  • 109 Surface of the pressure piece
  • 111, 211, 311, 411, Pressure-piece base
  • 511
  • 113 Tilt bevel of the sleeve actuation element
  • 115 Roller, in particular mounted at the end of the pressure piece
  • 117 Convex edge
  • 119 Detent spring
  • 121 Slide groove
  • 651 Detent mounting

Claims
  • 1. A synchronization pressure piece for synchronization of idler gears of a transmission by means of shift sleeves, wherein the synchronization pressure piece is movable by tilting, is in the shape of a finger and is I-shaped, and which has a middle, longitudinal type region which can extend, in an output direction of a transmission shaft, over a width of a hub of the transmission shaft.
  • 2. The synchronization pressure piece of claim 1, wherein the I-shaped synchronization pressure piece has one or more beveled corner regions and at least one transverse segment, which extends virtually at right angles to the middle, longitudinal type region in the transverse direction relative to the width of the hub, wherein the at least one transverse segment delimits the middle, longitudinal region of the synchronization pressure piece.
  • 3. The synchronization pressure piece of claim 2, wherein the beveled corner regions, facing outwards from a middle portion of the synchronization pressure piece, are disposed on an inner surface of the transverse segment of the I-shape.
  • 4. The synchronization pressure piece of claim 2, wherein a beveled corner region can engage, through horizontal angular displacement, in recesses of the hub which are of a similar angular form.
  • 5. The synchronization pressure piece of claim 1, wherein at least one end region projects beyond the inner I-shape of the synchronization pressure piece, which the end region, as an extremity, in particular as an axial or radial extremity, comprising a projecting lug, can advance into, recesses of a synchronizer ring, the recesses of the synchronizer ring preferably being wider than the width of the lug.
  • 6. The synchronization pressure piece of claim 1, further comprising: an instantaneous center of rotation is provided on at least one side of the synchronization pressure piece.
  • 7. The synchronization pressure piece of claim 1, wherein the synchronization pressure piece is created from a coherent sheet metal part having multiply rounded or bordered edges, so as to produce a flat, elongate component having a central instantaneous center of rotation.
  • 8. Transmission synchronization system, said system comprising: a sliding sleeve;a synchronizer hub;a speed-change gear;a synchronizer wheel;a clutch body; anda pressure piece capable of swivel motion, wherein the pressure piece capable of swivel motion comprises a waisted I-shaped bar having a middle, longitudinal type region which extends, in an output direction of a transmission shaft, over the width of a hub of the transmission shaft.
  • 9. A synchronization unit for uses with a transmission, the unit comprising: a drive shaft coupled with a synchronizer hub comprising a recess;a sleeve;at least one speed-change gear;an outer synchronization ring comprising at least one recess and is mounted so as to be radially movable; andan I-shaped pressure piece as a finger which is disposed so as to be capable of tilting motion and is located at least once in the synchronizer hub, the I-shaped pressure piece having at least one transverse segment, the pressure piece having at least one bevel, the pressure piece acting as a full-servo synchronization pressure piece being movable in such a way that it engages in the at least one recess of the outer synchronization ring, and, by way of the at least one transverse segment engaging the at least one bevel, exerts a compensating motion upon the outer synchronization ring in the radial direction, if the pressure piece has previously executed a swivel motion in the direction of the recess of the hub of the drive shaft.
  • 10. The unit of claim 9, having a plurality of pressure pieces which engage in a respective recess of the outer synchronization ring, in the case of a blocking operation during the equalization of rotational speed between a clutch body and the outer synchronizer ring, and which remain in respective recess of the outer synchronization ring in an unblocked state following completion of the equalization of rotational speed.
  • 11. The unit of claim 10, wherein the sleeve is a sliding sleeve with a radial groove having a taper angle, in which groove there engages an end of a central raised portion of the pressure piece in a phase from the blocking to the unblocking by the pressure piece for the purpose of equalizing rotational speed between the clutch body and the sliding sleeve.
  • 12. The unit of claim 9, wherein the pressure piece has a side with a surface matching the course of the recess of the outer synchronizer ring such that the frictional action between the pressure piece and the outer synchronizer ring reduces unblocking force at the contact surface.
  • 13. The unit of claim 11, wherein the pressure piece is mounted on its base side in such a way that it can execute a radial unblocking motion in the unblocking phase.
  • 14. The unit of claim 10, wherein the pressure piece comprises in the region of an axial or radial extremity one of a lug, a wedge, a cylinder and a mounted roller for the purpose of engagement in the outer synchronizer ring.
  • 15. The unit of claim 9, wherein the pressure piece is mounted on a separate detent mounting with three degrees of freedom, the detent mounting being coupled to the pressure piece through an elastic element so as to render possible a raising motion by the pressure piece and a base of the detent mounting being formed in a longitudinally displaceable mounting.
  • 16. Synchronization method of a transmission, the method comprising: providing a synchronization unit comprising: a sliding sleeve having a groove;a pressure piece;a shaft hub having at least one recess;a drive shaft; andan idler gear;synchronizing a full-servo synchronization system of the transmission and moving the pressure piece on the shaft hub, with the sliding sleeve having the groove, such that, when blocking security has been established against premature unblocking before equality of rotational speed between the drive shaft and the idler gear, the synchronization is set by an equilibrium of forces in which an unblocking force and a synchronization force are reduced in equal measure through variation of geometric parameters of the pressure piece, the recess of the shaft hub and of an outer synchronization ring.
  • 17. The method of claim 16, wherein the synchronization unit which is used to set an amplification factor on a simply coherent pressure piece which does not have a fork, such that, through utilization of the synchronizing or frictional moment, the effective force for the synchronization is greater by a servo force than the applied shift force and, at the same time, the unblocking force is reduced in the same measure as the synchronizing.
  • 18. The synchronization pressure piece of claim 2, wherein the at least one transverse segment comprises two transverse segments.
  • 19. The synchronization pressure piece of claim 5, wherein the at least one end region comprises two end regions that project beyond the inner I-shape of the synchronization pressure piece.
  • 20. The unit of claim 12, wherein the surface matching the course of the recess of the outer synchronizer ring is a bevel defined by an angle (E).
Priority Claims (1)
Number Date Country Kind
10 2006 044 352.7 Sep 2006 DE national