Described herein is a transmission mechanism and method of use incorporating eddy current drag elements and in doing so controlling or tailoring movement between members.
The applicant's co-pending and granted patents in the field of eddy current related devices include U.S. Pat. Nos. 8,851,235, 8,490,751, NZ619034, NZ627617, NZ627619, NZ627633, NZ627630 and other equivalents all incorporated herein by reference. The devices described in these patents/applications may be useful, for example due to their providing frictionless methods of controlling movement. However, other methods of altering eddy current interactions and transmitting eddy current interactions may also be achieved or at least provide the public with a choice.
Further aspects and advantages of the transmission mechanisms and methods of use should become apparent from the ensuing description that is given by way of example only.
Described herein is a transmission mechanism and method of use for braking relative movement between members, movement and braking of the members being directed through one or more transmission elements. The transmission mechanism and method of use allows for enhanced braking/retarding performance thereby providing a greater performance to that observed where the eddy current elements are directly coupled to an external motive source.
In a first aspect, there is provided a transmission mechanism comprising:
In a second aspect, there is provided a method of transferring an eddy current drag force between members by the step of:
(a) selecting a transmission mechanism substantially as described herein;
(b) applying a motive force on the at least one driving member that in turn applies a motive force on the at least one driven member;
(c) by causing motion of the at least one driven member, inducing an eddy current drag force on either the at least one driving member or at least one driven member thereby retarding movement of the member or members directly or indirectly via the transmission.
Advantages of the above described transmission mechanism and method of use includes the ability to direct and transfer an eddy current drag force directly or indirectly. Transmission of the eddy current induced force also allows the ability to multiply the brake effects thereby increasing the efficiency of the mechanism compared to a directly coupled eddy current brake mechanism.
Further aspects of the transmission mechanisms and methods of use will become apparent from the following description that is given by way of example only and with reference to the accompanying drawings in which:
As noted above, described herein are transmission mechanisms and methods of use for braking relative movement between members, movement and braking of the members being directed through one or more transmission elements. The transmission mechanism and method of use allows for enhanced braking/retarding performance thereby providing a greater performance to that observed where the eddy current elements are directly coupled to an external motive source.
For the purposes of this specification, the term ‘about’ or ‘approximately’ and grammatical variations thereof mean a quantity, level, degree, value, number, frequency, percentage, dimension, size, amount, weight or length that varies by as much as 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1% to a reference quantity, level, degree, value, number, frequency, percentage, dimension, size, amount, weight or length.
The term ‘substantially’ or grammatical variations thereof refers to at least about 50%, for example 75%, 85%, 95% or 98%.
The term ‘comprise’ and grammatical variations thereof shall have an inclusive meaning—i.e. that it will be taken to mean an inclusion of not only the listed components it directly references, but also other non-specified components or elements.
In a first aspect, there is provided a transmission mechanism comprising:
The transmission may translate movement of the driving member to movement of the at least one second driven member. For example, transmitting rotation of the driving member shaft to rotation of the driven member shaft. Transmission may be via a gear box coupling, a cog or cogs. Transmission may be via a coupling that does not utilize fasteners so that the driving and/or driven member(s) may be releasably linked together.
As noted above, eddy current drag force inducing elements may be incorporated into the mechanism. Eddy current drag is induced when an electrically conductive element moves in a magnetic field (or vice versa), the eddy current drag forces induced then slow relative movement between the conductive element and the magnetic field.
The at least one conductor may be directly coupled to the at least one driving member (motive source) and the at least one magnet is indirectly coupled to the at least one driving member (motive source) via the transmission mechanism, and wherein:
(a) the transmission mechanism moves both elements rotationally;
(b) the reaction torque (eddy current drag force effects) induced by the elements is transferred into the driving member of the transmission mechanism. Alternatively, the at least one magnet may be directly coupled to the at least one driving member (motive source) and the at least one conductor is indirectly coupled to the at least one driving member (motive source) via the transmission mechanism, and wherein:
(a) the transmission mechanism moves both elements rotationally;
(b) the reaction torque (eddy current drag force effects) induced by the elements is transferred into the driving member of the transmission mechanism.
The at least one electrical conductor and the at least one magnet may be independent to each other and indirectly coupled to the at least one driving member by the transmission mechanism. One type of transmission mechanism employing this arrangement may be a bevel drive. As may also be appreciated, this arrangement also allows the possibility of having varying transmission ratios for both the at least one conductor and at least one magnet.
The at least one driving member may be a shaft or coupling that rotates. A rotational driving torque may be imposed by a force. For example, the force may be generated by an object linked to the driving member, non-limiting examples including a wheel or an object linked to a spool via a line, the spool rotating when the object causes the line to pay out from the spool as may be the case for autobelay or fall safety apparatus. These devices are described in more detail below.
The at least one second driven member may be a shaft or coupling that also rotates.
In the above embodiment, rotational movement of the at least one driving member urges at least two driven members to rotate in opposite directions. In one embodiment, the driving member and at least one driven member in a rotational embodiment may be angled relative to each other, movement being transmitted via the transmission in a different (opposite) direction. The angle of translation may range from at least 1, or 5, or 10, or 15, or 20, or 25, or 30, or 35, or 40, or 45, or 50, or 55, or 60, or 65, or 70, or 75, or 80, or 85, or 90 degrees. In such embodiments, a bevel gearbox may be used to drive the change in angle. Whilst not essential, this arrangement of the driven members working together via an eddy current interaction may provide a particularly strong brake action in the embodiment described above counter rotation occurs between the driven members effectively amplifying (inducing double) the eddy current drag force owing to the opposing relative movement between the magnetic field and conductor.
Rotational movement alone as noted above should not be seen as limiting as, for example, the driven member or members may instead undergo a linear and/or axial translation as well, an example of which is described further below.
The transmission mechanism may move both members rotationally about a fixed axis. In one embodiment, the fixed axis may be a common axis between the elements although offset axes may also be used.
The ratio of movement between the driving and driven members may be pre-determined or pre-set. This may be achieved for example via a tooth and cog gear arrangement. In one embodiment, the ratio of movement between the driving and driven members may range from approximately 1:0.001 to 1:1000. The ratio of driving and driven members may be approximately 1:0.001, or 1:0.005, or 1:0.01, or 1:0.05, or 1:0.1, or 1:0.5, or 1:1 or 1:5, or 1:10, or 1:50 or 1:100, or 1:500, or 1:1000 although other ratios may be useful depending on the end application for the mechanism. In one embodiment, the ratio of movement between the driving and driven members may be approximately 1:1 although other ratios may be useful depending on the end application for the mechanism.
In one example, the transmission mechanism may be arranged so that:
(a) the at least one conductor rotates at a rotational velocity governed by the transmission ratio and the driving member (motive source) velocity; and
(b) the at least one magnet rotates at a rotational velocity governed by the transmission ratio and the driving member velocity in a rotational direction opposite the direction of rotation of the conductor.
The rate of movement of the driving and driven members may vary once eddy current drag forces are induced and continue to vary until a critical velocity is reached, the critical velocity being where the eddy current drag force does not increase with increased rotational velocity acting on the at least one driving member.
On initiation of eddy current drag force generation, up to a critical velocity applied to the at least one driving member, the braking torque between the eddy current elements increases by twice the transmission ratio.
On initiation of eddy current drag force generation, up to a critical velocity applied to the at least one driving member, the braking torque between the eddy current elements may act on both the at least one driven and at least one driving members via the transmission.
Alternatively, on initiation of eddy current drag force generation, up to a critical velocity applied to the at least one driving member, the braking torque between the eddy current elements may act on the at least one driving member via the transmission and at least one driven member. In this embodiment, the eddy current elements may not be directly coupled to the at least one driving member. This embodiment may be used where further multiplication in torque achieved over an eddy current brake effect may be desired with the at least one driving member coupled to only one eddy current element (at least one conductor or at least one magnet).
Above the critical velocity, the reaction torque may remain multiplied relative to a directly coupled system and the reaction torque remains approximately constant with variation in speed above the critical velocity.
As may be appreciated from the above, the mechanism described allows considerably increased drag force effects than a directly coupled eddy current drag mechanism. In other words, up to the critical velocity and torque of the eddy current drag force effects, the mechanism described herein may:
As noted above, the critical velocity is a point where the eddy current drag force does not increase with increased rotational velocity and the reaction torque remains multiplied over a directly coupled system and approximately constant and/or controlled. That is, above the critical velocity, an extra force input into the driving member leads to the same eddy current drag force output.
The transmission mechanism may be a worm drive. The term ‘worm drive’ refers to a gear arrangement where a worm (gear in the form of a screw) meshes with a mating gear. Other types of drive with a similar mechanism are also encompassed with this term including helical gears with angularly offset axes and/or helical spur gears with axes of rotation angularly rotated to each other. In this embodiment, the transmission may operate in the mode of providing a step up in velocity from the rotational velocity of the driving member to the rotational velocity of the eddy current inducing element or elements thereby providing a resisting force to the rotational velocity of the driving member.
The transmission ratio and/or coefficient of friction at the gear interface may be selected such that the transmission operates with a prescribed level of mechanical efficiency. The prescribed level of mechanical efficiency may be sufficiently low to provide a supplementary retarding torque over that provided by the induced eddy current drag force and the numerical gear ratio alone. In practice it is envisaged that the mechanism may have a low mechanical efficiency—that is, there would be significant mechanical losses in the transmission. The prescribed level of mechanical efficiency (if low) results in an increase on the reaction torque on the motive force in excess of that conferred by the eddy current drag force and the numerical gear ratio alone. A benefit of this is that the mechanical losses in the worm system can be used as a supplementary retarding torque, proportional to the eddy current drag force, as governed by the laws of friction, thereby decreasing the torque demand required of the eddy current drag force over an eddy current brake system coupled with a very high efficiency transmission system.
In the above worm drive embodiment, a friction torque may be held approximately in proportion to the eddy current element induced braking torque. As may be appreciated, this arrangement may act to amplify the eddy current induced braking torque.
The transmission mechanism may be configured to comprise a worm drive using an axially fixed eddy current element retaining worm. As may be appreciated this is a very simple arrangement yet this achieves the desired objective of transmitted driving and driven elements with eddy current induced braking effects on movement.
The transmission mechanism may be configured to comprise:
a tube including a wall and void defined therein;
a cylinder that fits into the tube void, the cylinder being a driven member linked to a driving member providing an input torque, the cylinder moving in response to an input torque on the driving member relative to the tube via axial translation of the cylinder relative to the tube so that the cylinder can pass at least partially into or out of the tube void; and rotation of the cylinder relative to the tube about a longitudinal axis, the axis passing through the tube void;
wherein, coupled to the tube and cylinder are one or more eddy current inducing elements and, in use, the cylinder and tube have different relative speeds of rotation to each other such that, when the tube and/or cylinder is or are moved via axial translation caused by the driven member so that the cylinder at least partially enters the tube void, a braking reaction force on rotation of the driven member occurs due to induced eddy current drag force generation thereby slowing the velocity of rotation of the driving member.
In the above configuration, the degree of overlap between the tube and cylinder may determine the degree of eddy current induced drag force.
The axial force applied to the cylinder may be imposed by the driven member, the degree of axial force applied being proportional to the torque acting on the driving member. Imposing may be via a reaction force acting on the driven member causing driven member movement e.g. extension of the worm along the line of a shaft that is the driven member causing driven member rotation. This example should not be seen as limiting as it should be appreciate that the imposed axial force may be applied in many different ways to suit the end application.
The transmission used in the above tube and cylinder embodiment may be a worm drive, the term ‘worm drive’ defined in a similar manner to that noted above except in this case the worm drive is incorporated into the tube and cylinder arrangement.
The eddy current elements may be selectively coupled to the driven member (or worm element if used), whereby the axial force applied to the driven member may be used to engage and disengage a coupling connecting the driven member to the eddy current elements. Engagement occurs in response to a force threshold having been achieved. Disengagement occurs in response to a force threshold having been achieved. An engaging effect may be useful to allow movement under a range of ‘normal’ scenarios for a device in which the mechanism is used, but, on application of a predetermined force, engagement and braking then occurs (and disengagement as well once the predetermined force is reached post engagement). Movement of the eddy current elements (magnets and conductor(s)) together or apart to engage or disengage may be urged via a mechanism such as a bias mechanism.
In a second aspect, there is provided a method of transferring an eddy current drag force between members by the step of:
(a) selecting a transmission mechanism substantially as described herein;
(b) applying a motive force on the at least one driving member that in turn applies a motive force on the at least one driven member;
(c) by causing motion of the at least one driven member, inducing an eddy current drag force on either the at least one driving member or at least one driven member thereby retarding movement of the member or members directly or indirectly via the transmission.
Final embodiments for the transmission mechanism described herein may be varied. For example, an autobelay or self-retracting lifeline (SRL) embodiment may use the transmission mechanism and method of use described. In an SRL embodiment, a line may extend and retract from the SRL device and when the line extends from the SRL device at a rate beyond a predefined threshold, the transmission mechanism engages and applies a retarding force on the rate of line extension. SRL and autobelay applications should not be seen as limiting since the transmission mechanisms described may be used for a wide variety of other applications, non-limiting examples including speed control or load control of:
Advantages of the above described transmission mechanism and method of use includes the ability to direct and transfer an eddy current drag force directly or indirectly. Transmission of the eddy current induced force also allows the ability to multiply the brake effects thereby increasing the efficiency of the mechanism compared to a directly coupled eddy current brake mechanism.
The embodiments described above may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, and any or all combinations of any two or more said parts, elements or features.
Further, where specific integers are mentioned herein which have known equivalents in the art to which the embodiments relate, such known equivalents are deemed to be incorporated herein as of individually set forth.
The above described transmission mechanism and method of use is now described by reference to specific examples.
In
Aspects of the transmission mechanism and method of use have been described by way of example only and it should be appreciated that modifications and additions may be made thereto without departing from the scope of the claims herein.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
701549 | Dec 2014 | NZ | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NZ2015/050207 | 12/4/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/089227 | 6/9/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2058024 | Logan, Jr. | Oct 1936 | A |
2122312 | Cassion | Jun 1938 | A |
2122315 | Fosty et al. | Jun 1938 | A |
2272509 | Cavallo | Feb 1942 | A |
2409009 | Bakke | Oct 1946 | A |
2428104 | Winther | Sep 1947 | A |
2437871 | Wood | Mar 1948 | A |
2492776 | Winther | Dec 1949 | A |
2771171 | Schultz | Nov 1956 | A |
2807734 | Lehde | Sep 1957 | A |
3364795 | De Coye De Castelet | Jan 1968 | A |
3447006 | Bair | May 1969 | A |
3721394 | Reiser | Mar 1973 | A |
3868005 | McMillan | Feb 1975 | A |
3934446 | Avitzur | Jan 1976 | A |
3962595 | Eddens | Jun 1976 | A |
3967794 | Fohl | Jul 1976 | A |
4078719 | Durland et al. | Mar 1978 | A |
4093186 | Golden | Jun 1978 | A |
4224545 | Powell | Sep 1980 | A |
4271944 | Hanson | Jun 1981 | A |
4306688 | Hechler, IV | Dec 1981 | A |
4416430 | Totten | Nov 1983 | A |
4434971 | Cordrey | Mar 1984 | A |
4544111 | Nakajima | Oct 1985 | A |
4561605 | Nakajima | Dec 1985 | A |
4567963 | Sugimoto | Feb 1986 | A |
4612469 | Muramatsu | Sep 1986 | A |
4676452 | Nakajima | Jun 1987 | A |
4690066 | Morishita et al. | Sep 1987 | A |
4846313 | Sharp | Jul 1989 | A |
4938435 | Varner et al. | Jul 1990 | A |
4957644 | Price et al. | Sep 1990 | A |
4974706 | Maji et al. | Dec 1990 | A |
5054587 | Matsui et al. | Oct 1991 | A |
5064029 | Araki et al. | Nov 1991 | A |
5084640 | Morris | Jan 1992 | A |
5205386 | Goodman et al. | Apr 1993 | A |
5248133 | Okamoto et al. | Sep 1993 | A |
5272938 | Hsu et al. | Dec 1993 | A |
5342000 | Berges et al. | Aug 1994 | A |
5392881 | Cho et al. | Feb 1995 | A |
5441137 | Organek et al. | Aug 1995 | A |
5465815 | Ikegami | Nov 1995 | A |
5477093 | Lamb | Dec 1995 | A |
5483849 | Orii et al. | Jan 1996 | A |
5495131 | Goldie et al. | Feb 1996 | A |
5636804 | Jeung | Jun 1997 | A |
5692693 | Yamaguchi | Dec 1997 | A |
5711404 | Lee | Jan 1998 | A |
5712520 | Lamb | Jan 1998 | A |
5722612 | Feathers | Mar 1998 | A |
5742986 | Corrion et al. | Apr 1998 | A |
5779178 | McCarty | Jul 1998 | A |
5791584 | Kuroiwa | Aug 1998 | A |
5822874 | Nemes | Oct 1998 | A |
5862891 | Kröger et al. | Jan 1999 | A |
5928300 | Rogers et al. | Jul 1999 | A |
6041897 | Saumweber et al. | Mar 2000 | A |
6042517 | Gunther et al. | Mar 2000 | A |
6051897 | Wissler et al. | Apr 2000 | A |
6062350 | Spieldiener et al. | May 2000 | A |
6086005 | Kobayashi et al. | Jul 2000 | A |
6209688 | Kuwahara | Apr 2001 | B1 |
6220403 | Kobayashi et al. | Apr 2001 | B1 |
6279682 | Feathers | Aug 2001 | B1 |
6293376 | Pribonic | Sep 2001 | B1 |
6412611 | Pribonic | Jul 2002 | B1 |
6460828 | Gersemsky et al. | Oct 2002 | B1 |
6466119 | Drew | Oct 2002 | B1 |
6523650 | Pribonic et al. | Feb 2003 | B1 |
6533083 | Pribonic et al. | Mar 2003 | B1 |
6557673 | Desta et al. | May 2003 | B1 |
6561451 | Steinich | May 2003 | B1 |
6659237 | Pribonic | Dec 2003 | B1 |
6756870 | Kuwahara | Jun 2004 | B2 |
6793203 | Heinrichs et al. | Sep 2004 | B2 |
6810997 | Schreiber et al. | Nov 2004 | B2 |
6918469 | Pribonic et al. | Jul 2005 | B1 |
6962235 | Leon | Nov 2005 | B2 |
6973999 | Ikuta et al. | Dec 2005 | B2 |
7011607 | Kolda et al. | Mar 2006 | B2 |
7014026 | Drussel et al. | Mar 2006 | B2 |
7018324 | Lin | Mar 2006 | B1 |
7279055 | Schuler | Oct 2007 | B2 |
7281612 | Hsieh | Oct 2007 | B2 |
7281620 | Wolner et al. | Oct 2007 | B2 |
7513334 | Calver | Apr 2009 | B2 |
7528514 | Cruz et al. | May 2009 | B2 |
7984796 | Pribonic | Jul 2011 | B2 |
8037978 | Boren | Oct 2011 | B1 |
8272476 | Hartman et al. | Sep 2012 | B2 |
8424460 | Lerner et al. | Apr 2013 | B2 |
8490751 | Allington et al. | Jul 2013 | B2 |
8511434 | Blomberg | Aug 2013 | B2 |
8556234 | Hartman et al. | Oct 2013 | B2 |
8567561 | Strasser et al. | Oct 2013 | B2 |
8601951 | Lerner | Dec 2013 | B2 |
8851235 | Allington et al. | Oct 2014 | B2 |
9016435 | Allington et al. | Apr 2015 | B2 |
9199103 | Hetrich et al. | Dec 2015 | B2 |
9242128 | Macy | Jan 2016 | B2 |
20020162477 | Palumbo | Nov 2002 | A1 |
20020179372 | Schreiber et al. | Dec 2002 | A1 |
20030116391 | Desta et al. | Jun 2003 | A1 |
20030168911 | Anwar | Sep 2003 | A1 |
20030211914 | Perkins | Nov 2003 | A1 |
20040055836 | Pribonic et al. | Mar 2004 | A1 |
20040073346 | Roelleke | Apr 2004 | A1 |
20040168855 | Leon | Sep 2004 | A1 |
20040191401 | Bytnar et al. | Sep 2004 | A1 |
20050051659 | Wolner et al. | Mar 2005 | A1 |
20050082410 | Tanaka et al. | Apr 2005 | A1 |
20050117258 | Ohta et al. | Jun 2005 | A1 |
20050189830 | Corbin, III et al. | Sep 2005 | A1 |
20050263356 | Marzano et al. | Dec 2005 | A1 |
20060219498 | Organek et al. | Oct 2006 | A1 |
20060278478 | Pribonic et al. | Dec 2006 | A1 |
20070000741 | Pribonic et al. | Jan 2007 | A1 |
20070001048 | Wooster et al. | Jan 2007 | A1 |
20070135561 | Rath et al. | Jun 2007 | A1 |
20070228202 | Scharf et al. | Oct 2007 | A1 |
20070228713 | Takemura | Oct 2007 | A1 |
20070256906 | Jin et al. | Nov 2007 | A1 |
20080059028 | Willerton | Mar 2008 | A1 |
20080074223 | Pribonic | Mar 2008 | A1 |
20080087510 | Pribonic | Apr 2008 | A1 |
20080105503 | Pribonic | May 2008 | A1 |
20080106420 | Rohlf | May 2008 | A1 |
20080135579 | Bertram et al. | Jun 2008 | A1 |
20090026303 | Schmitz et al. | Jan 2009 | A1 |
20090032785 | Jones | Feb 2009 | A1 |
20090084883 | Casebolt et al. | Apr 2009 | A1 |
20090114892 | Lesko | May 2009 | A1 |
20090166459 | Niitsuma et al. | Jul 2009 | A1 |
20090178887 | Reeves et al. | Jul 2009 | A1 |
20090211846 | Taylor | Aug 2009 | A1 |
20090319212 | Cech et al. | Dec 2009 | A1 |
20100032255 | Conti et al. | Feb 2010 | A1 |
20100065373 | Stone et al. | Mar 2010 | A1 |
20100112224 | Lott | May 2010 | A1 |
20100116922 | Choate et al. | May 2010 | A1 |
20100211239 | Christensen et al. | Aug 2010 | A1 |
20110084158 | Meillet et al. | Apr 2011 | A1 |
20110114907 | Hartman et al. | May 2011 | A1 |
20110147125 | Blomberg | Jun 2011 | A1 |
20110166744 | Lu et al. | Jul 2011 | A1 |
20110174914 | Yang | Jul 2011 | A1 |
20110175473 | Kitabatake et al. | Jul 2011 | A1 |
20110240403 | Meillet | Oct 2011 | A1 |
20110297778 | Meillet et al. | Dec 2011 | A1 |
20120055740 | Allington et al. | Mar 2012 | A1 |
20120118670 | Olson et al. | May 2012 | A1 |
20120312540 | Lefebvre | Dec 2012 | A1 |
20130048422 | Hartman et al. | Feb 2013 | A1 |
20130087433 | Sejourne | Apr 2013 | A1 |
20130118842 | Lerner | May 2013 | A1 |
20130186721 | Bogdanowicz et al. | Jul 2013 | A1 |
20140048639 | Allington et al. | Feb 2014 | A1 |
20140110947 | Mongeau | Apr 2014 | A1 |
20140224597 | Takezawa et al. | Aug 2014 | A1 |
20140346909 | Vogler | Nov 2014 | A1 |
20140375158 | Allington et al. | Dec 2014 | A1 |
20150196820 | Allington | Jul 2015 | A1 |
20150266454 | McGowan | Sep 2015 | A1 |
20150352380 | Huang et al. | Dec 2015 | A1 |
20160052401 | McGowan | Feb 2016 | A1 |
20160317936 | Diehl et al. | Nov 2016 | A1 |
20160360738 | Richardson | Dec 2016 | A1 |
20170237313 | Diehl et al. | Aug 2017 | A1 |
20170244313 | Diehl et al. | Aug 2017 | A1 |
20170274261 | Allington et al. | Sep 2017 | A1 |
20170328424 | Allington et al. | Nov 2017 | A1 |
20170338728 | Diehl et al. | Nov 2017 | A1 |
20180264296 | Diehl et al. | Sep 2018 | A1 |
20180269767 | Diehl et al. | Sep 2018 | A1 |
20180269769 | Allington et al. | Sep 2018 | A1 |
20180370484 | Diehl et al. | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
1783674 | Jun 2006 | CN |
101820952 | Sep 2010 | CN |
202203305 | Apr 2012 | CN |
102497085 | Jun 2012 | CN |
102627063 | Aug 2012 | CN |
103244577 | Aug 2013 | CN |
103326538 | Sep 2013 | CN |
93 00 966 | Mar 1993 | DE |
10 2005 032 694 | Jan 2007 | DE |
0 247 818 | Dec 1987 | EP |
0 460 494 | Dec 1991 | EP |
0 909 684 | Apr 1999 | EP |
1 094 240 | Apr 2001 | EP |
1 401 087 | Mar 2004 | EP |
1 432 101 | Jun 2004 | EP |
1 480 320 | Nov 2004 | EP |
1 564 868 | Aug 2005 | EP |
1 244 565 | Jul 2006 | EP |
721748 | Jan 1955 | GB |
908128 | Oct 1962 | GB |
2 340 461 | Feb 2000 | GB |
2 352 644 | Feb 2001 | GB |
2 352 645 | Feb 2001 | GB |
2 352 784 | Feb 2001 | GB |
2 357 563 | Jun 2001 | GB |
49-097163 | Sep 1974 | JP |
S53-113528 | Sep 1978 | JP |
56-107092 | Aug 1981 | JP |
58-25152 | Feb 1983 | JP |
60-259278 | Dec 1985 | JP |
63-64542 | Mar 1988 | JP |
5-296287 | Nov 1993 | JP |
H05-84347 | Nov 1993 | JP |
8-252025 | Oct 1996 | JP |
10-98868 | Apr 1998 | JP |
10-140536 | May 1998 | JP |
H10-178717 | Jun 1998 | JP |
10-304799 | Nov 1998 | JP |
11-119680 | Apr 1999 | JP |
11-189701 | Jul 1999 | JP |
11-315662 | Nov 1999 | JP |
2000-189530 | Jul 2000 | JP |
2000-316272 | Nov 2000 | JP |
2001-17041 | Jan 2001 | JP |
2005-353123 | Dec 2005 | JP |
2012-152316 | Aug 2012 | JP |
106 462 | Jul 2011 | RU |
9516496 | Jun 1995 | WO |
9617149 | Jun 1996 | WO |
9847215 | Oct 1998 | WO |
0138123 | May 2001 | WO |
03055560 | Jul 2003 | WO |
2007060053 | May 2007 | WO |
2008139127 | Nov 2008 | WO |
2009013479 | Jan 2009 | WO |
2009047469 | Apr 2009 | WO |
2009108040 | Sep 2009 | WO |
2009127142 | Oct 2009 | WO |
2010104405 | Sep 2010 | WO |
Entry |
---|
Extended European Search Report, dated Jul. 11, 2017, for European Application No. 14872681.3-1809, 10 pages. |
Extended European Search Report, dated Mar. 29, 2018, for European Application No. 15834380.6-1201, 12 pages. |
Extended European Search Report, dated Apr. 6, 2018, for European Application No. 15864540.8-1201, 26 pages. |
Final Office Action, dated Feb. 28, 2017, for U.S. Appl. No. 14/464,255, Allington et al., “Braking Mechanisms,” 10 pages. |
Notice of Allowance, dated Jul. 21, 2014, for U.S. Appl. No. 13/255,625, Allington et al., “Braking Mechanisms,” 11 pages. |
Office Action, dated Aug. 22, 2017, for U.S. Appl. No. 14/464,255, Allington et al., “Braking Mechanisms,” 5 pages. |
Office Action, dated Feb. 20, 2018, for U.S. Appl. No. 14/464,255, Allington et al., “Braking Mechanisms,” 15 pages. |
Office Action, dated Jan. 17, 2018, for U.S. Appl. No. 15/586,111, Allington et al., “Braking Mechanisms,” 15 pages. |
Office Action, dated Jan. 9, 2014, for U.S. Appl. No. 13/255,625, Allington et al., “Braking Mechanisms,” 9 pages. |
Office Action, dated Jul. 25, 2016, for U.S. Appl. No. 14/464,255, Allington et al., “Braking Mechanisms,” 10 pages. |
Park et al., “Torque analysis and measurements of a permanent magnet type Eddy current brake with a Halbach magnet array based on analytical magnetic field calculations,” Journal of Applied Physics 115(17):17E707, 2014. (3 pages). |
International Search Report and Written Opinion, dated Apr. 1, 2016, for International Application No. PCT/NZ2015/050206, 9 pages. |
International Search Report and Written Opinion, dated Feb. 13, 2009, for International Application No. PCT/US2008/087863, 15 pages. |
International Search Report and Written Opinion, dated Feb. 23, 2011, for International Application No. PCT/NZ2010/000011, 10 pages. |
International Search Report and Written Opinion, dated Feb. 24, 2016, for International Application No. PCT/NZ2015/050207, 10 pages. |
International Search Report and Written Opinion, dated Jan. 29, 2016, for International Application No. PCT/NZ2015/050208, 11 pages. |
International Search Report and Written Opinion, dated Mar. 11, 2015, for International Application No. PCT/NZ2014/000245, 8 pages. |
International Search Report and Written Opinion, dated Mar. 18, 2016, for International Application No. PCT/NZ2015/050209, 14 pages. |
International Search Report and Written Opinion, dated Mar. 29, 2016, for International Application No. PCT/NZ2015/050205, 10 pages. |
International Search Report and Written Opinion, dated Nov. 11, 2015, for International Application No. PCT/NZ2015/050114, 10 pages. |
International Search Report and Written Opinion, dated Nov. 18, 2015, for International Application No. PCT/NZ2015/050113, 9 pages. |
International Search Report and Written Opinion, dated Oct. 26, 2015, for International Application No. PCT/NZ2015/050115, 10 pages. |
MSA Safety Incorporated, Auto Belay Stop Use Notice, Oct. 15, 2009, URL=http://verticalendeavors.com/minneapolis/auto-belay-stop-us-notice/, download date Apr. 6, 2017, 2 pages. |
North Safety Products Europe B.V., “Climbing Wall Descender: FP2/5**GDD,” Climbing Wall Descent Controllers Instruction Manual v3, Aug. 18, 2008, 20 pages. |
TRUBLUE Auto Belays, Model TB150-12C Operator Manual, Jun. 20, 2013, 37 pages. |
Number | Date | Country | |
---|---|---|---|
20180269768 A1 | Sep 2018 | US |