Generally, wireless power transfer (WPT) is a technology which enables transferring power from a primary/transmitter side wirelessly to desired devices (pick-up/receiver/load side).
To transfer power, a primary coil in the transmitter is energized by AC currents, which generate time-varying magnetic fields or magnetic flux. The strength of the generated magnetic field depends on AC currents and permeability of space in accordance with Ampere's Law. A portion of the generated time-varying magnetic field links with a pick-up coil in the receiver side to induce voltages according to Faraday's Law. The linked magnetic field or magnetic flux is referred to as coupling and expressed as coupling coefficients k. Basically, with a given AC current and space permeability, the higher coupling coefficients k, the higher induced voltages across the pick-up conductor.
A pair of traditional WPT pads 10 (primary/transmitter pad 11, secondary/pick-up, receiver pad 12) used for wireless power transfer is show in
It is an object of the invention to provide a WPT transmitter and/or receiver pad with improved heat dissipation and/or k and/or improved eddy losses.
In one aspect the present invention may be said to comprise a WPT transmitter pad comprising: a cover, a coil, a metallic frame, and a frame magnetic sheet between the metallic frame and the cover.
Optionally the WPT transmitter comprises a metallic base plate.
Optionally the WPT transmitter further comprises a coil magnetic plate.
Optionally the frame magnetic sheet extends beyond the external perimeter of the metallic frame.
Optionally the frame magnetic sheet extends beyond the internal perimeter of the metallic frame.
Optionally the frame magnetic sheet is disposed between the metallic frame and the cover.
Optionally the frame magnetic sheet is spaced from the cover.
Optionally the frame magnetic sheet is spaced from the metallic frame.
Optionally the frame magnetic sheet is spaced from the coil magnetic plate.
Optionally the metallic frame is spaced from the frame magnetic sheet.
Optionally the metallic frame is spaced from the metallic base plate.
Optionally the metallic frame is spaced from the coil magnetic plate.
Optionally the metallic frame is shaped to improve heat dissipation.
Optionally the WPT transmitter further comprises one or more fans.
Optionally the WPT transmitter further comprises liquid cooling.
Optionally the frame magnetic sheet and/or coil magnetic plate are made from one or more of:
In another aspect the present invention may be said to consist in a WPT receiver pad comprising: a cover, a coil, a metallic frame, and a frame magnetic sheet between the metallic frame and the cover.
Optionally the WPT transmitter further comprises a metallic base plate.
Optionally the WPT transmitter further comprises a coil magnetic plate.
Optionally the frame magnetic sheet extends beyond the external perimeter of the metallic frame.
Optionally the frame magnetic sheet extends beyond the internal perimeter of the metallic frame.
Optionally the frame magnetic sheet is disposed between the metallic frame and the cover.
Optionally the frame magnetic sheet is spaced from the cover.
Optionally the frame magnetic sheet is spaced from the metallic frame.
Optionally the frame magnetic sheet is spaced from the coil magnetic plate.
Optionally the metallic frame is spaced from the frame magnetic sheet.
Optionally the metallic frame is spaced from the metallic base plate.
Optionally the metallic frame is spaced from the coil magnetic plate.
Optionally the metallic frame is shaped to improve heat dissipation.
Optionally the WPT transmitter further comprises one or more fans.
Optionally the WPT transmitter further comprises liquid cooling.
Optionally the frame magnetic sheet and/or coil magnetic plate are made from one or more of:
In another aspect the present invention may be said to comprise a WPT system comprising a transmitter pad according to any of the preceding paragraphs and a receiver pad according to any one or more of the preceding paragraphs.
In one aspect the present invention may be said to comprise a WPT pad comprising: a cover, a coil, a metallic frame, and a frame magnetic sheet between the metallic frame and the cover. Optionally the WPT pad can be a receiver pad. Optionally the WPT can be a transmitter pad. Optionally the WPT can have any one or more of the features according to any one or more the preceding paragraphs.
Optionally a WPT pad (such as a WPT receiver and/or WPT transmitter pad) as per any one or more of the preceding paragraphs comprises potting compound to assist in dissipating heat.
It is intended that reference to a range of numbers disclosed herein (for example, 1 to 10) also incorporates reference to all rational numbers within that range (for example, 1, 1.1, 2, 3, 3.9, 4, 5, 6, 6.5, 7, 8, 9 and 10) and also any range of rational numbers within that range (for example, 2 to 8, 1.5 to 5.5 and 3.1 to 4.7) and, therefore, all sub-ranges of all ranges expressly disclosed herein are hereby expressly disclosed. These are only examples of what is specifically intended and all possible combinations of numerical values between the lowest value and the highest value enumerated are to be considered to be expressly stated in this application in a similar manner.
The term “comprising” as used in this specification means “consisting at least in part of”. When interpreting each statement in this specification that includes the term “comprising”, features other than that or those prefaced by the term may also be present. Related terms such as “comprise” and “comprises” are to be interpreted in the same manner. Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise”, “comprising”, and the like, are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense, that is to say, in the sense of “including, but not limited to”.
Embodiments will now be described with reference to the accompanying drawings, of which:
3C shows a cross-section of a WPT transmitter pad in full and close-up, and in plan.
4C show a cross-section of a WPT receiver pad in full and close-up, and in plan.
Traditional WPT transmitter/receiver pads 10 (transmitter 11, receiver 12) have drawbacks with heat dissipation and eddy losses, as they are both encapsulated and insulated by galvanic insulation frames 13, 14 and a cover 18, 19.
The materials used in the galvanic insulation frames 13, 14 and cover 18, 19 of such pads 10 are poor conductors of heat. The heat generated by coil 17, 16 losses and coil magnetic plates 9, 8 losses (core losses) cannot be dissipated sufficiently rapidly, and therefore, the temperature of WPT pads 10 will increase over time. Moreover, pick-up pads 12 are usually compact, which means pick-up pads 12 are more susceptible to temperature rises.
Insofar that there have been attempts by others to deal with heat dissipation, the solutions introduce other problems. For example, if the galvanic insulation material frames are replaced with good conductors of heat, the temperature of pick-up pads can be lower than that with non-metallic frames because the heat can be quickly conducted and dissipated through good conductors. However, good conductors of heat can be good conductors of electricity as well. They shield some magnetic flux linked between primary coils and pick-up coils, and therefore, the k coupling coefficient between the transmitting and pick-up pad drops dramatically and induced voltage decreases. This results in less effective power transfer.
Further, traditional WPT pads 10 have losses on the metallic plate. Flux induces eddy currents on the surface of conductive objects, which causes extra resistive losses or solid losses. It is referred to as eddy current effect.
A time-varying magnetic flux induces loops of electrical currents within conductors. These (eddy) currents flow in a closed loop through the resistance of conductors, in planes perpendicular to the magnetic flux and therefore, generate losses as heat in conductors. These losses on conductors, caused by eddy currents, are referred to as solid losses. Solid losses affect WPT systems efficiencies.
The present embodiments address these by providing a metallic frame and frame magnetic sheet arrangement to deal with these drawbacks. The metallic frame increase heat dissipation. It also reduces eddy currents in the metallic plate. The metallic frame can reduce k, and also can introduce new eddy current losses. However, the addition of the frame magnetic sheet, helps reduce the k reduction, and reduces eddy currents in the metal frame so that the total eddy current losses of the metallic frame and metallic plate are less than the eddy current losses in just the metallic plate of a traditional WPT pad 10. Note, the frame magnetic sheet will typically be thinner than the coil magnetic plate, hence it is referred to as a sheet. But this should not be considered limiting on its thickness.
Referring to
Herein, any reference to a WPT pad can be interpreted generally to mean and/or cover a WPT transmitter pad, a WPT receiver pad, or both.
A first embodiment will now be described with reference to both the transmitter and receiver pads.
A transmitter pad 21 is shown in
The transmitter pad 21 comprises a primary metallic base plate 33, and a primary coil 35 sandwiched between a primary pad cover 32 and a primary pad coil magnetic plate 36. This arrangement provides for inductive power transfer to a receiver pad 22 in the usual manner. The transmitter pad 21 also comprises a primary metallic frame 31 that extends as a side wall between the primary pad cover 32 and the primary metallic base 33, and a primary frame magnetic sheet 34 that is disposed between the primary metallic frame 31 and the primary pad cover 32. The coil magnetic plate 36 and the frame magnetic sheet 34 can be made from any material with magnetic properties, such as ferromagnetic material, ferrimagnetic material, or nanocrystalline material, and can be for example ferrite, manganese-zinc ferrite, nickel-zinc ferrite etc. The coil magnetic plate and frame magnetic sheet can be made from the same or different magnetic materials.
The primary metallic frame 31 allows for improved heat conduction in comparison to traditional primary pads, but as previously noted a metallic element on its own can compromise the coupling coefficient k and/or increase metallic plate losses. The combination of the primary metallic frame 31 and primary frame magnetic sheet 34 and their relative positioning provide for improved heat dissipation compared to a traditional primary transmitter pad 11, while still enabling a sufficient coupling coefficient k and enabling a reduction of losses in the metallic plates.
In particular, the primary metallic frame 31 and the primary frame magnetic sheet 34 can be arranged according to the following design criteria, to achieve the improved outcomes described herein. One or more of these design criteria can be applied. Not all design criteria are required, nor essential. They just provide options for more optimised solutions. Any arrangement of frame magnetic plate and metallic frame might achieve an acceptable outcome, whether or not they follow these criteria. That said, at this point, design criteria comprising dimensions A, B and F have been preferred from current simulations.
It should be noted that the trade-offs mentioned are between a criteria dimension being too big, creating a pad that is too large and/or heavy and a criteria dimension being too small to provide a benefit in terms of heat dissipation, reduction in k reduction, and reduction of eddy losses.
A receiver pad is shown in
The receiver (pick-up) pad 22 comprises a secondary (receiver/pick-up) metallic base plate 43, and a secondary (receiver/pick-up) coil 45 sandwiched between a secondary (receiver/pick-up) pad cover 42 and a secondary (receiver/pick-up) coil magnetic plate 46. This arrangement provides for inductive power transfer from a transmitter 21 in the usual manner. The receiver pad 22 also comprises a secondary metallic frame 41 that extends as a side wall between the secondary pad cover 42 and the secondary metallic base 43, and a secondary frame magnetic sheet 44 that is disposed between the secondary metallic frame 41 and the secondary pad cover 42. The coil magnetic plate 36 and the frame magnetic sheet 44 can be made from any material with magnetic properties, such as ferromagnetic material, ferrimagnetic material, or nanocrystalline material, and can be for example ferrite, manganese-zinc ferrite, nickel-zinc ferrite etc. The coil magnetic plate and frame magnetic sheet can be made from the same or different magnetic materials.
The secondary metallic frame 41 allows for improved heat conduction in comparison to traditional secondary pads 22, but as previously noted a metallic element on its own can compromise the coupling coefficient and/or increase metallic plate losses. The combination of the secondary metallic frame 41 and secondary frame magnetic sheet 44 provide for improved heat dissipation compared to a traditional secondary transmitter pad 12, while still enabling a sufficient coupling coefficient K and enabling a reduction of losses in the metallic plates.
In particular, and similar to the transmitter pad, the secondary metallic frame 41 and the secondary frame magnetic sheet 44 can be arranged according to the following design criteria, to achieve the improved outcomes described herein. One or more of these design criteria can be applied. Not all design criteria are required, nor essential. They just provide options for more optimised solutions. Any arrangement of frame magnetic plate and metallic frame might achieve an acceptable outcome, whether or not they follow these criteria. That said, at this point, design criteria comprising dimensions I, J and N have been preferred from current simulations.
It should be noted that the trade-offs mentioned are between a criteria dimension being too big, creating a pad that is too large and/or heavy and a criteria dimension being too small to provide a benefit in terms of heat dissipation, reduction in k reduction, and reduction of eddy losses.
WPT pads are constructed as hermetically sealed “boxes” by base plates, frames and pad covers, such as shown in
The primary and secondary frame magnetic sheets 34, 44 can be made of materials which are usually made by mixing and firing large portion of iron oxides blended with a small portion of one or more additional metallic elements, such as barium, manganese, nickel, zinc, etc. They are electrically nonconductive and can be easily magnetized. For example, soft ferrites can be used here, which are usually made of nickel, zinc and/or manganese compounds. They have low coercivity to be magnetized easily without dissipating much energy and high resistivity to prevent eddy currents causing much loss.
The primary and secondary frame magnetic sheets 34, 33 are placed next to metallic frames 31, 41 to help regulate magnetic flux. They regulate magnetic flux, and they are helpful to maintain the portion of linked magnetic flux between primary and pick-up coils 35, 45. They prevent the coupling coefficient k dropping due to metallic frame 31, 41 shielding. Moreover, because of flux regulating, less flux will be around metallic objects. It means lower eddy currents and lower resistive losses or solid losses on added metallic frames and base plates.
To be noted that dimensions of primary/secondary frame magnetic sheets thicknesses, A, B, C, D, J, I, H and J, can be varied depending on different sizes of WPT pads and specific cases. The lengths of A, B, C and D of added frame magnetic sheets can even be 0 mm. The performance of the proposed WPT pads will be affected more or less in terms of coupling and losses. The advantages of the proposed structure are still established.
The primary/secondary metallic frame heights, the spacing F and L between the primary/secondary metallic frames 31, 41 and the primary/secondary coil magnetic plates 36. 46, spacings E and K between the primary/secondary metallic frame 31, 41 and primary/secondary base plates 33, 43, and the spacings C and I between primary/secondary metallic frames 31, 41 and the primary/secondary frame magnetic sheets 34, 44, alleviate linked magnetic flux blocking and coupling coefficient k drop. To be noted that non-optimised frame heights, F, L, E, K, C and L cause large solid losses on frames and a significant drop in coupling coefficient k.
Traditional WPT pads 10 use galvanic insulation frames 13, 14 instead of metallic materials, to avoid coupling drops and solid losses caused by eddy currents on conductor surfaces. However, galvanic insulation materials are poor conductors of heat. The heat generated by coil losses and ferrite losses cannot be dissipated on time, and it accumulates inside of pads. Therefore the whole pads temperature goes high eventually.
The embodiments herein use metallic frames 31, 41 to dissipate heat from inside of pads to outside. Because metallic materials are good conductors of heat, frames can be made into shapes with multi-layer fins to increase conductor surface areas, which improves the heat dissipation efficiency. Typical galvanic insulation frames cannot achieve it.
By selecting dimensions as per above, a primary pad can be designed that meets the objectives of providing heat dissipation while still maintaining a desired K coefficient and reducing eddy losses.
Improvements attained by the present embodiments herein are now demonstrated by way of various simulations that compare a traditional WPT pad 10 with a WPT pad 20 according to the present embodiments.
For the simulations the following specifications are used for the WPT pads—the dimensions are with reference to the letters shown in
The ambient temperature for the simulations is 25°.
In the example, ferrite is used for frame magnetic sheet and coil magnet plate. Aluminium is used for metallic frames and base plate. The metallic materials can be any metals like aluminium, iron, or alloys. The coil magnetic plates/frame magnetic sheets can be any materials having magnetic property, like ferrimagnetic materials, ferromagnetic materials or others.
Referring to
Referring to
Zero (0) mm is used for C/K, D/L, E/M as this was found optimum. It is easier to assembly a pad with 0 mm for these dimensions. If there is a gap, a filler material is required and assembly needs to be considered.
The losses on the frame magnetic sheets and metallic frame are also specified for the simulations, as set out in table 3 below.
A simulation of heat dissipation was run on the pads specified above. This shows the improvement of heat dissipation between a WPT pad with a metallic frame as per the present embodiments, and a traditional pad without a metallic frame.
As noted, above the metallic frame can reduce k, but the addition of the frame magnetic sheet can alleviate this. A simulation of electromagnetic coupling was run on the WPT pad as per the present embodiments (and dimensions above), and another without the frame magnetic sheet (but same dimensions).
The WPT pads 20 as per the present embodiments with dimensions as per the design criteria help to alleviate magnetic flux blocking due to metallic frames and keep coupling coefficients k. The comparison of k is given in Table 4 from simulation results.
In the WPT pads 20, the frame magnetic sheets 34, 44 regulate a portion of magnetic flux into the linked flux between primary coil 35 and pick-up coil 45. The metallic frames 31, 41 and the magnetic sheets 34, 44 with dimensions as per the design criteria leave enough space to prevent magnetic flux blocking. The coupling between the two coils 35, 45 is maintained.
The magnetic flux outside of the pick-up frame 41 is regulated through the added magnetic sheet 44 as shown in
As noted, above the metallic frame can reduce eddy current losses in the magnetic plate, but introduce new eddy currents, but the addition of the frame magnetic sheet can alleviate this. A simulation of electromagnetic coupling was run on the WPT pad as per the present embodiments (and dimensions above), and another without the frame magnetic sheet (but same dimensions).
In summary.
So the frame magnetic sheets reduce the eddy currents generated in the magnetic frame. And, as mentioned earlier, the metallic frame also reduces eddy currents in the metallic plate. So, the addition of the metallic frame and frame magnetic sheet (which helps reduce eddy currents in the metal frame), means that the total eddy current losses of the metallic frame and metallic plate are less than the eddy current losses in just the metallic plate of a traditional WPT pad 10.
The WPT pads as per the present embodiments also provide eddy loss improvements over a traditional WPT pad. In another simulation, the results demonstrate this, where the eddy losses of the present embodiment is compared to the eddy losses of a traditional WPT pad, as follows.
A simulation of k was run on the pads specified above. This shows the relative k (coupling coefficient) between a WPT pad with a metallic frame and frame magnetic sheet as per the present embodiments, and a traditional pad without a metallic frame and magnetic sheet.
The WPT pads 20 as per the present embodiments with dimensions as per the design criteria help to alleviate magnetic flux blocking due to metallic frames and keep coupling coefficients k. The comparison of k is given in Table 5 from simulation results.
In the WPT pads 20, the frame magnetic sheet 34, 44 regulates a portion of magnetic flux into the linked flux between primary coil 35 and pick-up coil 45. The metallic frames 31, 41 and the frame magnetic sheets 34, 44 with dimensions as per the design criteria leave enough space to prevent magnetic flux blocking. The coupling between the two coils 35, 45 is maintained. This is shown in
The magnetic flux outside of the pick-up frame 41 is regulated through added the frame magnetic sheet 44 as shown in
Traditional WPT pads 10 with galvanic insulation frames 13, 14 have high magnetic flux density around edges of the metallic base plate, as shown in
The solid loss comparison between the traditional WPT pad 10 and the present embodiments 20 is given in the table below. The solid losses on the metallic base plates can be significantly reduced from 4.66 W to 0.09 W on the primary side, and 15.11 W to 0.23 W on the pick-up side by using the proposed structure. Although the metallic frame brings 3.01 W and 10.58 W extra solid loss on both sides, the total solid loss decreases from 19.77 W to 13.91 W. It is almost 30% solid loss reduction, and the efficiency of the WPT system can be improved with the proposed WPT pad structure. In other words, pads with the proposed structure are cooler than traditional WPT pads in terms of temperature.
Referring to
A simulation of heat dissipation was run on the pads 10′, 20′ specified above.
There are two areas where a fans can be placed:
A first simulation of heat dissipation was run on the air blown cooled pads 10′, 20′ as per above, with the fans arranged in the area 1 behind the metallic base plate as per
A second simulation of heat dissipation was run on the air blown cooled pads 10′, 20′ as per above, with the fans arranged in the area 2 between the metallic base plate and the coil magnetic plate as per the same simulation specifications were used as set out previously for the non-fan cooled embodiment.
In summary, a fan can be used in either the traditional WPT pads and/or WPT pads according to the present embodiments to improve heat dissipation. Multiple fans can be used in either area. It is possible to select either area or both areas to place a fan or fans. Using area-2 only for a fan can reduce the thickness of a pad to accommodate a fan(s).
Referring to
Liquid cooling systems can be implemented with cooling pipes 130, 131 attaching to metallic frames. Two examples are shown in
Referring to
The metallic frames 31′, 41′, can be made to any shapes that increase conductor surface to help improve heat dissipation efficiencies. In effect, the metallic frames 31′, 41′ become heat sinks. An example is shown in
The pad could be filled or partially filled with potting compound, such as epoxy, which has a higher thermal conductivity than air and thus assists in dissipating heat. For embodiments with air-blown fan cooling, the potting may be confined to the area surrounding the coil and magnetic plate. The addition of potting may also improve structural rigidity, especially for the air-blown fan cooling embodiments where the potting surrounds the coil and magnetic plate.
It is not essential for the transmitter pad nor the receiver pad to have a metallic base plate. Rather the cover could be more in the form of a housing and provide the base plate too, thus encompassing the coil, and/or metallic frame and/or frame magnetic sheet and/or coil magnetic sheet and/or fan and other components as appropriate.
Where a pad has a metallic base plate, the cover might encapsulate the base plate.
It is not essential for the transmitter pad nor the receiver pad to have a coil magnetic sheet.
Therefore, the transmitter pad and/or receiver pad might just comprise a coil, cover, metallic frame and frame magnetic sheet.
The embodiments described do the following
Number | Date | Country | Kind |
---|---|---|---|
771120 | Dec 2020 | NZ | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2021/061741 | 12/15/2021 | WO |