Transmitter independent techniques to extend the performance of passive coherent location

Information

  • Patent Grant
  • 8203486
  • Patent Number
    8,203,486
  • Date Filed
    Tuesday, March 20, 2007
    17 years ago
  • Date Issued
    Tuesday, June 19, 2012
    12 years ago
Abstract
Methods to improve the performance of passive coherent location by non-reliance on a direct view of the signal source are described. Passive Coherent Location, or PCL, has become a promising technology as more computer-processing power has become generally available. Basically, most PCL techniques rely on comparing signal sources with their reflections from an object in order to determine the location of the object. However, this requires line of sight access from the receiver system to the signal source which may not always be practical and may limit the performance of the system overall. The techniques described herein do not require line of sight to the transmitter sources.
Description
FIELD OF THE INVENTION

The present invention relates to aircraft tracking. In particular, the present invention is directed toward transmitter independent techniques to extend the performance of passive coherent location.


BACKGROUND OF THE INVENTION

With a conventional radar system, a pulsed signal is transmitted and the time taken for the pulse to travel to the object and back allows the range of the object to be determined. In a passive radar system, there is no dedicated transmitter. Instead, the receiver uses third-party transmitters and measures the time difference of arrival (TDOA) between the signal arriving directly from the transmitter and the signal arriving via reflection from the object, allowing the bi-static range of the object to be determined. In addition to bi-static range, passive radar can also measure the bi-static Doppler shift of the echo and also its direction of arrival allowing the location, heading and speed of the object to be calculated. In some cases, multiple transmitters and receivers are used to make several independent measurements of bi-static range, Doppler and bearing and hence significantly improve the final track accuracy.


The Passive Coherent Location (PCL) system is bi-static radar, which measures the elliptical distance and the Doppler frequency shift. It works with continuous wave (CW) transmitters of opportunity, meaning that it uses electromagnetic radiation, primarily assigned for another purpose, for example, radio or television terrestrial broadcasts. It is necessary to detect at least two (in an ideal case three or more) direct signals from transmitters for a proper determination of a target position.


As of December 2006, there are several PCL systems in various stages of development or deployment, including:

    • Silent Sentry is a Lockheed Martin (USA) PCL system that uses FM radio transmissions. Two different antenna variants are believed to be available providing an antenna that provides 360° azimuth coverage from 4 different beams (an Adcock array), and a variant that provides 100° azimuth coverage from six different beams (linear array). It has a range of up to around 100 nautical miles depending on the variant employed and a number of receive nodes at different locations can be combined to provide increased coverage. See, http://www.dtic.mil/ndia/jaws/sentry.pdf, incorporated herein by reference.
    • Celldar is a British system developed jointly by Roke Manor and BAE Systems. The system is a PCL sensor that can exploit GSM signals, currently in the 900 MHz band, but may also be able to use the 900 MHz and 1800 MHz bands simultaneously in the future. It is believed that Celldar is a low level/surface surveillance system designed to achieve good coverage below 10,000 ft and can track targets in 2D over a 100° sector at ranges of up to around 60 km. See, http://www.roke.co.uk/skills/radar/, incorporated herein by reference.
    • CORA is a German PCL sensor, developed by FGAN (Die Forschungsgesellschaft für Angewandte Naturwissenschaften e.V.), that exploits Digital Video Broadcast-Terrestrial (DVB-T) and Digital Audio Broadcast (DAB) transmissions.
    • Cristal is a PCL sensor developed by Thales that exploits FM radio transmissions to track targets. In addition to Cristal, it is believed that Thales has a prototype PCL system that uses analog TV or DAB transmissions.
    • One of the PCL systems developed by ERA, formerly Rannoch Corporation, (www.rannoch.com) uses FM radio transmissions.


Each of these systems rely on continuous wave (CW) communications whether or not the CW signal is modulated to provide analog or digital information, as the techniques basically rely on the comparison of delayed versions of the source (i.e., the reflections) with the original CW signal. For example, analog signals include conventional FM radio or television, while digitally encoded signals include new television formats for audio, video, and telecommunications (e.g., DAB, DVB, and GSM).


U.S. Pat. No. 7,155,240, entitled “Method of Determining the Position of a Target Using Transmitters of Opportunity,” (Atkinson et al.), and incorporated herein by reference, describes a technique for non-reliance on line of sight with a digital source signal such as GSM. That technique claims a method of determining the position of a target using components in a wireless communication system in which pre-stored codes are included in transmissions of communications signals as part of a communication protocol, comprising the steps of: a) providing a transmitter which transmits a communications signal; b) providing a plurality of receivers, in communication with each other, which receive communications signals reflected from the target, the receivers being disposed at locations which are separate from the transmitter and separate from each other, and being time or phase synchronized; c) determining a time of arrival information of the received communications signal at each receiver by continuously correlating the code in the received communications signal with the pre-stored codes in the receiver; and d) using information pertaining to the location of each receiver, together with the information obtained from step c), to determine the target position.


In essence, the technique described by Atkinson et al uses a priori information relating to digital encoded signals where the receiver essentially identifies embedded data formats such as headers, lead-ins, or other recognizable formats. The technique appears to have been developed with digital communications in mind, and is not described for older analog transmission such as conventional television, FM radio, or other analog signals. Essentially, Atkinson's patent relies on unique or known characteristics contained within the raw digital data encoding of the transmitted signal for time or phase referencing.


SUMMARY OF THE INVENTION

The present invention is directed toward methods to improve the performance of passive coherent location by non-reliance on a direct view of the signal source. Passive Coherent Location, or PCL, has become a promising technology as more computer processing power has become generally available. Basically, most PCL techniques rely on comparing signal sources with their reflections from an object in order to determine the location of the object. However, this requires line of sight access from the receiver system to the signal source which may not always be practical and may limit the performance of the system overall. The techniques described herein do not require line of sight to the transmitter sources.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a first embodiment of the present invention, illustrating establishing References from a Source Signal's Characteristics.



FIG. 2 is a block diagram of a second embodiment of the present invention, illustrating the relative Comparison of Reflected Signals.



FIG. 3 is a block diagram of a third embodiment of the present invention, illustrating the use of Mobile Transmission Sources.



FIG. 4 is a diagram illustrating CAF for Direct and Scattered FM Signals (time delay τ transformed to range in km).



FIG. 5 is a diagram illustrating an Eight-Point FFT-Radix2 and Elementary Butterfly Operation.



FIG. 6 illustrates an FFT-radix2 Error for N=217 Samples for Different Arithmetic Representations.



FIG. 7 is a diagram illustrating an FFT-radix2 Butterfly Reduction for N=25 Samples using 4 Spectral Coefficients.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 is a block diagram of a first embodiment of the present invention, illustrating establishing References from a Source Signal's Characteristics. Referring to FIG. 1, this embodiment shows several FM transmitters 10, 20, 30 where the signals are reflected from an aircraft 100 and are received at multiple PCL receiver locations 110, 150.


Unlike conventional PCL, there is no direct line of sight from a reference channel 550, 600 to the transmitters 10, 20, 30. Instead, at receiver locations 150, time references for each of the signals are established through analysis of the reflected signals, such as analog television information patterns, FM modulation characteristics, or through signal characterization and processing, including spectral analysis, of the signals in real time, or near real time with quantifiable known delays such as those associated with gate array technology.


The time-stamped signals are then forwarded 200 to a central server 250 for PCL processing including detection, correlation, feature extraction, and line tracking, and then sent for display 300 or forwarding for integration with other surveillance systems.


This embodiment is essentially a distributed timing system, where timing references are established at the receivers 150.



FIG. 2 is a block diagram of a second embodiment of the present invention, illustrating the relative Comparison of Reflected Signals. Referring to FIG. 2, this embodiment shows several FM transmitters 10, 20, 30 where the signals are reflected from an aircraft 100 and are received at multiple PCL receiver locations 110, 150.


Again, unlike conventional PCL, there is no direct line of sight from a reference channel 550, 600 to the transmitters 10, 20, 30.


Instead at receiver locations 150, signals are down-converted, as in conventional multilateration, into video equivalent signals, which are passed along media 200 sufficient to provide the necessary bandwidth. For example, appropriate media includes fiber or radio link.


This embodiment shows a high-level two-step process at the central server. Firstly the incoming signals are matched to determine which reflected signals apply to each target, taking into account Doppler effects, and secondly for timing, detection, correlation, feature extraction, and line tracking, and then sent for display 400 or forwarding for integration with other surveillance systems.


This embodiment is essentially a centralized timing system where the timing is established through relative signal comparison at the central server 300.



FIG. 3 is a block diagram of a third embodiment of the present invention, illustrating the use of Mobile Transmission Sources. Referring to FIG. 3, this embodiment shows several aircraft-based transmitters 10, 20, 30 where the signals are reflected from an aircraft 100 and are received at multiple PCL receiver locations 110, 150. In this case there is line of sight to some or all of the aircraft based transmitters and the reference channel 50, 550, 600 to the transmitters 10, 20, 30.


Typical aircraft transmitters 10, 20, 30 may include CW or pulse systems, such as collision avoidance system, Mode S, or ADS-B transponders, which constantly transmit in typical airspace. Other than the mobile aspect of the transmitters, the PCL can operate in a conventional fashion with line of sight to the transmitters or decoding can be accomplished as in embodiments 1 and 2 above.


Thus, it is possible to use unique or identifiable reference information from any type of signal, whether digital or analog, which may be identifiable from the raw signal or from data reduction and analysis of the signal.


One of the issues with continuous wave tracking techniques is the sheer volume of data and processing power required to characterize and analyze signals. Therefore, it is necessary to consider various methods to reduce the data into salient characteristics for the purpose of comparison and characterization. For example, FM radio characteristics of interest over the typical FM frequency range of 88 MHz to 108 MHz include modulation depth, modulation frequency deviation, and other characteristics such as peak and semi-peak values.


In addition to using reference characteristics of waveforms for time referencing it is also possible to compare only signal reflections from a common source, even with the coherent source to perform positioning using time difference of arrival techniques.


Two separate methods are 1) use of unique signal characteristics to use as a time or phase reference or 2) comparison of reflected versions of the same source.


Therefore, in either of the two cases, it is possible to use the original CW information, or to use a characterization of the signal, such as a Fast Fourier Transform (FFT) or other characterization of the signal as described in the following publications which are incorporated herein by reference: Slezák, L., Kvasni{hacek over (c)}ka, M., Pelant, M., Vávra, J., Pl{hacek over (s)}ek, R.: Simulation and Evaluation of the Passive Coherent Location system. In Proc. International Radar Symposium 2005, Berlin 200; and Kvasni{hacek over (c)}ka, M., He{hacek over (r)}mánek, A., Pelant, M., Pl{hacek over (s)}ek, R.: Passive Coherent Location FPGA implementation of the Cross Ambiguity Function. In Proc. Signal Processing Symposium 2005, Wilga 2005.


A significant part of PCL processing is cross ambiguity function (CAF) computation and its decomposition into clutter and target components. The target CAF component is analyzed via a sequential target elimination process. As a result, the parameters defined for each detected target are: instantaneous bi-static RCS, ground clutter estimation, elliptical range and velocity, elliptical acceleration and RCS change during the integration period.


A sufficiently fast and reliable computation of the cross ambiguity function (CAF) is one of the most important tasks and also a computationally time consuming part of PCL processing. FIG. 4 illustrates—CAF for Direct and Scattered FM Signals (time delay τ transformed to range in km) Pl{hacek over (s)}ek et al define the Cross Ambiguity Function (CAF) mathematically as:










CAF


(

τ
,
f

)


=



0
T





s
1



(
t
)





s
2
*



(

t
+
τ

)







-
j2π







f

t










t







(
1
)








where s1 and s2 are continuous-time signals in the analytic signal complex format, T is the integration period (or interval) in seconds, τ is the time delay in seconds, and f is the Doppler frequency offset in Hertz.


In order to shift equation (1) into the discrete or sampled time domain, let t=nTS and







f
=


kf
s

N


,





where TS is the sample period,







f
s

=

1

T
s







is the sampling frequency, n represents individual sample numbers, and N is the total number of samples. Inserting these values into eq. (1) and simplifying yields the discrete form of the CAF:










CAF


(

τ
,
k

)


=




n
=
0


N
-
1










s
1



(
n
)





s
2
*



(

n
+
τ

)







-
j2π







kn
N









(
2
)








where s1 and s2 are the discrete-time (sampled) signals in the analytic signal complex format, N is the total number of samples in s1 and s2, τ is the time delay in samples, and






k
N





is the frequency difference in digital frequency, or a fraction of the sampling frequency. The magnitude of the CAF (τ,k), or |CAF (τ,k)|, will peak when τ and






k
N





are equal to the embedded TDOA (Time Difference of Arrival) and FDOA (Frequency Difference of Arrival), respectively, between the signals s1 and s2. Note that CAF (τ,k) is also capable of a signal detection due to the fact that the presence of peaks in the CAF (τ,k) may be used as a robust signal detector, even for signals with extremely low SNR.


Computational efficiency becomes a large factor because of the potentially wide range of TDOAs and FDOAs that must be searched. Equation (2) can uncover TDOAs in the range:







-
N


τ



N





and





FDOAs





for





k





in





the





range





-

N
2

+
1


k



N
2

.






To search the entire range of possible TDOAs and FDOAs would require 2N2 calculations of the CAF, which is an ominous task for large N or equivalently for long integration interval T.


The optimal algorithm for effective CAF computation is a direct application of the Fast Fourier Transform (FFT) into the signal product of the signals s1 and s2,

CAF(τ,k)=FFT(s1(n)s*2(n+τ))  (3)

Using eq. (3) to calculate CAF for all values of τ and k, an individual FFT computation is required for each value of τ.


One method for a fast and robust CAF calculation is a hardware implementation of the direct FFT method. Another way to perform these tasks is to deploy a cluster of computers with high-speed network interconnections and an appropriate number of computing nodes.


The basic requirements for CAF calculation in PCL signal processing are as follows:

    • Sampling frequency: 100-200 kHz
    • Effective bit resolution (dynamic range) for input signals: 18-24 bits (˜100 dB)
    • Total number of samples or integration interval: 217=131 072 samples or about 1 sec
    • Frequency resolution: <1 Hz
    • Accuracy of CAF calculation: absolute error about 10−9÷10−12 with comparison to IEEE 64-bit floating-point arithmetic
    • Maximum number of time delays: <1024
    • Maximum frequency range: custom character−300, +300custom character Hz (about 600 spectral coefficients)
    • Total time of computation: <1 sec (final requirements is about 10 ms for real time PCL system)


      This computational task is extremely challenging due to the sheer volume of input data and the need for high accuracy of the CAF computation.


The basic part of the CAF computation algorithm is a radix-2 implementation of the general FFT algorithm. The theoretical computational complexity of this algorithm is O(N log2 N) operations (compare with O(N2) for a standard DFT). FIG. 5 shows the basic computational Eight Point FFT-radix-2 structure in terms of elementary “butterfly” operations.


More effective implementations of the FFT exist, such as radix-4 and split-radix but they are significantly more complicated to implement, and this example is restricted to radix-2 for the purposes of discussion and presentation.


A practical approach to FFT/CAF implementation is significantly influenced by the arithmetic representation (fixed or floating-point) and numerical accuracy. As an optimal arithmetic representation, a fixed-point numerical representation with 42-46 bit accuracy may be employed as illustrated in FIG. 6. FIG. 6 illustrates an FFT-radix2 Error for N=217 Samples for Different Arithmetic Representations.


For limited frequency ranges, e.g., custom character−300,+300custom character Hz, which represents only about a 1% fraction of the frequency range up to the Nyquist frequency, the number of operations may be reduced significantly. FIG. 7 illustrates an example of a “butterfly” reduction, which is not necessary for FFT calculation for limited frequency ranges. It is possible to obtain a modified FFT-radix2 algorithm with about 62% reduction of the required “butterfly” operations.


While the preferred embodiment and various alternative embodiments of the invention have been disclosed and described in detail herein, it may be apparent to those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope thereof.

Claims
  • 1. A method of tracking a target using passive coherent location, comprising the steps of: receiving, at a plurality of receivers, reflections of radio signals from target, the radio signals being generated by one or more of uncontrolled or controlled transmitter sources, at least one or more of the plurality of receivers not in a line-of-sight to the transmitter sources,identifying the reflections of the radio signals as reflections from the target;analyzing the reflections of the radio signals by one or more of analyzing analog television information patterns, analyzing FM modulation characteristics, and through spectral analysis of the reflections of the radio signals to determine a transmitter source,measuring a time difference of arrival of the reflections of the radio signals at the plurality of receivers, anddetermining target position from the time difference of arrival of the reflections of the radio signals.
  • 2. The method of claim 1, wherein the radio signals comprise one or more of digitally and analog encoded radio signals.
  • 3. The method of claim 1, wherein the radio signals comprise one or more of analog television and digital television.
  • 4. The method of claim 1, wherein the radio signals comprise one or more of FM radio, analog television, Digital Video Broadcast Terrestrial (DVB-T), Digital Audio Broadcast (DAB), and the Global System for Mobile Communications (GSM).
  • 5. The method of claim 1, wherein the step of identifying reflections of radio signals as a reflection from the target comprises the step of applying pattern recognition to the reflections of the radio signals using a distributed timing information system at the plurality of receivers.
  • 6. The method of claim 1, wherein the step of identifying reflections of radio signals as a reflection from the target comprises the step of comparing reflections of the radio signals using a centralized timing information system at a central server.
  • 7. The method of claim 1, wherein the radio signals are transmitted from one or more of fixed or mobile radar, transponders, navigation equipment, weather system, or communications systems.
  • 8. A system for tracking a target reflecting radio signals, the system comprising: a plurality of receivers receiving reflections of radio signals from target, the radio signals being generated by one or more of uncontrolled or controlled transmitter sources, one of the plurality of receivers not being in line-of-sight with one or more of the uncontrolled or controlled transmitter sources,a detector identifying reflections of radio signals reflected from the target and measuring a time difference of arrival of the reflections of the radio signals at the plurality of receivers,an analyzer analyzing the reflections of the radio signals by one or more of analyzing analog television information patterns, analyzing FM modulation characteristics, and through spectral analysis of the reflections of the radio signals to determine a transmitter source, anda calculator for determining target position from the time difference of arrival of the reflections of the radio signals.
  • 9. The system of claim 8, wherein the detector identifies reflected radio signals from the target using one or more of pattern recognition in the reflected signals and analyzed reflected signals in a distributed timing information system, created at the receivers.
  • 10. The system of claim 8, wherein the detector identifies reflected radio signals from the target by comparing the reflected signals at a centralized timing information system at a central server.
  • 11. The system of claim 8, wherein the radio signals comprise one or more of FM radio, analog television, Digital Video Broadcast Terrestrial (DVB-T), Digital Audio Broadcast (DAB), and the Global System for Mobile Communications (GSM).
  • 12. The system of claim 8, wherein the radio signals are transmitted from one or more of fixed or mobile radar, transponders, navigation equipment, weather system, or communications systems.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation-In-Part of U.S. patent application Ser. No. 11/492,711, filed Jul. 25, 2006 now U.S. Pat. No. 7,429,950, and incorporated herein by reference; This application is a Continuation-In-Part of U.S. patent application Ser. No. 11/429,926, filed on May 8, 2006 now U.S. Pat. No. 7,477,193, and incorporated herein by reference; This application is a Continuation-In-Part of U.S. patent application Ser. No. 11/343,079, filed on Jan. 30, 2006 now U.S. Pat. No. 7,375,683, and incorporated herein by reference; This application is also a Continuation-In-Part of U.S. patent application Ser. No. 11/342,289 filed Jan. 28, 2006 now U.S. Pat. No. 7,576,695 and incorporated herein by reference; This application is a Continuation-In-Part of U.S. patent application Ser. No. 11/209,030, filed on Aug. 22, 2005 now U.S. Pat. No. 7,248,219, and incorporated herein by reference; This application is a Continuation-In-Part of U.S. patent application Ser. No. 11/257,416, filed on Oct. 24, 2005 now U.S. Pat. No. 7,495,612, and incorporated herein by reference; This application is a Continuation-In-Part of U.S. patent application Ser. No. 11/203,823 filed Aug. 15, 2005 now U.S. Pat. No. 7,739,167 and incorporated herein by reference; This application is a Continuation-In-Part of U.S. patent application Ser. No. 11/145,170 filed on Jun. 6, 2005 now U.S. Pat. No. 7,437,250 and incorporated herein by reference; application Ser. No. 11/145,170 is a Continuation-In-Part of U.S. patent application Ser. No. 10/743,042 filed Dec. 23, 2003 now U.S. Pat. No. 7,132,982 and incorporated herein by reference; application Ser. No. 10/743,042 is a Continuation-In-Part of U.S. patent application Ser. No. 10/638,524 filed Aug. 12, 2003 now U.S. Pat. No. 6,806,829 and incorporated herein by reference; application Ser. No. 10/638,524 is a Continuation of U.S. patent application Ser. No. 09/516,215 filed Feb. 29, 2000 now U.S. Pat. No. 6,633,259 and incorporated herein by reference; application Ser. No. 09/516,215 claims is a Non Prov. of Provisional U.S. Patent Application Ser. No. 60/123,170 filed Mar. 5, 1999 and incorporated herein by reference; application Ser. No. 10/743,042 is a Continuation-In-Part of U.S. patent application Ser. No. 10/319,725 filed Dec. 16, 2002 now U.S. Pat. No. 6,812,890, and incorporated herein by reference. Application Ser. No. 10/743,042 is a Non Prov. of Provisional U.S. Patent Application Ser. No. 60/440,618 filed Jan. 17, 2003 and incorporated herein by reference; The present application is also a Continuation-In-Part of U.S. patent application Ser. No. 11/649,350, filed Jan. 3, 2007, and incorporated herein by reference.

US Referenced Citations (454)
Number Name Date Kind
1738571 Gare Dec 1929 A
3668403 Meilander Jun 1972 A
3705404 Chisholm Dec 1972 A
3792472 Payne et al. Feb 1974 A
4079414 Sullivan Mar 1978 A
4115771 Litchford Sep 1978 A
4122522 Smith Oct 1978 A
4167006 Funatsu et al. Sep 1979 A
4196474 Buchanan et al. Apr 1980 A
4224669 Brame Sep 1980 A
4229737 Heldwein et al. Oct 1980 A
4315609 McLean et al. Feb 1982 A
4327437 Frosch et al. Apr 1982 A
4359733 O'Neill Nov 1982 A
4454510 Crow Jun 1984 A
4524931 Nilsson Jun 1985 A
4646244 Bateman Feb 1987 A
4688046 Schwab Aug 1987 A
4782450 Flax Nov 1988 A
4811308 Michel Mar 1989 A
4843397 Galati et al. Jun 1989 A
4853700 Funatsu et al. Aug 1989 A
4897661 Hiraiwa Jan 1990 A
4899296 Khattak Feb 1990 A
4910526 Donnangelo et al. Mar 1990 A
4914733 Gralnick Apr 1990 A
4958306 Powell et al. Sep 1990 A
5001490 Fichtner Mar 1991 A
5001650 Francis et al. Mar 1991 A
5017930 Stoltz May 1991 A
5025382 Artz Jun 1991 A
5027114 Kawashima et al. Jun 1991 A
5045861 Duffett-Smith Sep 1991 A
5075680 Dabbs Dec 1991 A
5075694 Donnangelo et al. Dec 1991 A
5081457 Motisher et al. Jan 1992 A
5089822 Abaunza et al. Feb 1992 A
5113193 Powell et al. May 1992 A
5119102 Barnard Jun 1992 A
5132695 Sumas et al. Jul 1992 A
5138321 Hammer Aug 1992 A
5144315 Schwab et al. Sep 1992 A
5153836 Fraughton et al. Oct 1992 A
5179384 De Haan Jan 1993 A
5191342 Alsup et al. Mar 1993 A
5200902 Pilley Apr 1993 A
5225842 Brown et al. Jul 1993 A
5260702 Thompson Nov 1993 A
5262784 Drobnicki et al. Nov 1993 A
5265023 Sokkappa Nov 1993 A
5268698 Smith et al. Dec 1993 A
5283574 Grove Feb 1994 A
5311194 Brown May 1994 A
5317316 Sturm et al. May 1994 A
5317317 Billaud et al. May 1994 A
5339281 Narendra et al. Aug 1994 A
5341139 Billaud et al. Aug 1994 A
5365516 Jandrell Nov 1994 A
5374932 Wyschogrod et al. Dec 1994 A
5379224 Brown et al. Jan 1995 A
5381140 Kuroda et al. Jan 1995 A
5402116 Ashley Mar 1995 A
5406288 Billaud et al. Apr 1995 A
5424746 Schwab et al. Jun 1995 A
5424748 Pourailly et al. Jun 1995 A
5438337 Aguado Aug 1995 A
5448233 Saban et al. Sep 1995 A
5450329 Tanner Sep 1995 A
5454720 FitzGerald et al. Oct 1995 A
5455586 Barbier et al. Oct 1995 A
5471657 Gharpuray Nov 1995 A
5486829 Potier et al. Jan 1996 A
5493309 Bjornholt Feb 1996 A
5506590 Minter Apr 1996 A
5515286 Simon May 1996 A
5528244 Schwab Jun 1996 A
5534871 Hidaka et al. Jul 1996 A
5541608 Murphy et al. Jul 1996 A
5570095 Drouilhet, Jr. et al. Oct 1996 A
5570099 DesJardins Oct 1996 A
5583775 Nobe et al. Dec 1996 A
5590044 Buckreub Dec 1996 A
5596326 Fitts Jan 1997 A
5596332 Coles et al. Jan 1997 A
5608412 Welles, II et al. Mar 1997 A
5614912 Mitchell Mar 1997 A
5617101 Maine et al. Apr 1997 A
5627546 Crow May 1997 A
5629691 Jain May 1997 A
5635693 Benson et al. Jun 1997 A
5659319 Rost et al. Aug 1997 A
5666110 Paterson Sep 1997 A
5670960 Cessat Sep 1997 A
5670961 Tomita et al. Sep 1997 A
5677841 Shiomi et al. Oct 1997 A
5680140 Loomis Oct 1997 A
5686921 Okada et al. Nov 1997 A
5699275 Beasley et al. Dec 1997 A
5714948 Farmakis et al. Feb 1998 A
5732384 Ellert et al. Mar 1998 A
5752216 Carlson et al. May 1998 A
5757314 Gounon et al. May 1998 A
5774829 Cisneros et al. Jun 1998 A
5781150 Norris Jul 1998 A
5784022 Kupfer Jul 1998 A
5793329 Nakada et al. Aug 1998 A
5798712 Coquin Aug 1998 A
5802542 Coiera et al. Sep 1998 A
5825021 Uemura Oct 1998 A
5828333 Richardson et al. Oct 1998 A
5839080 Muller Nov 1998 A
5841391 Lucas, Jr. et al. Nov 1998 A
5841398 Brock Nov 1998 A
5850420 Guillard et al. Dec 1998 A
5867804 Pilley et al. Feb 1999 A
5872526 Tognazzini Feb 1999 A
5884222 Denoize et al. Mar 1999 A
5890068 Fattouce et al. Mar 1999 A
5892462 Tran Apr 1999 A
5913912 Nishimura et al. Jun 1999 A
5920277 Foster et al. Jul 1999 A
5920318 Salvatore, Jr. et al. Jul 1999 A
5923293 Smith et al. Jul 1999 A
5949375 Ishiguro et al. Sep 1999 A
5969674 Von der Embse et al. Oct 1999 A
5977905 Le Chevalier Nov 1999 A
5979234 Karlsen Nov 1999 A
5990833 Ahlbom et al. Nov 1999 A
5991687 Hale et al. Nov 1999 A
5995040 Issler et al. Nov 1999 A
5999116 Evers Dec 1999 A
6043777 Bergman et al. Mar 2000 A
6044322 Stieler Mar 2000 A
6049304 Rudel et al. Apr 2000 A
6049754 Beaton et al. Apr 2000 A
6075479 Kudoh Jun 2000 A
6081222 Henkel et al. Jun 2000 A
6081764 Varon Jun 2000 A
6085150 Henry et al. Jul 2000 A
6088634 Muller Jul 2000 A
6092009 Glover Jul 2000 A
6094169 Smith et al. Jul 2000 A
6122570 Muller Sep 2000 A
6127944 Daly Oct 2000 A
6133867 Eberwine et al. Oct 2000 A
6138060 Conner Oct 2000 A
6147748 Hughes Nov 2000 A
6161097 Glass et al. Dec 2000 A
6178363 McIntyre et al. Jan 2001 B1
6188937 Sherry et al. Feb 2001 B1
6194040 Delius et al. Feb 2001 B1
6195609 Pilley Feb 2001 B1
6201499 Hawkes et al. Mar 2001 B1
6208284 Woodell et al. Mar 2001 B1
6208937 Huddle Mar 2001 B1
6211811 Evers Apr 2001 B1
6219592 Muller et al. Apr 2001 B1
6222480 Kuntman et al. Apr 2001 B1
6225942 Alon May 2001 B1
6230018 Watters et al. May 2001 B1
6233522 Morici May 2001 B1
6239739 Thomson et al. May 2001 B1
6240345 Vesel May 2001 B1
6246342 Vandevoorde et al. Jun 2001 B1
6253147 Greenstein Jun 2001 B1
6271768 Frazier, Jr. et al. Aug 2001 B1
6275172 Curtis et al. Aug 2001 B1
6275767 Delseny et al. Aug 2001 B1
6282487 Shiomi et al. Aug 2001 B1
6282488 Castor et al. Aug 2001 B1
6289280 Fernandez-Corbaton Sep 2001 B1
6292721 Conner et al. Sep 2001 B1
6311127 Stratton et al. Oct 2001 B1
6314361 Yu et al. Nov 2001 B1
6314363 Pilley et al. Nov 2001 B1
6317663 Meunier et al. Nov 2001 B1
6321091 Holland Nov 2001 B1
6327471 Song Dec 2001 B1
6329947 Smith Dec 2001 B2
6337652 Shiomi et al. Jan 2002 B1
6338011 Furst et al. Jan 2002 B1
6339745 Novik Jan 2002 B1
6340935 Hall Jan 2002 B1
6340947 Chang et al. Jan 2002 B1
6344820 Shiomi et al. Feb 2002 B1
6347263 Johnson et al. Feb 2002 B1
6348856 Jones et al. Feb 2002 B1
6366240 Timothy et al. Apr 2002 B1
6377208 Chang et al. Apr 2002 B2
6380869 Simon et al. Apr 2002 B1
6380870 Conner et al. Apr 2002 B1
6384783 Smith et al. May 2002 B1
6393359 Flynn et al. May 2002 B1
6396435 Fleischhauer et al. May 2002 B1
6408233 Solomon et al. Jun 2002 B1
6414629 Curico Jul 2002 B1
6415219 Degodyuk Jul 2002 B1
6420993 Varon Jul 2002 B1
6445310 Bateman et al. Sep 2002 B1
6445927 Kng et al. Sep 2002 B1
6448929 Smith et al. Sep 2002 B1
6459411 Frazier et al. Oct 2002 B2
6462674 Ohmura et al. Oct 2002 B2
6463383 Baiada et al. Oct 2002 B1
6469654 Winner et al. Oct 2002 B1
6469655 Franke et al. Oct 2002 B1
6469664 Michaelson et al. Oct 2002 B1
6473027 Alon Oct 2002 B1
6473694 Akopian et al. Oct 2002 B1
6477449 Conner et al. Nov 2002 B1
6492932 Jin et al. Dec 2002 B1
6493610 Ezaki Dec 2002 B1
6504490 Mizushima Jan 2003 B2
6518916 Ashihara et al. Feb 2003 B1
6522295 Baugh et al. Feb 2003 B2
6531978 Tran Mar 2003 B2
6542809 Hehls, III Apr 2003 B2
6542810 Lai Apr 2003 B2
6545631 Hudson et al. Apr 2003 B2
6549829 Anderson et al. Apr 2003 B1
6563432 Millgard May 2003 B1
6567043 Smith et al. May 2003 B2
6571155 Carriker et al. May 2003 B2
6584400 Beardsworth Jun 2003 B2
6584414 Green et al. Jun 2003 B1
6587079 Rickard et al. Jul 2003 B1
6606034 Muller et al. Aug 2003 B1
6606563 Corcoran, III Aug 2003 B2
6615648 Ferguson et al. Sep 2003 B1
6617997 Ybarra et al. Sep 2003 B2
6618008 Scholz Sep 2003 B1
6633259 Smith et al. Oct 2003 B1
6657578 Stayton et al. Dec 2003 B2
6680687 Phelipot Jan 2004 B2
6690295 De Boer Feb 2004 B1
6690618 Tomasi et al. Feb 2004 B2
6691004 Johnson Feb 2004 B2
6707394 Ishihara et al. Mar 2004 B2
6710719 Jones et al. Mar 2004 B1
6710723 Muller Mar 2004 B2
6714782 Monot et al. Mar 2004 B1
6721652 Sanqunetti Apr 2004 B1
6744396 Stone et al. Jun 2004 B2
6750815 Michaelson et al. Jun 2004 B2
6751545 Walter Jun 2004 B2
6760387 Langford et al. Jul 2004 B2
6765533 Szajnowski Jul 2004 B2
6789011 Baiada et al. Sep 2004 B2
6789016 Bayh et al. Sep 2004 B2
6792058 Hershey et al. Sep 2004 B1
6798381 Benner et al. Sep 2004 B2
6799114 Etnyre Sep 2004 B2
6801152 Rose Oct 2004 B1
6801155 Jahangir et al. Oct 2004 B2
6809679 LaFrey et al. Oct 2004 B2
6810329 Koga Oct 2004 B2
6812890 Smith et al. Nov 2004 B2
6816105 Winner et al. Nov 2004 B2
6819282 Galati et al. Nov 2004 B1
6823188 Stern Nov 2004 B1
6828921 Brown et al. Dec 2004 B2
6845362 Furuta et al. Jan 2005 B2
6861982 Forstrom et al. Mar 2005 B2
6862519 Walter Mar 2005 B2
6862541 Mizushima Mar 2005 B2
6865484 Miyasaka et al. Mar 2005 B2
6873269 Tran Mar 2005 B2
6873903 Baiada et al. Mar 2005 B2
6876859 Anderson et al. Apr 2005 B2
6882930 Trayford et al. Apr 2005 B2
6885340 Smith et al. Apr 2005 B2
6900760 Groves May 2005 B2
6912461 Poreda Jun 2005 B2
6927701 Schmidt et al. Aug 2005 B2
6930638 Lloyd et al. Aug 2005 B2
6952631 Griffith et al. Oct 2005 B2
6963304 Murphy Nov 2005 B2
6967616 Etnyre Nov 2005 B2
6977612 Bennett Dec 2005 B1
6985103 Ridderheim et al. Jan 2006 B2
6985743 Bajikar Jan 2006 B2
6992626 Smith Jan 2006 B2
7006032 King et al. Feb 2006 B2
7012522 Le Van Mar 2006 B1
7026987 Lokshin et al. Apr 2006 B2
7030780 Shiomi et al. Apr 2006 B2
7043355 Lai May 2006 B2
7050909 Nichols et al. May 2006 B2
7053792 Aoki et al. May 2006 B2
7058506 Kawase et al. Jun 2006 B2
7062381 Rekow et al. Jun 2006 B1
7065443 Flynn et al. Jun 2006 B2
7071843 Hashida et al. Jul 2006 B2
7071867 Wittenberg et al. Jul 2006 B2
7079925 Kubota et al. Jul 2006 B2
7095360 Kuji et al. Aug 2006 B2
7102570 Bar-On et al. Sep 2006 B2
7106212 Konishi et al. Sep 2006 B2
7109889 He Sep 2006 B2
7117089 Khatwa et al. Oct 2006 B2
7120537 Flynn et al. Oct 2006 B2
7123169 Farmer et al. Oct 2006 B2
7123192 Smith et al. Oct 2006 B2
7126534 Smith et al. Oct 2006 B2
7136059 Kraud et al. Nov 2006 B2
7142154 Quilter et al. Nov 2006 B2
7148816 Carrico Dec 2006 B1
7155240 Atkinson et al. Dec 2006 B2
7164986 Humphries et al. Jan 2007 B2
7170441 Perl et al. Jan 2007 B2
7170820 Szajnowski Jan 2007 B2
7187327 Coluzzi et al. Mar 2007 B2
7190303 Rowlan Mar 2007 B2
7196621 Kochis Mar 2007 B2
7206698 Conner et al. Apr 2007 B2
7218276 Teranishi May 2007 B2
7218278 Arethens May 2007 B1
7221308 Burton et al. May 2007 B2
7228207 Clarke et al. Jun 2007 B2
7233545 Harvey, Jr. et al. Jun 2007 B2
7248963 Baiada et al. Jul 2007 B2
7250901 Stephens Jul 2007 B2
7257469 Pemble Aug 2007 B1
7272495 Coluzzi et al. Sep 2007 B2
7277052 Delaveau et al. Oct 2007 B2
7286624 Woo et al. Oct 2007 B2
7307578 Blaskovich et al. Dec 2007 B2
7308343 Horvath et al. Dec 2007 B1
7321813 Meunier Jan 2008 B2
7333052 Maskell Feb 2008 B2
7333887 Baiada et al. Feb 2008 B2
7352318 Osman et al. Apr 2008 B2
7358854 Egner et al. Apr 2008 B2
7379165 Anderson et al. May 2008 B2
7382286 Cole et al. Jun 2008 B2
7383104 Ishii et al. Jun 2008 B2
7383124 Vesel Jun 2008 B1
7385527 Clavier et al. Jun 2008 B1
7391359 Ootomo et al. Jun 2008 B2
7398157 Sigurdsson et al. Jul 2008 B2
7400297 Ferreol et al. Jul 2008 B2
7408497 Billaud et al. Aug 2008 B2
7408498 Kuji et al. Aug 2008 B2
7420501 Perl Sep 2008 B2
7430218 Lee et al. Sep 2008 B2
7437225 Rathinam Oct 2008 B1
7440846 Irie et al. Oct 2008 B2
7457690 Wilson, Jr. Nov 2008 B2
7460866 Salkini et al. Dec 2008 B2
7460871 Humphries et al. Dec 2008 B2
7477145 Tatton et al. Jan 2009 B2
7479919 Poe et al. Jan 2009 B2
7479922 Hunt et al. Jan 2009 B2
7479923 Carpenter Jan 2009 B2
7479925 Schell Jan 2009 B2
7487108 Aoki et al. Feb 2009 B2
7501977 Ino Mar 2009 B2
7504996 Martin Mar 2009 B2
7515715 Olive Apr 2009 B2
20010014847 Keenan Aug 2001 A1
20010026240 Neher Oct 2001 A1
20020021247 Smith et al. Feb 2002 A1
20020089433 Bateman et al. Jul 2002 A1
20020152029 Sainthuile et al. Oct 2002 A1
20030004641 Corwin et al. Jan 2003 A1
20030009267 Dunsky et al. Jan 2003 A1
20030060941 Griffith et al. Mar 2003 A1
20030097216 Etnyre May 2003 A1
20030152248 Spark et al. Aug 2003 A1
20030158799 Kakihara et al. Aug 2003 A1
20040002886 Dickerson et al. Jan 2004 A1
20040004554 Srinivasan et al. Jan 2004 A1
20040039806 Miras Feb 2004 A1
20040044463 Shen-Feng et al. Mar 2004 A1
20040086121 Viggiano et al. May 2004 A1
20040094622 Vismara May 2004 A1
20040210371 Adachi et al. Oct 2004 A1
20040225432 Pilley et al. Nov 2004 A1
20040266341 Teunon Dec 2004 A1
20050007272 Smith et al. Jan 2005 A1
20050021283 Brinton et al. Jan 2005 A1
20050046569 Spriggs et al. Mar 2005 A1
20050057395 Atkinson Mar 2005 A1
20050159170 Puranik et al. Jul 2005 A1
20051066672 Atkinson Aug 2005
20050192717 Tafs et al. Sep 2005 A1
20050228715 Hartig et al. Oct 2005 A1
20050231422 Etnyre Oct 2005 A1
20060023655 Engel et al. Feb 2006 A1
20060044184 Kimura Mar 2006 A1
20060052933 Ota Mar 2006 A1
20060119515 Smith Jun 2006 A1
20060129310 Tarrant et al. Jun 2006 A1
20060161340 Lee Jul 2006 A1
20060167598 Pennarola Jul 2006 A1
20060181447 Kuji et al. Aug 2006 A1
20060191326 Smith et al. Aug 2006 A1
20060208924 Matalon Sep 2006 A1
20060250305 Coluzzi et al. Nov 2006 A1
20060262014 Shemesh et al. Nov 2006 A1
20060265664 Simons et al. Nov 2006 A1
20060276201 Dupray Dec 2006 A1
20070001903 Smith et al. Jan 2007 A1
20070040734 Evers et al. Feb 2007 A1
20070060079 Nakagawa et al. Mar 2007 A1
20070090295 Parkinson et al. Apr 2007 A1
20070106436 Johansson May 2007 A1
20070109184 Shyr et al. May 2007 A1
20070159356 Borel et al. Jul 2007 A1
20070159378 Powers et al. Jul 2007 A1
20070182589 Tran Aug 2007 A1
20070213887 Woodings Sep 2007 A1
20070222665 Koeneman Sep 2007 A1
20070250259 Dare Oct 2007 A1
20070252750 Jean et al. Nov 2007 A1
20070298786 Meyers et al. Dec 2007 A1
20080027596 Conner et al. Jan 2008 A1
20080042880 Ramaiah et al. Feb 2008 A1
20080042902 Brandwood et al. Feb 2008 A1
20080062011 Butler et al. Mar 2008 A1
20080063123 De Mey et al. Mar 2008 A1
20080068250 Brandao et al. Mar 2008 A1
20080088508 Smith Apr 2008 A1
20080106438 Clark et al. May 2008 A1
20080106457 Bartolini et al. May 2008 A1
20080109343 Robinson et al. May 2008 A1
20080117106 Sarno et al. May 2008 A1
20080120032 Brandao et al. May 2008 A1
20080129601 Thomas Jun 2008 A1
20080132270 Basir Jun 2008 A1
20080137524 Anderson et al. Jun 2008 A1
20080150784 Zhang et al. Jun 2008 A1
20080158040 Stayton et al. Jul 2008 A1
20080158059 Bull et al. Jul 2008 A1
20080174472 Stone et al. Jul 2008 A1
20080183344 Doyen et al. Jul 2008 A1
20080186224 Ichiyanagi et al. Aug 2008 A1
20080186231 Aljadeff et al. Aug 2008 A1
20080195309 Prinzel, III et al. Aug 2008 A1
20080231494 Galati Sep 2008 A1
20080252528 Shen et al. Oct 2008 A1
20080266166 Schuchman Oct 2008 A1
20080272227 Sharpe Nov 2008 A1
20080275642 Clark et al. Nov 2008 A1
20080294306 Huynh et al. Nov 2008 A1
20080297398 Kamimura Dec 2008 A1
20090005960 Roberts et al. Jan 2009 A1
20090009357 Heen et al. Jan 2009 A1
20090012660 Roberts et al. Jan 2009 A1
20090012661 Louis Jan 2009 A1
20090015471 Shen et al. Jan 2009 A1
20090027270 Fisher et al. Jan 2009 A1
20090051570 Clark et al. Feb 2009 A1
20090055038 Garrec et al. Feb 2009 A1
Foreign Referenced Citations (210)
Number Date Country
4306660 Aug 1974 DE
4204164 Aug 1993 DE
19751092 Jun 1999 DE
10149006 Apr 2003 DE
202004007747 Sep 2004 DE
202006005089 Jun 2006 DE
102006009121 Aug 2007 DE
0265902 May 1988 EP
0346461 Dec 1989 EP
0466239 Jan 1992 EP
0514826 Nov 1992 EP
0550073 Jul 1993 EP
0574009 Jun 1994 EP
0613110 Aug 1994 EP
0613111 Aug 1994 EP
0614092 Sep 1994 EP
0629877 Dec 1994 EP
0355336 Aug 1995 EP
0670566 Sep 1995 EP
0682332 Nov 1995 EP
0505827 Jun 1996 EP
0385600 Jul 1996 EP
0732596 Sep 1996 EP
0487940 Jan 1997 EP
0774148 May 1997 EP
0578316 Apr 1998 EP
0915349 May 1999 EP
1022580 Feb 2001 EP
1118871 Jul 2001 EP
0877997 Dec 2001 EP
0778470 May 2002 EP
1202233 May 2002 EP
0865004 Jul 2002 EP
1109032 Mar 2003 EP
1300689 Apr 2003 EP
1331620 Jul 2003 EP
1345044 Sep 2003 EP
1369704 Dec 2003 EP
1302920 Feb 2004 EP
1396832 Mar 2004 EP
1406228 Apr 2004 EP
1070968 May 2004 EP
1431946 Jun 2004 EP
1467575 Oct 2004 EP
1471365 Oct 2004 EP
0903589 Nov 2004 EP
1517281 Mar 2005 EP
1531340 May 2005 EP
0926510 Aug 2005 EP
1405286 Sep 2005 EP
1485730 Sep 2005 EP
1428195 Oct 2005 EP
1603098 Dec 2005 EP
1125415 Jan 2006 EP
1205732 Mar 2006 EP
1632787 Mar 2006 EP
1632892 Mar 2006 EP
0953261 Jun 2006 EP
1275975 Jun 2006 EP
1285232 Jun 2006 EP
1672384 Jun 2006 EP
0987562 Jul 2006 EP
1093564 Nov 2006 EP
1218694 Nov 2006 EP
1727094 Nov 2006 EP
1742170 Jan 2007 EP
1188137 Feb 2007 EP
1755356 Feb 2007 EP
1463002 Apr 2007 EP
1361555 May 2007 EP
1798572 Jun 2007 EP
1410364 Oct 2007 EP
1843161 Oct 2007 EP
1860456 Nov 2007 EP
1884462 Feb 2008 EP
1101385 Mar 2008 EP
1901090 Mar 2008 EP
0964268 Apr 2008 EP
1483755 Apr 2008 EP
1906204 Apr 2008 EP
1912077 Apr 2008 EP
1331490 Jun 2008 EP
1942351 Jul 2008 EP
1327159 Aug 2008 EP
1436641 Aug 2008 EP
1953565 Aug 2008 EP
1483902 Sep 2008 EP
1965219 Sep 2008 EP
1972962 Sep 2008 EP
1975884 Oct 2008 EP
1118011 Nov 2008 EP
1995708 Nov 2008 EP
2000778 Dec 2008 EP
2001004 Dec 2008 EP
2023155 Feb 2009 EP
2708349 Feb 1995 FR
2791778 Oct 2000 FR
2881841 Aug 2006 FR
9-288175 Nov 1994 JP
6-342061 Dec 1994 JP
8-146130 May 1996 JP
9-119983 Nov 1996 JP
WO9205456 Apr 1992 WO
WO 94014251 Jun 1994 WO
WO9427161 Nov 1994 WO
WO9428437 Dec 1994 WO
WO9503598 Feb 1995 WO
WO9521388 Aug 1995 WO
WO9605562 Feb 1996 WO
WO9635961 Nov 1996 WO
WO9726552 Jul 1997 WO
WO9747173 Dec 1997 WO
WO9804965 Feb 1998 WO
WO9805977 Feb 1998 WO
WO9814926 Apr 1998 WO
WO9822834 May 1998 WO
WO9822923 May 1998 WO
WO9835311 Aug 1998 WO
WO9843107 Oct 1998 WO
WO9849654 Nov 1998 WO
WO9908251 Feb 1999 WO
WO9935630 Jul 1999 WO
WO9942855 Aug 1999 WO
WO9945519 Sep 1999 WO
WO 9950985 Oct 1999 WO
WO9950985 Oct 1999 WO
WO9956144 Nov 1999 WO
WO0023816 Apr 2000 WO
WO0039775 Jul 2000 WO
WO0111389 Feb 2001 WO
WO0133302 May 2001 WO
WO0148652 Jul 2001 WO
WO0157550 Aug 2001 WO
WO0159601 Aug 2001 WO
WO0163239 Aug 2001 WO
WO0165276 Sep 2001 WO
WO 0186319 Nov 2001 WO
WO0186319 Nov 2001 WO
WO0194969 Dec 2001 WO
WO0205245 Jan 2002 WO
WO0208784 Jan 2002 WO
WO0215151 Feb 2002 WO
WO0227275 Apr 2002 WO
WO02054103 Jul 2002 WO
WO02059838 Aug 2002 WO
WO02066288 Aug 2002 WO
WO02069300 Sep 2002 WO
WO02075667 Sep 2002 WO
WO02091312 Nov 2002 WO
WO02095709 Nov 2002 WO
WO02099769 Dec 2002 WO
WO03013010 Feb 2003 WO
WO03016937 Feb 2003 WO
WO03023439 Mar 2003 WO
WO03027934 Apr 2003 WO
WO03054830 Jul 2003 WO
WO03056495 Jul 2003 WO
WO03060855 Jul 2003 WO
WO03067281 Aug 2003 WO
WO03079136 Sep 2003 WO
WO03081560 Oct 2003 WO
WO03093775 Nov 2003 WO
WO03096282 Nov 2003 WO
WO03098576 Nov 2003 WO
WO03107299 Dec 2003 WO
WO2004042418 May 2004 WO
WO2004068162 Aug 2004 WO
WO2004109317 Dec 2004 WO
WO2004114252 Dec 2004 WO
WO2005038478 Apr 2005 WO
WO2005052887 Jun 2005 WO
WO2005081012 Sep 2005 WO
WO2005081630 Sep 2005 WO
WO2005114613 Dec 2005 WO
WO2005121701 Dec 2005 WO
WO2005017555 May 2006 WO
WO2006070207 Jul 2006 WO
WO2006079165 Aug 2006 WO
WO2006093682 Sep 2006 WO
WO2006108275 Oct 2006 WO
WO2006110973 Oct 2006 WO
WO2006135916 Dec 2006 WO
WO2006135923 Dec 2006 WO
WO2007001660 Jan 2007 WO
WO2007010116 Jan 2007 WO
WO2007012888 Feb 2007 WO
WO2007013069 Feb 2007 WO
WO2007048237 May 2007 WO
WO2007086899 Aug 2007 WO
WO2006088554 Sep 2007 WO
WO2007113469 Oct 2007 WO
WO2007115246 Oct 2007 WO
WO2007120588 Oct 2007 WO
WO2007124300 Nov 2007 WO
WO2008001117 Jan 2008 WO
WO2008005012 Jan 2008 WO
WO2008012377 Jan 2008 WO
WO2008018088 Feb 2008 WO
WO2008051292 May 2008 WO
WO2008053173 May 2008 WO
WO2008065328 Jun 2008 WO
WO2008065658 Jun 2008 WO
WO2008068679 Jun 2008 WO
WO2008093036 Aug 2008 WO
WO2008116580 Oct 2008 WO
WO2008126126 Oct 2008 WO
WO2008144784 Dec 2008 WO
WO2008145986 Dec 2008 WO
WO2009001294 Dec 2008 WO
WO2009004381 Jan 2009 WO
Provisional Applications (2)
Number Date Country
60123170 Mar 1999 US
60440618 Jan 2003 US
Continuations (1)
Number Date Country
Parent 09516215 Feb 2000 US
Child 10638524 US
Continuation in Parts (13)
Number Date Country
Parent 11492711 Jul 2006 US
Child 11688348 US
Parent 11429926 May 2006 US
Child 11492711 US
Parent 11343079 Jan 2006 US
Child 11429926 US
Parent 11342289 Jan 2006 US
Child 11343079 US
Parent 11209030 Aug 2005 US
Child 11342289 US
Parent 11257416 Oct 2005 US
Child 11209030 US
Parent 11203823 Aug 2005 US
Child 11257416 US
Parent 11145170 Jun 2005 US
Child 11203823 US
Parent 10743042 Dec 2003 US
Child 11145170 US
Parent 10638524 Aug 2003 US
Child 10743042 US
Parent 10319725 Dec 2002 US
Child 10743042 US
Parent 11688348 US
Child 10743042 US
Parent 11649350 Jan 2007 US
Child 11688348 US