The disclosed embodiments of the present invention relate to wireless communications, and more particularly, to a transmitting device and an associated transmitting method for power efficiency enhancement.
The wireless fidelity (WiFi) technique is widely applied in daily life. WiFi applications can be seen in most portable devices, such as smart phones, tablets, wireless storage devices, devices for transmitting video data such as Miracast devices, and wearable electronic devices such as smart glasses devices. Based on current WiFi designs, however, it is difficult to realize power amplifiers with low power consumption, which means that the battery life of the portable device cannot be extended.
An efficient power amplifier design is the key to extending battery life to achieve a better user experience. Low power BT (Bluetooth)/BLE (Bluetooth 4.0) techniques are commonly applied in wearable devices, but the power efficiency of the conventional transmitting devices is still not good enough.
Therefore, there is a need for a novel method and an associated mechanism to improve the overall power efficiency of a transmitting device.
An objective of the present invention is to provide a transmitting device and an associated transmitting method for power efficiency enhancement, in order to solve the aforementioned problem.
An embodiment of the present invention provides a transmitting device, which includes a transmitting chain, a configurable power amplifier device and an impedance tuning circuit. The transmitting chain is arranged to generate a radio frequency (RF) signal. The configurable power amplifier device is arranged to support at least a first power amplifier configuration and a second power amplifier configuration, wherein the configurable power amplifier device employs the first power amplifier configuration to receive and amplify the RF signal when the transmitting device is operated in a first operation mode, and employs the second power amplifier configuration to receive and amplify the RF signal when the transmitting device is operated in a second operation mode. The impedance tuning circuit is arranged to adjust an output impedance of the configurable power amplifier device employing the second power amplifier configuration when the transmitting device is operated in the second operation mode.
Another embodiment of the present invention provides a transmitting method, which is applied to a transmitting device. The transmitting method includes: generating a radio frequency (RF) signal; using a configurable power amplifier device to support at least a first power amplifier configuration and a second power amplifier configuration, wherein the configurable power amplifier device employs the first power amplifier configuration to receive and amplify the RF signal when the transmitting device is operated in a first operation mode, and employs the second power amplifier configuration to receive and amplify the RF signal when the transmitting device is operated in a second operation mode; and adjusting an output impedance of the configurable power amplifier device employing the second power amplifier configuration when the transmitting device is operated in the second operation mode.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms “include” and “comprise” are used in an open-ended fashion, and thus should not be interpreted as a close-ended term such as “consist of”. Also, the term “couple” is intended to mean either an indirect or direct electrical connection. Accordingly, if one device is coupled to another device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.
Please refer to
The configurable power amplifier device 30 is arranged to support at least a first power amplifier configuration and a second power amplifier configuration, each arranged for delivering different levels of signals. Specifically, when the transmitting device is operated in a first operation mode, the configurable power amplifier device 30 employs the first power amplifier configuration to receive and amplify the RF signal, and when the transmitting device is operated in a second operation mode, the configurable power amplifier device 30 employs the second power amplifier configuration to receive and amplify the RF signal, wherein the first power amplifier configuration is arranged to deliver signals having a higher level, and the second power amplifier configuration is arranged to deliver signals having a lower level.
More specifically, when the RF signal complies with a first communications standard, the transmitting device 100 is operated in the first operation mode; and when the RF signal complies with a second communications standard, the transmitting device 100 is operated in the second operation mode. For example, the first communications standard may be a WiFi protocol, and the second communications standard may be a Bluetooth (BT) protocol. Please note that the first power amplifier configuration and the second power amplifier configuration have different power consumptions, and the power consumption of the first power amplifier configuration is higher than the power consumption of the second power amplifier configuration.
The configurable power amplifier device 30 may employ two power amplifiers 31 and 32 arranged to be operated in the aforementioned two operation modes, respectively. This is merely for illustrative purposes. In some modifications of this embodiment, the configurable power amplifier device 30 may include more amplifiers operated in more modes corresponding to different RF signal levels and having different respective power consumptions.
The transmitting device 100 may enable one of the two power amplifiers 31 and 32 according to the power consumption. For example, when the configurable power amplifier device 30 employs the first power amplifier configuration, the first power amplifier 31 is enabled, and the second power amplifier 32 is disabled; and when the configurable power amplifier device 30 employs the second power amplifier configuration, the second power amplifier 32 is enabled, and the first power amplifier 31 is disabled.
When the transmitting device 100 is operated in the second operation mode, the configurable power amplifier device 30 will employ the second power amplifier configuration. At this time, the impedance tuning circuit 40 is arranged to adjust the output impedance of the configurable power amplifier device 30 employing the second power amplifier configuration. The impedance tuning circuit 40 may be an impedance transformation network (ITN), and more particularly, a tunable impedance transformation network as illustrated in
The controller 70 may be designed/programmed based on the aforementioned power amplifier design. When the configurable power amplifier device 30 employs the first power amplifier configuration, the controller 70 may enable the first power amplifier 31 and disable the second power amplifier 32; and when the configurable power amplifier device 30 employs the second power amplifier configuration, the controller 70 may enable the second power amplifier 32 and disable the first power amplifier 31. Note that the transmitting device 100 may further include a switch coupled between the controller 70 and the first power amplifier 31, and another switch coupled between the controller 70 and the second power amplifier 32. In this way, the first/second operation mode may be employed by turning on one switch and turning off the other switch. This is merely for illustrative purposes, rather than a limitation of the present invention.
The balun 60 is coupled between the antenna 80 and the impedance tuning circuit 40, and is arranged to convert RF signals (which are differential signals) received from the impedance tuning circuit 40 into single-ended RF signals that are radiated through the antenna 80. Since one skilled in the art should readily understand the function and operation of the balun 60, a detailed descriptions is omitted here for brevity.
In this embodiment, the transmitting device 100 may refer to the type of RF signal inputted from the transmitting chain 20, in order to select a proper operation mode to reach high transmission efficiency. The configurable power amplifier architecture is capable of saving current in various operation modes, such as BT, WiFi, Miracast and Infrastructure modes. Further, the impedance tuning circuit 40 (e.g. a tunable ITN) is utilized to provide optimized impedance for the separated power amplifiers 31 and 32 to achieve the best power efficiency.
Please refer to
The LNA 290 is an electronic amplifier arranged to amplify very weak signals (for example, those captured by an antenna). The effect of noise from the balun 60 and the impedance tuning circuit 240 of the transmitting device 200 may be reduced by the gain of the matching network 250. Further, the matching network 250 is arranged to perform input impedance matching for the LNA 290, and may include some passive elements such a capacitor, an inductor and a switch. Note the elements depicted in the impedance tuning circuit 240 are merely for illustrative purposes, and not meant to be limitations to the present invention.
The balun 60 may arranged to be on-chip or off-chip, i.e. the LNA 290 may be coupled to the front end or the back end of the balun 60. For example, when coupled to back end (differential side) of the balun 60, the matching network of LNA 290 can be implemented with a tunable ITN (e.g. the impedance tuning circuit 40 shown in
Similarly, the transmitting device 200 may refer to the type of RF signal inputted from the transmitting chain 220, in order to select a proper operation mode to reach high transmission efficiency. The configurable power amplifier architecture of the transmitting device 200 is capable of saving the current in various operation modes, such as BT, WiFi, Miracast and Infrastructure modes. Further, the impedance tuning circuit (e.g. a tunable ITN) 240 is utilized to provide optimized impedance for the separated power amplifiers 231 and 232 to achieve the best power efficiency.
Please note that the power amplifiers 231 and 232 may be arranged in a cascade manner, parallel connected, or embedded in an amplifier circuit. Refer to
Please refer to
Step 602: Start.
Step 604: Generate a radio frequency signal.
Step 606: Check an operation mode of a transmitting device. If the transmitting device is operated in a first operation mode, go to step 608. If the transmitting device is operated in a second operation mode, go to step 610.
Step 608: Control a configurable power amplifier device to employ a first power amplifier configuration to receive and amplify the RF signal, and maintain original output impedance of the configurable power amplifier device. Go to step 614.
Step 610: Control the configurable power amplifier device to employ a second power amplifier configuration to receive and amplify the RF signal.
Step 612: Adjust an output impedance of the configurable power amplifier device.
Step 614: End.
The above transmitting method illustrates operations of the transmitting devices 100 and 200. As one skilled in the art can understand details of each step after reading the corresponding descriptions in the above paragraphs, further description is omitted here for brevity.
To summarize, the configurable power amplifier architecture of the present invention may employ a proper amplifier and may further adjust the tunable ITN circuit based on the inputted RF signal, which improves the overall power efficiency of the transmitting device without sacrificing the performance. Further, although the two power amplifiers of the configurable power amplifier device shown in the above embodiments are arranged in a parallel connection fashion, the present invention is not limited thereto. In some modifications of the above embodiments, the two power amplifiers may be arranged in a cascade manner based on the design requirements.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
This application claims the benefit of U.S. provisional application No. 61/942,788, filed on Feb. 21, 2014 and incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61942788 | Feb 2014 | US |