The present disclosure relates to a printing apparatus that transmits advertisement packets.
Bluetooth® Low Energy (BLE) advertisement packets are defined in various formats depending on companies. For example, Apple Inc. defines AirPrint® Bluetooth Beacon and Google Inc. defines EddyStone®.
Japanese Patent Application Laid-Open No. 2016-152538 discusses a configuration in which a mobile terminal searches for one or more printing apparatuses using Bluetooth Low Energy and transmits print data to a printing apparatus selected by the user from the search results.
For a Bluetooth Low Energy packet (advertisement packet), a plurality of formats is available, for example, AirPrint Bluetooth Beacon and EddyStone. Thus, a printing apparatus needs to select an appropriate format from a plurality of formats and transmit Bluetooth Low Energy packets. However, conventional printing apparatuses only assume transmitting Bluetooth Low Energy packets of one kind of format.
To solve the above a printing apparatus that performs wireless communication based on Bluetooth Low Energy includes a print unit that performs print processing based on print data, a memory device that stores a set of instructions, and at least one processor that executes the instructions to select a format of a Bluetooth Low Energy packet to be transmitted from among a plurality of formats, and transmit a Bluetooth Low Energy packet in the selected format, wherein the plurality of formats includes a format corresponding to a print application that is installed in an external apparatus.
Further features will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Exemplary embodiments will be described with reference to drawings. The present disclosure is not limited to the following exemplary embodiments. In addition, not all the combinations of features described in the exemplary embodiments are necessarily essential to solving the issue.
First, a hardware configuration of a printing apparatus 100 according to a first exemplary embodiment will be described with reference to
A printer 109 performs print processing on a sheet based on print data that has been received by a wireless local area network (LAN) chip 106 or a network interface (I/F) 113 from an external apparatus. A scanner 110 reads a document placed thereon and generates an image of the document. The image of the document generated by the scanner 110 is printed by the printer 109 (copy process) or stored in the HDD 104.
An operation unit 111 includes a display including a touch panel function, a keyboard, etc. and displays various kinds of operational screens. The user can input instructions and information to the printing apparatus 100 via the operation unit 111. An integrated-circuit (IC) card reader 112 reads user information from an IC card. The printing apparatus 100 executes authentication processing using the user information read by the IC card reader 112.
The wireless LAN chip 106 is a chip for performing wireless LAN communication, such as IEEE802.11a/b/g/n/ac. A wireless LAN controller 105 controls the wireless LAN communication performed using the wireless LAN chip 106.
A Bluetooth chip 108 is a wireless communication chip for performing wireless communication based on Bluetooth. In addition, the Bluetooth chip 108 includes a Bluetooth Low Energy function and performs Bluetooth Low Energy communication. In Bluetooth Low Energy communication, Bluetooth Low Energy advertisement packets are broadcast at a predetermined cycle. A Bluetooth controller 107 controls the Bluetooth communication performed using the Bluetooth chip 108.
The network I/F 113 is connected to a network via a LAN cable and communicates with an external apparatus, such as a personal computer (PC), on the network. The network I/F 113 receives print data from the external apparatus and transmits an image of a document generated by the scanner 110 to the external apparatus.
The printing apparatus 100 according to the present exemplary embodiment supports a plurality of formats of advertisement packets. The Bluetooth chip 108 of the printing apparatus 100 selects a format from among the plurality of formats based on the setting result selected on a setting screen 300, which will be described with reference to
The advertisement packet formats supported by the printing apparatus 100 will be described with reference to
Next, the setting screen 300 in
The user can also set the type of advertisement packets to be transmitted on the setting screen 300. If the user wishes to use advertisement packets in print application format described with reference to
Next, processing of how the printing apparatus 100 selects the format of Bluetooth Low Energy advertisement packets will be described with reference to a flowchart in
In step S401, the CPU 101 determines whether the user wishes to use the Bluetooth function by checking the setting result on the setting screen 300. As described above, the setting result is stored in the HDD 104. In a case where “OFF” is set on the setting screen 300 (NO in step S401), the CPU 101 determines that the user does not wish to use the Bluetooth function in step S401, and the processing proceeds to step S405. In a case where “ON” is set on the setting screen 300 (YES in step S401), the CPU 101 determines that the user wishes to use the Bluetooth function in step S401, and the processing proceeds to step S402.
In step S405, the CPU 101 stops transmission of Bluetooth Low Energy packets. More specifically, the CPU 101 instructs the Bluetooth controller 107 to stop transmission of Bluetooth Low Energy packets. In response, the Bluetooth controller 107 controls the Bluetooth chip 108 so that Bluetooth Low Energy packets are not transmitted. Accordingly, the Bluetooth chip 108 stops transmission of Bluetooth Low Energy packets.
In step S402, the CPU 101 determines the format of Bluetooth Low Energy packets to be transmitted, by checking the setting result on the setting screen 300. In a case where “print application” is set on the setting screen 300 (YES in step S402), the CPU 101 determines that the format of Bluetooth Low Energy packets to be transmitted is the print application, and the processing proceeds to step S403. In a case where “AirPrint Bluetooth Beacon” is set on the setting screen 300 (NO in step S402), the CPU 101 determines that the format of Bluetooth Low Energy packets to be transmitted is AirPrint Bluetooth Beacon, and the processing proceeds to step S404.
In step S403, the CPU 101 transmits Bluetooth Low Energy packets in print application format. More specifically, the CPU 101 instructs the Bluetooth controller 107 to transmit Bluetooth Low Energy packets in print application format. In response, the Bluetooth controller 107 controls the Bluetooth chip 108 so that Bluetooth Low Energy packets in print application format are transmitted. The Bluetooth chip 108 transmits Bluetooth Low Energy packets in print application format at a predetermined cycle, e.g., at 30 msec intervals.
In step S404, the CPU 101 transmits Bluetooth Low Energy packets in AirPrint Bluetooth Beacon format. More specifically, the CPU 101 instructs the Bluetooth controller 107 to transmit Bluetooth Low Energy packets in AirPrint Bluetooth Beacon format. In response, the Bluetooth controller 107 controls the Bluetooth chip 108 so that Bluetooth Low Energy packets in AirPrint Bluetooth Beacon format are transmitted. The Bluetooth chip 108 transmits Bluetooth Low Energy packets in AirPrint Bluetooth Beacon format at a predetermined cycle, e.g., at 100 msec intervals.
As described above, based on the user instruction via the setting screen 300, the printing apparatus 100 can select the format of Bluetooth Low Energy packets to be transmitted from among a plurality of formats.
The difference between when the print application is set as the format of Bluetooth Low Energy packets to be transmitted and when the AirPrint Bluetooth Beacon is set as the format of Bluetooth Low Energy packets to be transmitted will be described in more detail. The operation unit 111 of the printing apparatus 100 displays a setting screen 500 in
When the setting screens 500 and 510 are compared with each other, “device name” in a setting item 501 is the difference between the setting screens 500 and 510. While the device name set in the setting item 501 is information stored in a Bluetooth Low Energy packet in print application format, the device name is unnecessary information when the AirPrint Bluetooth Beacon format is used. Thus, when AirPrint Bluetooth Beacon is set as the format of Bluetooth Low Energy packets to be transmitted, the setting item 501 is not displayed on the setting screen 510. Alternatively, the setting item 501 can be displayed in a manner that the user cannot select the setting item 501. For example, the setting item 501 can be grayed out.
The printing apparatus 100 can perform different power-saving control processing, depending on whether the print application or AirPrint Bluetooth Beacon is set as the Bluetooth Low Energy packet format. The power-saving control processing will be described with reference to
As illustrated in
When the Bluetooth function is used and when the print application is set as the Bluetooth Low Energy packet format, the printing apparatus 100 shifts from the normal power consumption state to the first power-saving state. This corresponds to transition 601 in
When the Bluetooth function is used and when AirPrint Bluetooth Beacon is set as the Bluetooth Low Energy packet format, the printing apparatus 100 shifts from the normal power consumption state to the first power-saving state, and then shifts from the first power-saving state to the third power-saving state. This corresponds to the transition 601 and transition 603 in
When the Bluetooth function is not used, the printing apparatus 100 shifts from the normal power consumption state to the first power-saving state, and then shifts from the first power-saving state to the second power-saving state. This corresponds to the transition 601 and transition 605 in
The difference between when the print application is set as the format of Bluetooth Low Energy packets to be transmitted and when AirPrint Bluetooth Beacon is set as the format of Bluetooth Low Energy packets to be transmitted has been described with reference to
Next, a configuration according to a second exemplary embodiment will be described. In this configuration, the format of Bluetooth Low Energy packets to be transmitted is temporarily changed in accordance with a user instruction. The hardware configuration according to the second exemplary embodiment is the same as that of the printing apparatus 100 described with reference to
A printing apparatus 100 according the present exemplary embodiment transmits Bluetooth Low Energy packets in print application format described with reference to
The operation unit 111 of the printing apparatus 100 displays a changeover screen 700 in
When the changeover button 702 is pressed, the printing apparatus 100 changes the format of Bluetooth Low Energy packets to be transmitted from the print application to AirPrint Bluetooth Beacon. In addition, the operation unit 111 of the printing apparatus 100 changes the screen to a changeover screen 710 in
Next, processing of how the printing apparatus 100 changes the format of Bluetooth Low Energy packets to be transmitted will be described with reference to a flowchart in
In step S801, the CPU 101 changes the format of Bluetooth Low Energy packets to be transmitted. In the present exemplary embodiment, the CPU 101 changes the format of Bluetooth Low Energy packets to be transmitted from the print application format to the AirPrint Bluetooth Beacon format. More specifically, the CPU 101 instructs the Bluetooth controller 107 to transmit Bluetooth Low Energy packets in AirPrint Bluetooth Beacon format. In response, the Bluetooth controller 107 controls the Bluetooth chip 108 so that Bluetooth Low Energy packets in AirPrint Bluetooth Beacon format are transmitted. The Bluetooth chip 108 stops the transmission of Bluetooth Low Energy packets in print application format and starts transmission of Bluetooth Low Energy packets in AirPrint Bluetooth Beacon format. The Bluetooth Low Energy packets in AirPrint Bluetooth Beacon format are transmitted at a predetermined cycle, e.g., at 100 msec intervals. The operation unit 111 of the printing apparatus 100 displays the changeover screen 710 in
Next, in step S802, the CPU 101 determines whether to change the format of Bluetooth Low Energy packets to be transmitted back to the original format. In a case where the user presses the back button 712 on the changeover screen 710 or in a case where a predetermined time, e.g., one minute, elapses after the execution of the processing in step S801 (YES in step S802), the CPU 101 determines to change the format of Bluetooth Low Energy packets to be transmitted back to the original format, and the processing proceeds to step S803.
Next, in step S803, the CPU 101 changes the format of Bluetooth Low Energy packets to be transmitted back to the original format. In the present exemplary embodiment, the CPU 101 changes the format from the AirPrint Bluetooth Beacon format back to the print application format. More specifically, the CPU 101 instructs the Bluetooth controller 107 to transmit Bluetooth Low Energy packets in print application format. In response, the Bluetooth controller 107 controls the Bluetooth chip 108 so that Bluetooth Low Energy packets in print application format are transmitted. The Bluetooth chip 108 stops the transmission of Bluetooth Low Energy packets in AirPrint Bluetooth Beacon format and starts transmission of Bluetooth Low Energy packets in print application format. The Bluetooth Low Energy packets in print application format are transmitted at a predetermined cycle, e.g., at 30 msec intervals. The operation unit 111 of the printing apparatus 100 displays the changeover screen 700 in
By performing the processing in the flowchart in
With the above configuration, if the printing apparatus 100 receives a changeover instruction from the user while transmitting Bluetooth Low Energy packets in print application format, the printing apparatus 100 changes the format of Bluetooth Low Energy packets to be transmitted to the AirPrint Bluetooth Beacon format based on the instruction. However, the processing according to the present exemplary embodiment is also applicable to other modes. For example, if the printing apparatus 100 receives a changeover instruction from the user while transmitting Bluetooth Low Energy packets in AirPrint Bluetooth Beacon format, the printing apparatus 100 can change the format of Bluetooth Low Energy packets to be transmitted to the print application format based on the instruction.
A configuration according to a third exemplary embodiment will now be described. In this configuration, the printing apparatus 100 selects the format of Bluetooth Low Energy packets to be transmitted based on the user who has logged in the printing apparatus 100. The hardware configuration according to the third exemplary embodiment is the same as that of the printing apparatus 100 described with reference to
A user management table 900 in
Next, processing performed by the printing apparatus 100 when a user logs into the printing apparatus 100 will be described with reference to a flowchart in
In step S1001, the CPU 101 determines whether the user holding an IC card can log into the printing apparatus 100 based on the user information read from the IC card. The user information read from the IC card includes a user ID and a password. The CPU 101 determines whether the user ID and the password match user information managed in the user management table 900. In step S1001, in a case where the user information read from the IC card matches user information managed in the user management table 900 (YES in step S1001), the CPU 101 determines that the user can log into the printing apparatus 100, and the processing proceeds to step S1002. If the user information does not match (NO in step S1001), the CPU 101 determines that the user cannot log into the printing apparatus 100, and the processing proceeds to END in the flowchart in
In step S1002, the CPU 101 determines the Bluetooth Low Energy packet format corresponding to the logged-in user. The CPU 101 determines the Bluetooth Low Energy packet format corresponding to the logged-in user by referring to the user information read from the IC card and the user management table 900. For example, if the user name of the logged-in user is “Tanaka”, the CPU 101 determines the Bluetooth Low Energy packet format corresponding to the logged-in user to be the print application. In step S1002, in a case where the CPU 101 determines that the Bluetooth Low Energy packet format corresponding to the logged-in user to be the print application (YES in step S1002), the processing proceeds to step S1003. In step S1002, in a case where the CPU 101 determines that the Bluetooth Low Energy packet format corresponding to the logged-in user to be AirPrint Bluetooth Beacon (NO in step S1002), the processing proceeds to step S1004.
In step S1003, the CPU 101 transmits Bluetooth Low Energy packets in print application format. More specifically, the CPU 101 instructs the Bluetooth controller 107 to transmit Bluetooth Low Energy packets in print application format. In response, the Bluetooth controller 107 controls the Bluetooth chip 108 so that Bluetooth Low Energy packets in print application format are transmitted. The Bluetooth chip 108 transmits Bluetooth Low Energy packets in print application format at a predetermined cycle, e.g., at 30 msec intervals.
In step S1004, the CPU 101 transmits Bluetooth Low Energy packets in AirPrint Bluetooth Beacon format. More specifically, the CPU 101 instructs the Bluetooth controller 107 to transmit Bluetooth Low Energy packets in AirPrint Bluetooth Beacon format. In response, the Bluetooth controller 107 controls the Bluetooth chip 108 so that Bluetooth Low Energy packets in AirPrint Bluetooth Beacon format are transmitted. The Bluetooth chip 108 transmits Bluetooth Low Energy packets in AirPrint Bluetooth Beacon format at a predetermined cycle, e.g., at 100 msec intervals.
In step S1005, the CPU 101 determines whether the user has logged out. In a case where the user logs out of the printing apparatus 100 or in a case where a predetermined time, e.g., 5 minutes, has elapsed without any user operation on the printing apparatus 100 (YES in step S1005), the CPU 101 determines that the user has logged out of the printing apparatus 100. In such case, the processing proceeds to step S1006.
In step S1006, the CPU 101 transmits Bluetooth Low Energy packets in a default format. In the present exemplary embodiment, the print application format or the AirPrint Bluetooth Beacon format is registered in the printing apparatus 100 as the default format. In step S1006, the CPU 101 instructs the Bluetooth controller 107 to transmit Bluetooth Low Energy packets in the default format. In response, the Bluetooth controller 107 controls the Bluetooth chip 108 so that Bluetooth Low Energy packets in the specified format are transmitted. The present exemplary embodiment assumes that the Bluetooth chip 108 had been transmitting Bluetooth Low Energy packets in default format before the user logged in the printing apparatus 100.
As described above, the printing apparatus 100 can select the format of Bluetooth Low Energy packets to be transmitted based on the user who is logged into the printing apparatus 100.
Embodiment(s) can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions (e.g., one or more programs) recorded on a storage medium (which may also be referred to more fully as a ‘non-transitory computer-readable storage medium’) to perform the functions of one or more of the above-described embodiment(s) and/or that includes one or more circuits (e.g., application specific integrated circuit (ASIC)) for performing the functions of one or more of the above-described embodiment(s), and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s) and/or controlling the one or more circuits to perform the functions of one or more of the above-described embodiment(s). The computer may comprise one or more processors (e.g., central processing unit (CPU), micro processing unit (MPU)) and may include a network of separate computers or separate processors to read out and execute the computer executable instructions. The computer executable instructions may be provided to the computer, for example, from a network or the storage medium. The storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)™), a flash memory device, a memory card, and the like.
While exemplary embodiments have been described, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2016-230829, filed Nov. 29, 2016, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2016-230829 | Nov 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
9398437 | Kasslin | Jul 2016 | B2 |
20130178160 | Wang | Jul 2013 | A1 |
20140254466 | Wurster | Sep 2014 | A1 |
20160241726 | Okamura | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
2016-152538 | Aug 2016 | JP |
2016-170608 | Sep 2016 | JP |
Entry |
---|
Bluetooth Specification Version 4.0 [vol. 3],11 Advertising and Scan Response Data Format, Jun. 30, 2010, pp. 375-378. |
Number | Date | Country | |
---|---|---|---|
20180152593 A1 | May 2018 | US |