Transmyocardial implant with flow reduction

Information

  • Patent Grant
  • 6916304
  • Patent Number
    6,916,304
  • Date Filed
    Thursday, May 23, 2002
    22 years ago
  • Date Issued
    Tuesday, July 12, 2005
    19 years ago
Abstract
A transmyocardial implant establishes a blood flow path through a heart wall between a heart chamber and a lumen of a coronary vessel on the heart wall. The implant includes a hollow conduit having an open first end and an open second end. The conduit is dimensioned so as to extend at least from the vessel through said heart wall and into said chamber. The conduit has a conduit wall defining a blood flow pathway within an interior of said conduit between the first and second ends. The first and second ends are mutually positioned for the first end to reside within the vessel and opposing a wall of the vessel when the conduit is placed within the heart wall with the second end protruding into the chamber. The conduit wall is formed of a material sufficiently rigid to resist deformation and closure of the pathway in response to contraction of the heart wall. A flow restriction is formed in the pathway for reducing a discharge velocity of blood flow discharged from the first end.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention pertains to an implant for passing blood flow directly between a chamber of the heart and a coronary vessel. More particularly, this invention pertains to such an implant with an enhance design for reducing a likelihood of damage to a coronary vessel from a high velocity blood flow discharge.


2. Description of the Prior Art


Commonly assigned U.S. Pat. No. 5,755,682 and PCT International Publication No. WO 98/06356 teach an implant for defining a blood flow conduit directly from a chamber of the heart to a lumen of a coronary vessel. An embodiment disclosed in the aforementioned patent and application teaches an L-shaped implant. The implant is a conduit having one leg sized to be received within a lumen of a coronary artery and a second leg sized to pass through the myocardium and extend into the left ventricle of the heart. As disclosed in the above-referenced patent and application, the conduit remains open for blood flow to pass through the conduit during both systole and diastole. The conduit penetrates into the left ventricle in order to prevent tissue growth and occlusions over an opening of the conduit.


Commonly assigned and co-pending U.S. patent application Ser. No. 08/944,313 filed Oct. 6, 1997, entitled “Transmyocardial Implant”, and filed in the name of inventors Katherine S. Tweden, Guy P. Vanney and Thomas L. Odland, teaches an implant such as that shown in the aforementioned '682 patent with an enhanced fixation structure. The enhanced fixation structure includes a fabric surrounding at least a portion of the conduit to facilitate tissue growth on the exterior of the implant.


Implants such as those shown in the aforementioned patent and applications include a portion to be placed within a coronary vessel and a portion to be placed within the myocardium. When placing a portion of the implant in the coronary vessel, the vessel is incised a length sufficient to insert the implant. When placed within the coronary vessel, the implant discharges flow axially into the vessel. A portion of an interior surface of the implant portion in the vessel acts as a deflection surface to prevent direct impingement of high velocity blood flow on a vessel wall.


The L-shaped implant described in the foregoing is preferably placed through a surgical procedure (open chest or minimally invasively). The suitability of an implant for minimally invasive or percutaneous procedures is influenced, at least in part, by the external size and shape of the implant. The size can be reduced and shape enhanced by elimination of the vessel portion of the foregoing designs.


SUMMARY OF THE INVENTION

According to a preferred embodiment of the present invention, a transmyocardial implant is disclosed for establishing a blood flow path through a heart wall between a heart chamber and a lumen of a coronary vessel on the heart wall. The implant includes a hollow conduit having an open first end and an open second end. The conduit is dimensioned so as to extend at least from the vessel through said heart wall and into said chamber. The conduit has a conduit wall defining a blood flow pathway within an interior of said conduit between the first and second ends. The first and second ends are mutually positioned for the first end to reside within the vessel and opposing a wall of the vessel when the conduit is placed within the heart wall with the second end protruding into the chamber. The conduit wall is formed of a material sufficiently rigid to resist deformation and closure of the pathway in response to contraction of the heart wall. A flow restriction is formed in the pathway for reducing a discharge velocity of blood flow discharged from the first end.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic cross-sectional view of an implant according to the present invention in place in a heart wall to define a blood flow path from a left ventricle to a coronary artery distal to an obstruction.





DESCRIPTION OF THE PREFERRED EMBODIMENT

With reference to FIG. 1, an implant 10 is shown including a straight elongate, generally cylindrical tube or conduit 11. The conduit 11 may be formed of titanium or other rigid biocompatible material such as pyrolytic carbon or may be titanium coated with pyrolytic carbon. Preferably, the interior wall 13 of the conduit 11 is polished to a high degree of polish to reduce the likelihood of thrombus formation on the wall. The material of the conduit 11 is preferably a rigid material in order to withstand contraction forces of the heart wall, as will be described.


In the preferred embodiment, the tube 11 will have an outside diameter Do of about 1 to 3 millimeters and an internal diameter D1 of about 0.5 to 2.5 millimeters to provide a wall thickness of about 0.5 millimeters. By way of non-limiting example, a specific Do may be 2.5 millimeters and a specific D1 may be 2.0 millimeters.


The size range given permits insertion of the conduit into a coronary vessel to be bypassed. Commonly, such vessels in an adult human have internal diameters of 1 to 3 millimeters when under the influence of normal pressurized blood flow.


The tube 11 has a first open end 12 which is sized to be received within the lumen of a coronary vessel such as the lumen 100 of a coronary artery 102 illustrated in FIG. 1. As used in this application, the term “vessel” refers to veins or arteries. The present invention is described with reference to bypassing a coronary artery with blood from a left ventricle. The invention is equally applicable to forming a blood flow path from other heart chamber to any other coronary vessel.


The conduit 11 has a second open end 14. The conduit 11 is sized to extend from the coronary artery 102 directly through the heart wall 104 and protrude into the left ventricle 106 of a patient's heart. Preferably, the end 14 protrudes at least about 5 millimeters from an inner surface 103 of the heart wall 104 during maximum heart wall thickness during systole. Heart wall thickness varies from patient to patient and among locations on the heart. In a preferred embodiment of forming a flow path from the left ventricle to a coronary artery of an adult human, the length L of the conduit (measured as the axial distance between ends 12 and 14) will be between about 10 and 30 millimeters. With the foregoing specific example, for a heart wall 104 having a maximum systolic thickness of 20 millimeters, the length L of the conduit 11 is 25 millimeters.


The openings 12, 14 communicate with an interior 20 of the conduit 11. Therefore, blood can freely flow through the conduit 11 between the left ventricle 106 and the lumen 100 of the coronary artery 102.


At first opening 12, the conduit 11 is outwardly flared at 22 to act as a stop to limit insertion of the implant 10 into the heart wall 104. Further, the flaring 22 acts as a smooth flow path for guiding blood flow out of end 12.


As mentioned, the tube 11 is preferably formed of titanium or other smooth biocompatible material in order to resist thrombus formation on the inner surface 13 of the conduit 11. Titanium is a presently preferred material due its long-term use in the cardiovascular industry. Further, titanium is sufficiently rigid to withstand deformation forces caused by contraction of the heart wall 104 to avoid deformation of the tube 11 so that the tube 11 remains open during both diastole and systole. Also, the tube 11 is solid on its cylindrical inner surface 13. Therefore, highly thrombogenic material from the heart wall 104 cannot pass into and contaminate the interior 20 of the conduit 11.


While tissue will adhere to titanium, the adhesion may be inadequate when subjected to the shearing contracting forces of the heart wall 104 due to the relative smoothness of extruded titanium. Therefore, a completed implant 10 includes a sleeve 24 of tissue growth-inducing material secured to an exterior surface of the conduit 11. The sleeve 24 is attached to the conduit 11 by a suture 23 tightly surrounding both the sleeve 24 and conduit 11.


The sleeve 24 surrounds the exterior surface of the tube 11 and is recessed back from both of ends 12, 14 so that after placement the sleeve 24 resides solely in the heart wall 104 (although slight protrusion of sleeve 24 into the left ventricle can be tolerated). It is desired the sleeve not be so closely positioned near open ends 12, 14 such that tissue growth on the sleeve 24 can grow over and occlude the open ends 12, 14. It is anticipated that tissue growth on and into the sleeve 24 could result in a buildup of tissue beyond the sleeve 24 to a thickness of about at least 1 millimeter. It is desirable that such tissue growth does not extend over ends 12, 14. Accordingly, the sleeve 24 is spaced from ends of the tube 11 by a distance greater than an anticipated thickness of tissue growth extension beyond the sleeve 24.


The sleeve 24 is selected to induce tissue growth and attachment. Preferably, the sleeve 24 is formed of a fabric having biocompatible fibers defining interstitial spaces to receive tissue growth. An example of such a fabric is polyethylene terephthalate (such as polyester fabric sold by DuPont Company under the trademark DACRON®). Such a fabric permits rapid tissue integration into the fabric thereby anchoring the fabric and, hence, the tube 11 to the patient's tissue.


While a fabric tissue growth inducing material is illustrated, other materials could be used. For example, the tissue growth inducing material could be sintered metal on the external surface of the tube 11. Sintered metal results in a porous surface to receive tissue growth. The area of the sintered metal will be spaced from ends 12, 14 to prevent tissue accumulation on the sintered area from growing over and blocking 12, 14. Alternatively, the exterior surface of the tube 11 can be roughened. The roughening can be in the form of a knurling or other roughened surface due to sandblasting or the application of sinter beads. The roughening results in surface protrusions and pitting, around which tissue may grow.


The implant 10 is placed with the first end 12 placed within the artery lumen 100 distal to an obstruction 105. Normal nourishing blood flow is in the direction of arrow A. The implant 10 passes through the heart wall 104 with the second end 14 positioned within the left ventricle 106 and spaced from the inner surface 103 of the heart wall 104 by 5 millimeters during periods of maximum heart wall thickness. The sleeve 24 is positioned opposing the heart wall 104 so that tissue from the heart wall 104 can grow into the sleeve 24.


With the positioning thus described, the first opening 12 opposes a wall 102a of the artery 102. As a result, blood discharged from the opening 12 impinges directly upon the arterial wall 102a.


The artery wall 102a is a fragile layer of cells and fibers. Direct impingement of blood flow on the wall 102a can damage the artery wall 102a. As a healing response to such damage, a cellular matrix may develop and proliferate to such an extent that opening 12 or lumen 100 could occlude.


The present invention reduces the velocity of blood flow through the opening 12. Specifically, a flow restriction in the form of a narrowing 30 is placed within the conduit 11. The restriction 30 reduces blood flow below a velocity which would otherwise cause occluding trauma to the artery wall 102a.


With the specific example given, the restriction 30 results in a narrow interior diameter D of about 0.5 millimeters. The narrow restriction 30 is positioned about 8 millimeters from end 14. The restriction 30 is formed by a venturi constriction formed within the conduit 11 adjacent end 14. The venturi may be formed by machining the conduit 11 from a solid blank of titanium. The venturi 30 has a shallow ramp 31 on a downstream side to avoid turbulence. Since an upstream side 33 is adjacent end 14, turbulence during reverse flow is not a serious concern.


With the restriction 30 as described, flow velocity out of end 12 is reduced below a level which would otherwise cause occluding trauma to the artery wall 102a. By avoiding such trauma, a straight implant 10 can be provided which is more susceptible to minimally invasive and percutaneous implantation as well as being suitable for traditional surgical approaches.


Preferably, the blood flow velocity from end 12 is reduced to a velocity of normal blood flow within an artery 102 (about 30 ml/min.). Since the left ventricle 106 has a high maximum pressure, the pressure differential between the ventricle 106 and artery lumen 100 results in a higher than normal blood flow rate in the absence of the restriction 30.


Having disclosed the present invention in a preferred embodiment, it will be appreciated that modifications and equivalents may occur to one of ordinary skill in the art having the benefits of the teachings of the present invention. It is intended that such modifications shall be included within the scope of the claims appended hereto. For example, in the preferred embodiment shown, the tube 11 is a cylinder with circular cross-section. The tube 11 could have an oval cross-section at end 12 to provide a larger flow area and further reduce flow velocity. Also, while the tube 11 is preferably straight, the tube 11 could be bent so that the direction of blood flow from end 12 is not perpendicular to the arterial blood flow direction A.

Claims
  • 1. A transmyocardial implant for establishing a blood flow path through a heart wall between a heart chamber and a lumen of a coronary vessel comprising: a hollow conduit having an open first end and an open second end, said conduit sized to extend at least from said vessel through said heart wall and into said chamber, said conduit having a conduit wall defining a blood flow pathway within an interior of said conduit between said first and second ends; said first and second ends mutually positioned for said first end to reside within said vessel and opposing a wall of said vessel when said conduit is placed within said heart wall with said second end protruding into said chamber; said conduit wall formed of a material sufficiently rigid to resist deformation and closure of said pathway in response to contraction of said heart wall; a flow restriction formed in said pathway configured to reduce a discharge velocity of blood flow discharged from said first end, the flow restriction defined by a variation in a cross-sectional area of the blood flow defined by the conduit wall.
  • 2. A transmyocardial implant according to claim 1 further comprising a tissue growth inducing material surrounding said conduit wall.
  • 3. A transmyocardial implant according to claim 2 wherein said tissue growth inducing material includes a plurality of fibers defining a plurality of interstitial spaces for receiving tissue growth and said tissue growth inducing material is biocompatible.
  • 4. A transmyocardial implant according to claim 3 wherein said tissue growth inducing material is a polyester fabric.
  • 5. A transmyocardial implant according to claim 2 wherein said tissue growth inducing material include a porous layer on said exterior of said conduit.
  • 6. A transmyocardial implant according to claim 5 wherein said tissue growth inducing material includes a sintered layer.
  • 7. A transmyocardial implant according to claim 2 wherein an external area of said conduit surrounded by said tissue growth inducing material is abraded.
  • 8. A transmyocardial implant according to claim 1 wherein said flow restriction is a narrowing in said pathway positioned between enlarge cross-sectional sectional areas of said pathway.
  • 9. A transmyocardial implant according to claim 8 wherein said pathway has a substantially straight longitudinal axis between said first and second ends.
  • 10. A transmyocardial implant according to claim 1, wherein the conduit wall defines a first inner diameter transition extending from a region of maximum flow restriction towards said first end and a second inner diameter transition extending from said region of maximum flow restriction towards said second end.
  • 11. A transmyocardial implant according to claim 10, wherein said first diameter transition defines a smaller angle of transition relative to a central reference axis that said second inner diameter transition.
  • 12. A transmyocardial implant according to claim 1, wherein said flow restriction is configured to reduce a blood flow velocity such that said blood flow velocity is less than an occluding trauma including velocity.
  • 13. A transmyocardial implant according to claim 1, wherein said heart chamber is a left ventricle.
  • 14. A transmyocardial implant according to claim 1, wherein said coronary vessel is a coronary vein.
  • 15. A transmyocardial implant according to claim 1 wherein said conduit is sized for said first end to extend into said chamber beyond said heart wall.
  • 16. A method for establishing a blood flow path through a heart wall between a heart chamber and a lumen of a coronary vessel on said heart wall, said method comprising: forming a blood flow path from said vessel through said heart wall and into said chamber; maintaining said blood flow path open during both systole and diastole; and restricting blood flow through said pathway to reduce a discharge velocity of blood flow discharged into said vessel.
  • 17. The method of claim 16, wherein the conduit wall defines a first inner diameter transition extending from a region of maximum flow restriction towards said first end and a second inner diameter transition extending from region of maximum flow restriction towards said second end.
  • 18. The method of claim 17, wherein said first diameter transition defines a smaller angle of transition relative to a central reference axis that said second inner diameter transition.
  • 19. The method of claim 16, further comprising maintaining the blood flow path open during both systole and diastole.
  • 20. The method of claim 16, further comprising restricting the blood flow through the pathway, via flow restriction, so as to reduce the blood flow velocity to below an occluding trauma inducing velocity.
  • 21. The method of claim 16, further comprising placing a tissue growth inducing material on the conduit wall.
  • 22. The method of claim 16, wherein the coronary vessel is a coronary vein.
  • 23. The method of claim 16, wherein the heart chamber is a left ventricle.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a continuation application of application Ser. No. 09/304,730, filed May 4, 1999, now U.S. Pat. No. 6,409,697 B2, the entirety of which is incorporated herein by reference.

US Referenced Citations (268)
Number Name Date Kind
4546499 Possis et al. Oct 1985 A
4953553 Tremulis Sep 1990 A
5193546 Shaknovich Mar 1993 A
5258008 Wilk Nov 1993 A
5287861 Wilk Feb 1994 A
5330486 Wilk Jul 1994 A
5344426 Lau et al. Sep 1994 A
5389096 Aita et al. Feb 1995 A
5409019 Wilk Apr 1995 A
5429144 Wilk Jul 1995 A
5470320 Tiefenbrun et al. Nov 1995 A
5554119 Harrison et al. Sep 1996 A
5593434 Williams Jan 1997 A
5618299 Khosravi et al. Apr 1997 A
5655548 Nelson et al. Aug 1997 A
5662124 Wilk Sep 1997 A
5733267 Del Toro Mar 1998 A
5755682 Knudson et al. May 1998 A
5758663 Wilk et al. Jun 1998 A
5807384 Mueller Sep 1998 A
5810836 Hussein et al. Sep 1998 A
5824071 Nelson et al. Oct 1998 A
5830222 Makower Nov 1998 A
5876373 Giba et al. Mar 1999 A
5878751 Hussein et al. Mar 1999 A
5885259 Berg Mar 1999 A
5908028 Wilk Jun 1999 A
5908029 Knudson et al. Jun 1999 A
5922022 Nash et al. Jul 1999 A
5925012 Murphy-Chutorian et al. Jul 1999 A
5931848 Saadat Aug 1999 A
5935161 Robinson et al. Aug 1999 A
5938632 Ellis Aug 1999 A
5944019 Knudson et al. Aug 1999 A
5968064 Selmon et al. Oct 1999 A
5971993 Hussein et al. Oct 1999 A
5976155 Foreman et al. Nov 1999 A
5980533 Holman Nov 1999 A
5980548 Evans et al. Nov 1999 A
5984956 Tweden et al. Nov 1999 A
5997525 March et al. Dec 1999 A
5999678 Murphy-Chutorian et al. Dec 1999 A
6004261 Sinofsky et al. Dec 1999 A
6004347 McNamara et al. Dec 1999 A
6007543 Ellis et al. Dec 1999 A
6010449 Selmon et al. Jan 2000 A
6026814 LaFontaine et al. Feb 2000 A
6029672 Vanney et al. Feb 2000 A
6035856 LaFontaine et al. Mar 2000 A
6036677 Javier, Jr. et al. Mar 2000 A
6036697 DiCaprio Mar 2000 A
6045565 Ellis et al. Apr 2000 A
6053924 Hussein Apr 2000 A
6053942 Eno et al. Apr 2000 A
6056743 Ellis et al. May 2000 A
6067988 Mueller May 2000 A
6068638 Makower May 2000 A
6071292 Makower et al. Jun 2000 A
6076529 Vanney et al. Jun 2000 A
6080163 Hussein et al. Jun 2000 A
6080170 Nash et al. Jun 2000 A
6092526 LaFontaine et al. Jul 2000 A
6093166 Knudson et al. Jul 2000 A
6093177 Javier, Jr. et al. Jul 2000 A
6093185 Ellis et al. Jul 2000 A
6102941 Tweden et al. Aug 2000 A
6113823 Eno Sep 2000 A
6120520 Saadat et al. Sep 2000 A
6123682 Knudson et al. Sep 2000 A
6126654 Giba et al. Oct 2000 A
6132405 Nilsson et al. Oct 2000 A
6132451 Payne et al. Oct 2000 A
6139541 Vanney et al. Oct 2000 A
6155264 Ressemann et al. Dec 2000 A
6156031 Aita et al. Dec 2000 A
6157852 Selmon et al. Dec 2000 A
6159225 Makower Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6171251 Mueller et al. Jan 2001 B1
6182668 Tweden et al. Feb 2001 B1
6186972 Nelson et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6193726 Vanney Feb 2001 B1
6193734 Bolduc et al. Feb 2001 B1
6196230 Hall et al. Mar 2001 B1
6197050 Eno et al. Mar 2001 B1
6197324 Crittenden Mar 2001 B1
6200311 Danek et al. Mar 2001 B1
6203556 Evans et al. Mar 2001 B1
6213126 LaFontaine et al. Apr 2001 B1
6214041 Tweden et al. Apr 2001 B1
6217527 Selmon et al. Apr 2001 B1
6217549 Selmon et al. Apr 2001 B1
6217575 DeVore et al. Apr 2001 B1
6221049 Selmon et al. Apr 2001 B1
6223752 Vanney et al. May 2001 B1
6224584 March et al. May 2001 B1
6231546 Milo et al. May 2001 B1
6231551 Barbut May 2001 B1
6231587 Makower May 2001 B1
6235000 Milo et al. May 2001 B1
6237607 Vanney et al. May 2001 B1
6238406 Ellis et al. May 2001 B1
6241667 Vetter et al. Jun 2001 B1
6248112 Gambale et al. Jun 2001 B1
6250305 Tweden Jun 2001 B1
6251079 Gambale et al. Jun 2001 B1
6251104 Kesten et al. Jun 2001 B1
6251418 Ahern et al. Jun 2001 B1
6253769 LaFontaine et al. Jul 2001 B1
6258052 Milo Jul 2001 B1
6258119 Hussein et al. Jul 2001 B1
6261304 Hall et al. Jul 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6283983 Makower et al. Sep 2001 B1
6285903 Rosenthal et al. Sep 2001 B1
6287317 Makower et al. Sep 2001 B1
6290709 Ellis et al. Sep 2001 B1
6290728 Phelps et al. Sep 2001 B1
6302875 Makower et al. Oct 2001 B1
6322548 Payne et al. Nov 2001 B1
6330884 Kim Dec 2001 B1
6350248 Knudson et al. Feb 2002 B1
6361519 Knudson et al. Mar 2002 B1
6363938 Saadat et al. Apr 2002 B2
6363939 Wilk Apr 2002 B1
6375615 Flaherty et al. Apr 2002 B1
6379319 Garibotto et al. Apr 2002 B1
6387119 Wolf et al. May 2002 B2
6390098 LaFontaine et al. May 2002 B1
6395208 Herweck et al. May 2002 B1
6402740 Ellis et al. Jun 2002 B1
6406488 Tweden et al. Jun 2002 B1
6409697 Eno et al. Jun 2002 B2
6409751 Hall et al. Jun 2002 B1
6416490 Ellis et al. Jul 2002 B1
6423089 Gingras et al. Jul 2002 B1
6432119 Saadat Aug 2002 B1
6432126 Gambale et al. Aug 2002 B1
6432127 Kim et al. Aug 2002 B1
6432132 Cottone et al. Aug 2002 B1
6443158 LaFontaine et al. Sep 2002 B1
6447522 Gambale et al. Sep 2002 B2
6447539 Nelson et al. Sep 2002 B1
6454760 Vanney Sep 2002 B2
6454794 Knudson et al. Sep 2002 B1
6458092 Gambale et al. Oct 2002 B1
6458323 Boekstegers Oct 2002 B1
6475226 Belef et al. Nov 2002 B1
6475244 Herweck et al. Nov 2002 B2
6482220 Mueller Nov 2002 B1
6491689 Ellis et al. Dec 2002 B1
6491707 Makower et al. Dec 2002 B2
6508825 Selmon et al. Jan 2003 B1
6511458 Milo et al. Jan 2003 B2
6514217 Selmon et al. Feb 2003 B1
6514271 Evans et al. Feb 2003 B2
6517527 Gambale et al. Feb 2003 B2
6517558 Gittings et al. Feb 2003 B2
6524323 Nash et al. Feb 2003 B1
6544230 Flaherty Apr 2003 B1
6559132 Holmer May 2003 B1
6561998 Roth et al. May 2003 B1
6565594 Herweck et al. May 2003 B1
6569145 Shmulewitz et al. May 2003 B1
6569147 Evans et al. May 2003 B1
6575168 LaFontaine et al. Jun 2003 B2
6579311 Makower Jun 2003 B1
6599304 Selmon et al. Jul 2003 B1
6605053 Kamm et al. Aug 2003 B1
6610100 Phelps et al. Aug 2003 B2
6613081 Kim et al. Sep 2003 B2
6616675 Evard et al. Sep 2003 B1
6638247 Selmon et al. Oct 2003 B1
6638293 Makower et al. Oct 2003 B1
6641610 Briefs et al. Nov 2003 B2
6651670 Rapacki et al. Nov 2003 B2
6652540 Cole et al. Nov 2003 B1
6652546 Nash et al. Nov 2003 B1
6655386 Makower et al. Dec 2003 B1
6660003 DeVore et al. Dec 2003 B1
6660024 Flaherty et al. Dec 2003 B1
6669709 Cohn et al. Dec 2003 B1
6685648 Flaherty et al. Feb 2004 B2
6694983 Wolf et al. Feb 2004 B2
6709425 Gambale et al. Mar 2004 B2
6709444 Makower Mar 2004 B1
6719770 Laufer et al. Apr 2004 B2
6726677 Flaherty et al. Apr 2004 B1
6746464 Makower Jun 2004 B1
20010000041 Selmon et al. Mar 2001 A1
20010004683 Gambale et al. Jun 2001 A1
20010004690 Gambale et al. Jun 2001 A1
20010004699 Gittings et al. Jun 2001 A1
20010008969 Evans et al. Jul 2001 A1
20010012948 Vanney Aug 2001 A1
20010014813 Saadat et al. Aug 2001 A1
20010018596 Selmon et al. Aug 2001 A1
20010020172 Selmon et al. Sep 2001 A1
20010025643 Foley Oct 2001 A1
20010027287 Shmulewitz et al. Oct 2001 A1
20010034547 Hall et al. Oct 2001 A1
20010037117 Gambale et al. Nov 2001 A1
20010039426 Makower et al. Nov 2001 A1
20010039445 Hall et al. Nov 2001 A1
20010041902 Lepulu et al. Nov 2001 A1
20010047165 Makower et al. Nov 2001 A1
20010049523 DeVore et al. Dec 2001 A1
20010053932 Phelps et al. Dec 2001 A1
20020002349 Flaherty et al. Jan 2002 A1
20020004663 Gittings et al. Jan 2002 A1
20020007138 Wilk et al. Jan 2002 A1
20020029079 Kim et al. Mar 2002 A1
20020032476 Gambale et al. Mar 2002 A1
20020049486 Knudson et al. Apr 2002 A1
20020058897 Remati May 2002 A1
20020062146 Makower et al. May 2002 A1
20020065478 Knudson et al. May 2002 A1
20020072699 Knudson et al. Jun 2002 A1
20020077566 Laroya et al. Jun 2002 A1
20020077654 Javier, Jr. et al. Jun 2002 A1
20020092535 Wilk Jul 2002 A1
20020092536 LaFontaine et al. Jul 2002 A1
20020095111 Tweden et al. Jul 2002 A1
20020095206 Addonizio et al. Jul 2002 A1
20020100484 Hall et al. Aug 2002 A1
20020111672 Kim et al. Aug 2002 A1
20020123698 Garibotto et al. Sep 2002 A1
20020143289 Ellis et al. Oct 2002 A1
20020144696 Sharkawy et al. Oct 2002 A1
20020161424 Rapacki et al. Oct 2002 A1
20020165479 Wilk Nov 2002 A1
20020165606 Wolf et al. Nov 2002 A1
20020179098 Makower et al. Dec 2002 A1
20020183716 Herweck et al. Dec 2002 A1
20020193782 Ellis et al. Dec 2002 A1
20030018379 Knudson et al. Jan 2003 A1
20030044315 Boekstegers Mar 2003 A1
20030045828 Wilk Mar 2003 A1
20030055371 Wolf et al. Mar 2003 A1
20030073973 Evans et al. Apr 2003 A1
20030078561 Gambale et al. Apr 2003 A1
20030105514 Phelps et al. Jun 2003 A1
20030120195 Milo et al. Jun 2003 A1
20030149474 Becker Aug 2003 A1
20030158573 Gittings et al. Aug 2003 A1
20030181938 Roth et al. Sep 2003 A1
20030191449 Nash et al. Oct 2003 A1
20030195457 LaFontaine et al. Oct 2003 A1
20030195458 Phelps et al. Oct 2003 A1
20030216679 Wolf et al. Nov 2003 A1
20030229366 Reggie et al. Dec 2003 A1
20030236542 Makower Dec 2003 A1
20040015225 Kim et al. Jan 2004 A1
20040019348 Stevens et al. Jan 2004 A1
20040044392 Von Oepen Mar 2004 A1
20040059280 Makower et al. Mar 2004 A1
20040073157 Knudson et al. Apr 2004 A1
20040073238 Makower Apr 2004 A1
20040077987 Rapacki et al. Apr 2004 A1
20040077988 Tweden et al. Apr 2004 A1
20040077990 Knudson et al. Apr 2004 A1
20040088042 Kim et al. May 2004 A1
20040118415 Hall et al. Jun 2004 A1
20040122318 Flaherty et al. Jun 2004 A1
20040122347 Knudson et al. Jun 2004 A1
20040133154 Flaherty et al. Jul 2004 A1
20040133225 Makower Jul 2004 A1
Foreign Referenced Citations (122)
Number Date Country
757647 Feb 2003 AU
0 732 088 Sep 1996 EP
0 815 798 Jul 1997 EP
0 829 239 Aug 1997 EP
0 792 624 Sep 1997 EP
0 797 957 Oct 1997 EP
0 797 958 Oct 1997 EP
0 799 604 Oct 1997 EP
0 801 928 Oct 1997 EP
0 836 834 Oct 1997 EP
0 876 796 May 1998 EP
0 853 921 Jul 1998 EP
0 858 779 Aug 1998 EP
0 876 803 Nov 1998 EP
0 888 750 Jan 1999 EP
0 895 752 Feb 1999 EP
0 934 728 Aug 1999 EP
1 020 166 Jul 2000 EP
1 027 870 Aug 2000 EP
1 088 564 Apr 2001 EP
1 097 676 May 2001 EP
1 166 721 Jan 2002 EP
0 959 815 Dec 2002 EP
1 112 097 Jun 2003 EP
2 316 322 Feb 1998 GB
WO 9632972 Oct 1996 WO
WO 9635469 Nov 1996 WO
WO 9639962 Dec 1996 WO
WO 9639964 Dec 1996 WO
WO 9639965 Dec 1996 WO
WO 9713463 Apr 1997 WO
WO 9713471 Apr 1997 WO
WO 9727893 Aug 1997 WO
WO 9727897 Aug 1997 WO
WO 9727898 Aug 1997 WO
WO 9732551 Sep 1997 WO
WO 9743961 Nov 1997 WO
WO 9803118 Jan 1998 WO
WO 9806356 Feb 1998 WO
WO 9808456 Mar 1998 WO
WO 9810714 Mar 1998 WO
WO 9816161 Apr 1998 WO
WO 9824373 Jun 1998 WO
WO 9825533 Jun 1998 WO
WO 9838916 Sep 1998 WO
WO 9838925 Sep 1998 WO
WO 9838939 Sep 1998 WO
WO 9838941 Sep 1998 WO
WO 9839038 Sep 1998 WO
WO 9846115 Oct 1998 WO
WO 9846119 Oct 1998 WO
WO 9849964 Nov 1998 WO
WO 9857590 Dec 1998 WO
WO 9857591 Dec 1998 WO
WO 9857592 Dec 1998 WO
WO 9907296 Feb 1999 WO
WO 9908624 Feb 1999 WO
WO 9915220 Apr 1999 WO
WO 9917671 Apr 1999 WO
WO 9917683 Apr 1999 WO
WO 9921490 May 1999 WO
WO 9921510 May 1999 WO
WO 9922655 May 1999 WO
WO 9922658 May 1999 WO
WO 9925273 May 1999 WO
WO 9927985 Jun 1999 WO
WO 9935977 Jul 1999 WO
WO 9935979 Jul 1999 WO
WO 9935980 Jul 1999 WO
WO 9936000 Jul 1999 WO
WO 9936001 Jul 1999 WO
WO 9938459 Aug 1999 WO
WO 9940853 Aug 1999 WO
WO 9940868 Aug 1999 WO
WO 9940963 Aug 1999 WO
WO 9944524 Sep 1999 WO
WO 9948545 Sep 1999 WO
WO 9948549 Sep 1999 WO
WO 9949793 Oct 1999 WO
WO 9949910 Oct 1999 WO
WO 9951162 Oct 1999 WO
WO 9953863 Oct 1999 WO
WO 9955406 Nov 1999 WO
WO 9960941 Dec 1999 WO
WO 9962430 Dec 1999 WO
WO 0009195 Feb 2000 WO
WO 0012029 Mar 2000 WO
WO 0013722 Mar 2000 WO
WO 0015146 Mar 2000 WO
WO 0015147 Mar 2000 WO
WO 0015148 Mar 2000 WO
WO 0015149 Mar 2000 WO
WO 0015275 Mar 2000 WO
WO 0018302 Apr 2000 WO
WO 0018323 Apr 2000 WO
WO 0018325 Apr 2000 WO
WO 0018326 Apr 2000 WO
WO 0018331 Apr 2000 WO
WO 0018462 Apr 2000 WO
WO 0021436 Apr 2000 WO
WO 0021461 Apr 2000 WO
WO 0021463 Apr 2000 WO
WO 0024449 May 2000 WO
WO 0033725 Jun 2000 WO
WO 0035376 Jun 2000 WO
WO 0036997 Jun 2000 WO
WO 0041632 Jul 2000 WO
WO 0041633 Jul 2000 WO
WO 0043051 Jul 2000 WO
WO 0045711 Aug 2000 WO
WO 0045886 Aug 2000 WO
WO 0049952 Aug 2000 WO
WO 0049954 Aug 2000 WO
WO 0049956 Aug 2000 WO
WO 0054660 Sep 2000 WO
WO 0054661 Sep 2000 WO
WO 0056224 Sep 2000 WO
WO 0056225 Sep 2000 WO
WO 0056387 Sep 2000 WO
WO 0066007 Nov 2000 WO
WO 0066009 Nov 2000 WO
WO 0071195 Nov 2000 WO
Related Publications (1)
Number Date Country
20020143285 A1 Oct 2002 US
Continuations (1)
Number Date Country
Parent 09304730 May 1999 US
Child 10155926 US