The present invention relates to a structure with vertical members and cross members, in particular for facades or roof windows with frame areas in which glass panes can be inserted, with several vertical members between which cross members are affixed, whereby the vertical members have on an edge of an outer surface a corresponding channel for receiving a seal and adjacent to the channel a drainage channel for diverting liquids, whereby the cross member has on the side facing the outer surface of the vertical member a corresponding channel for receiving a seal and between the channels a retaining strip.
DE 34 19 538 A1 discloses a structure with vertical members and cross members for a facade or a roof with a metal framework, wherein glass panes can be inserted into the metal frames. The metal framework includes vertical members and transverse cross members which each have at their corresponding edges a channel for receiving a seal, so that a glass pane can be placed on a seal that extends peripherally around the edge of the glass pane. Cover profiles, which can be connected with screws to corresponding retaining channels disposed on the cross members and vertical members, are provided for securing the glass pane. Between the retaining channels and the channels for receiving the seals, there are provided drainage channels on both the cross members and the vertical members for diverting liquids that enter between the retaining channel and the glass pane of the cross member and/or vertical member. The cross member projects over the vertical member near the end faces of the channel that receives the seal and is therefore located somewhat higher than the vertical member. This difference in height is compensated towards the glass by glass support seals having different heights, i.e., the glass support seals for the cross members are not as high as the glass support seals for the vertical members. To implement this type of connection, the cross member profile has to be notched in the end region. Notching requires a more work, since the profiles cannot be simply sawn to their finished lengths. Handling the cross members for notching and the required fabrication techniques are complex in particular for long cross members. Moreover, the notching operation increases the tolerances since the cross member has to be sawn to size before being notched, so that the exact length of the cross member segment which contacts the vertical member requires greater tolerances due to the additional processing step.
It is therefore an object of the present invention to provide a structure with vertical members and cross members of the aforedescribed type, wherein the installation of the vertical members is simplified and the cross member has no longer be notched.
This object is solved with a structure with vertical members and cross members having the characterizing features of claim 1.
The overlapping construction is initially retained by installing on the end face of the cross member a connecting element which lengthens the channels and the retaining strip of the cross member and at least party covers the channel at the edge of the vertical member. The functionality of the channels and the retaining strip of the cross member is also preserved in the region of the vertical member near the edge. In particular, accumulating liquids can be diverted with the connecting element into the drainage channel of the vertical member. The cross member can be installed by simply sawing the cross member to the desired length. The cross member is subsequently installed between two vertical members, whereby the connecting element is affixed to the cross member either before or after installation. The cross member is hereby held between the vertical members with smaller tolerances, since the cross member is only sawn once and, unlike with conventional systems, the cross member need not be first cut to a suitable length and then notched. In addition, this simplifies the installation of the cross member, so that the additional costs of the connecting element do not have a negative impact.
According to an advantageous embodiment, the connecting element is affixed to the cross member. Those skilled in the art will appreciate that all conventional types of attachment methods, such as screw connections, adhesive joints, welding or other joining techniques are feasible. A mechanical attachment is preferred.
For installing the connecting element in a simple and fast manner, the element is preferably held on the cross member by way of a coupling element which is inserted into an undercut channel on the cross member and on the connecting element. The coupling element can be inserted into the channel on the cross member formfittingly and nonpositively, so that the coupling element is at least pre-attached. In particular, the coupling element can be easily held adjacent to the cross member profile, if the coupling element has at its end face a C-shaped section which encompasses the bottom of the connecting element, which also obviates the need for a tool for pre-installation. The leg of the C-shaped section, which is arranged at the bottom of the connecting element, is received in the drainage channel located at the edge of the vertical member, so that the C-shaped section does not impede contact between the connecting element and the vertical member.
Preferably, the cross member has a drainage channel on both sides of the retaining strip, with a corresponding coupling element inserted in each of the drainage channels. The coupling element can also be provided with channels for diverting liquids so as to preserve the functionality of the drainage channel.
According to another embodiment of the invention, ribs are formed on the connecting element which contact the cross member. Preferably, ribs which contact the channel walls and/or the retaining strip of the cross member are formed on the connecting element. In this way, the connecting element can be pre-attached to the cross member without requiring an additional component. The ribs can formfittingly contact the profile surface, so that the connecting element can only move in the axial direction of the cross member.
A particularly stable attachment of the connecting element with the ribs can be achieved by providing at least one recess on an end face of the cross member, through which a rib of the connecting element is inserted. In this way, a rib can engage below the channel bottom and/or the bottom of the retaining strip for supporting the connecting element over an area.
According to another embodiment of the invention, a cavity is formed below the connecting element, wherein a sealing compound can be introduced into the cavity for sealing a drainage channel that is formed on the cross member and the connecting element. Gaps can form when an additional component is employed near the transition between cross member and vertical member, which can lead to an accumulation of liquid. This can be prevented by sealing the gaps preferably with a sealing compound or an adhesive. The sealing compound is preferably introduced through an opening formed at the transition between cross member and connecting element.
To ensure a permanent mechanical attachment of the connecting element, the connecting element is preferably connected with the channel at the edge of the vertical member by a screw connection.
The invention will now be described with reference to three embodiments in conjunction with the appended drawings. It is shown in:
As shown in
A retaining strip 13 is provided on the cross member 2, with drainage channels 14 and 15 encompassing the retaining strip 13 on both sides.
As seen in particular in
According to a first embodiment of the invention, the connecting element 20 is secured to the cross member 2 with a coupling element 30 (
Several rib-shaped sections, which contact the profile of the cross member 2 at various points, are provided for pre-attaching the attachment element 40. Legs 44 and 43 are formed on the attachment strip 47 which laterally grip around the two walls of the attachment strip 13. A limit stop is formed on the leg 43, with a corresponding limit stop being provided on the leg 44, so that the legs 43 and 44 formfittingly contact the end face of the attachment strip 13 and thereby fix the position of the connecting element 40 in the lateral direction.
Recesses 17 and 18, into which a section of the connecting element 40 can be inserted, are provided on the end faces of the cross member 2 in the region of the channels 10 and 11. Bottom sections 41 and 42 are provided on the connecting element 40, which partially engage below the channels 10 and 11. Openings are formed in the bottom ribs 41 and 42, so that the connecting element 40 can be secured on the cross member 2 with screws 55, wherein the screws 55 extends through openings 19 in the channels 10 and 11. A stop 15 is formed on the bottom rib 42 which formfittingly engages with the recess 18 of the channel 11. The section which is guided through the recesses 17 and 18 operates as a coupling bridge for making contact with the hollow profile of the cross member 2 with the bottom ribs 42 and 41. Several of these coupling bridges can be provided. The connecting element 40 can also be attached to the cross member 3 by using other attachment methods.
Slots 56 are provided in the connecting element 40 for securing the connecting element 40 to the vertical member 1 by a screw connection.
The connecting element 40′ includes sections 50′ which engage with corresponding recesses in the channels 10 and 11 of the cross member 2, wherein the end faces of the sections 50′ are rounded. In addition, additional ribs 80 and 81 are formed on the connecting element 40′ which engage with the drainage channels 14 and 15 of the cross member 2. All other features of the connecting element 40′ are identical to those of the connecting element 40. The height of the connecting element 40′ is fixed by the bottom ribs 41 and 42 as well as the ribs 80 and 81. The lateral position is fixed by the legs which encompass the attachment strip 13. Screws 55 are also inserted into the connecting element 40′ to provide a mechanical connection. In addition, screws 55 are screwed into the groove 3 of the vertical member 1.
As seen in particular from
Number | Date | Country | Kind |
---|---|---|---|
101 01 720 | Jan 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP02/00176 | 1/10/2002 | WO | 00 | 5/29/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/055803 | 7/18/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4557089 | Breithaupt | Dec 1985 | A |
4638613 | Tonsmann | Jan 1987 | A |
4650702 | Whitmyer | Mar 1987 | A |
4686805 | Forslin | Aug 1987 | A |
4974385 | McFadden et al. | Dec 1990 | A |
4977716 | Hawkins | Dec 1990 | A |
5067293 | Reynolds | Nov 1991 | A |
5245808 | Grunewald et al. | Sep 1993 | A |
5363625 | Philippi | Nov 1994 | A |
5369924 | Neudorf | Dec 1994 | A |
5603789 | Whitmyer | Feb 1997 | A |
6032423 | Takemura et al. | Mar 2000 | A |
6125606 | Larsson | Oct 2000 | A |
6141923 | Habicht et al. | Nov 2000 | A |
6390718 | Steege | May 2002 | B1 |
Number | Date | Country |
---|---|---|
34 19 538 | Nov 1985 | DE |
0 884 426 | Dec 1998 | EP |
2 170 238 | Jul 1986 | GB |
Number | Date | Country | |
---|---|---|---|
20040031220 A1 | Feb 2004 | US |